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ABSTRACT
We introduce Evolutionary Feature Synthesis1 (EFS), a re-
gression method that generates readable, nonlinear models
of small to medium size datasets in seconds. EFS is, to
the best of our knowledge, the fastest regression tool based
on evolutionary computation reported to date. The feature
search involved in the proposed method is composed of two
main steps: feature composition and feature subset selec-
tion. EFS adopts a bottom-up feature composition strategy
that eliminates the need for a symbolic representation of
the features and exploits the variable selection process in-
volved in pathwise regularized linear regression to perform
the feature subset selection step. The result is a regression
method that is competitive against neural networks, and
outperforms both linear methods and Multiple Regression
Genetic Programming, up to now the best regression tool
based on evolutionary computation.

Categories and Subject Descriptors
I.2.2 [Artificial intelligence]: Automatic Programming

Keywords
Regression; Feature Synthesis; Feature Subset Selection

1. INTRODUCTION
Recent methods such as Multiple Regression Genetic Pro-

gramming (MRGP) [2], Behavioral Genetic Programming
(BGP) [13], and Kaizen Programming (KP) [4] explore the
combination of Genetic Programming based symbolic regres-
sion with deterministic machine learning methods. Tree-
based GP is used to form complex expressions and machine
learning tools fine-tune the models (MRGP and KP), guide
selection (KP and BGP), or determine appropriate crossover
points (BGP). While these methods outperform state-of-
the-art GP approaches, their running time remains a major

1Project website: http://flexgp.github.io/efs
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drawback that arguably limits their adoption by the wider
machine learning community.

Significant training time reduction can be achieved by
adopting a search paradigm where the unit of selection is
the feature, not the model itself, and where the goal is to
evolve a small population of features that collectively allows
a good model to be obtained. This method reduces bloat,
population size, and number of evaluations, and introduces
major conceptual changes in the evolutionary process [4].
For instance, with this approach, the importance of a given
feature is relative to the other features present in the pop-
ulation. This represents a notable difference with typical
evolutionary search processes, where the goal is to find in-
dividuals (features in this case) that perform well indepen-
dently. In this paper, we introduce an efficient and robust
feature subset selection method, i.e. a strategy for selecting
a subset of important features from the population for use
in model construction, that is critical for the success of the
feature synthesis paradigm.

Although feature subset selection has been widely investi-
gated (see [9] and therein), it remains a challenging problem.
On the one hand, the quality of the subsets depends on the
chosen model and learning algorithm. On the other, it can
be computationally expensive to explore many subsets. To
alleviate the computational burden, there are stepwise al-
ternatives that start with an empty feature set and greedily
add the feature that most improves performance. Another
alternative for feature selection is the use of regularization
methods. Regularization methods incorporate a penalty for
complexity that results in sparse models, which in turn can
be exploited for feature selection.

Evolutionary Feature Synthesis (EFS) is composed of two
main steps: feature composition with variation operators
and feature subset selection2 via a pathwise regularization
method [5]. Special focus is dedicated to 1) the develop-
ment of a robust feature subset selection strategy, and 2)
to motivate the design decisions that lead to an efficient
feature search. The output of EFS is a readable model, ex-
pressed as a linear combination of the evolved population
of features. Our approach provides fast learning times and
yields competitive accuracy in the set of studied benchmarks
when compared to neural networks, and outperforms both
MRGP and linear methods. To the best of our knowledge,
EFS is the first evolutionary method that learns competi-
tive, yet readable models of small to medium sized datasets
in seconds.

2Not to be confused with the concept of training subset se-
lection introduced by Gathercole and Ross in [8]

983

http://flexgp.github.io/efs
http://dx.doi.org/10.1145/2739480.2754693


The paper is organized as follows. Section 2 introduces the
machine learning methods at the core of EFS and Section 3
provides an overview of the method. In Section 4, we explain
the feature composition step while in Section 5, we discuss
feature subset selection techniques. Section 6 describes the
experimental setup and we present the results in Section 7.
Finally, Section 8 presents a review of related work and we
conclude in Section 9.

2. BACKGROUND
We introduce the machine learning techniques at the core

of our method, namely multiple linear regression, basis ex-
pansions, and pathwise LASSO regression (see [10]).

2.1 Multiple Linear Regression
Let us consider a dataset (X1, Y 1), . . . , (Xn, Y n) with uni-

variate response variable Y and a p−dimensional vector of
variables X. Multiple Linear Regression consists in finding
the vector of coefficients β̂ such that:

β̂ = argmin
β∈Rp

||Y −
p∑
i=1

βiXi||22 (1)

2.2 Basis Expansions
Linear Regression models can be extended with basis ex-

pansions to model nonlinear relations between the response
variable Y and the variables X. We model a linear basis
expansion in X as follows:

f(X) =

M∑
m=1

βmhm(X) (2)

where hm(X) : Rp → R is the mth transformation of X,
m = 1, . . . ,M . In this context, the space determined by the
basis functions hm,m = 1, . . . ,M is referred to as feature
space, while the variables Xj , j = 1, . . . , p are referred to
as original variables. The resulting regression problem is
formulated as:

β̂ = argmin
β∈Rm

||Y −
M∑
m=1

βmhm(X)||22 (3)

Examples of simple transformations are h(X) = cos(Xj),
h(X) = sin(Xj), h(X) = log(Xj) [10]. One can also use
functions involving several inputs, such as h(X) = Xi×Xj .
It is worth noting that the use of basis functions can make
the dimensionality of the problem increase significantly. It
is for this reason that the use of basis expansions is usually
coupled with regularization methods.

2.3 Pathwise LASSO Regression
Least Absolute Shrinkage and Selection (LASSO) regres-

sion [18] is an extension of multiple linear regression where
the regularization term ‖β‖1, the L1-norm of the weight vec-
tor, is added to the formulation of the problem, resulting:

β̂λ = argmin
β∈Rm

||Y −
M∑
m=1

βmhm(X)||22 + λ

M∑
m=1

|βm| (4)

where λ ∈ R+ is the regularization coefficient. The LASSO
penalty results in models with many coefficients close to
zero, and a small subset larger and nonzero. Regulariza-
tion is therefore helpful in problems where p is large, and is
widely used for variable selection.

We resort to an efficient implementation of LASSO [6]
based on the pathwise coordinate descent method intro-
duced in [5]. This method computes the weights β̂ for a de-
creasing sequence of regularization coefficients λ ∈ Γ. Note
that the weights βλ will vary for different values of λ.

3. METHOD OVERVIEW
EFS combines concepts of evolutionary computation with

a state-of-the-art implementation of regularized linear re-
gression. Our method relies on the assumption that the
functions hm(X) introduced in Eq.(2) can be optimized by
evolutionary computation. We design a population-based
search where the unit of selection is the feature, as opposed
to most related works where models are searched. In the fol-
lowing, we describe the steps involved in EFS (also depicted
in Figure 1):

Initial Population The population of features is seeded
with the functions hm(X) = Xm, m = 1, . . . , p, i.e. with
the original variables of the problem.

Then, EFS executes an optimization loop composed of three
steps: model generation, feature composition, and feature
subset selection.

Model generation A first LASSO run obtains a linear com-
bination of the features of the current population. The
generated model is archived if it reduces the error of the
best model found in previous iterations.

Feature composition In this step detailed in Section 4,
variation operators augment the population with new
features.

Feature subset selection We perform a second LASSO
run on the augmented population of features and exploit
the information generated during the regression process
to estimate feature importance. The estimated impor-
tance is used to select the subset of the extended popu-
lation that will be passed to the next generation. More
details are provided in Section 5.

Stop criteria The process stops if the best model is not
replaced in a preset number of iterations, or if a timeout
is reached.

It is worth mentioning that, because the population of fea-
tures is seeded with the original variables, our method guar-
antees an accuracy with respect to training data at least as
good as that of the LASSO fit.

Figure 1: Steps involved in evolutionary feature synthesis.
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M

p µ

x1 x2 x3 x4 log(x3)

q

(x1 + x2)sin(x1) x1log(x3)cos(x2) exp(x1)
x3

(x1+x2)
Expression

Function h1(X) h2(X) h3(X) h4(X) h5(X) h6(X) h7(X) h8(X) h9(X) h10(X) h11(X)

Score 10 9 4 0 65 0 - - - -

Size 1 1 1 1 2 3 2 4 2 5 2

Figure 2: Feature Composition. Every generation, µ new features are composed by applying unary or binary operators to the
current population of features. The size of the current population is given by p+ q, where p is the dimensionality of the data
and q is the number of composed features surviving from the previous generation.

4. FEATURE COMPOSITION
This step is inspired by the crossover and mutation steps

performed in tree-based Genetic Programming and can be
seen as generating new columns of the covariates matrix.

4.1 Bottom-up generation of new features
A set of µ features are composed by applying unary or

binary mathematical operators to the existing features. The
system admits the following set of operators:

O = {+,−, ∗, /, exp, log, sqrt, square, cube, sin, cos} (5)

A tournament selection based on a precomputed feature
score (see Section 5) is used to choose between h1, . . . , hp+q,
the features that will be combined to generate new features.
We comment the example depicted in Figure 2. The values
of the parameters are as follows:

- p = 4: the dimensionality of the problem,

- q = 3: the number of features added to the model,

- µ = 4: the features composed in a given iteration,

- M = p+ q + µ: the population size.

We enumerate below the operations performed to the fea-
tures h1, . . . , h7 to generate the features h8, . . . , h11:

- h8: is a composition of h1 and h5 with the op. ∗,

- h9: is a composition of h2 with the op. cos,

- h10: is a composition of h3 and h6 with the op. /,

- h11: is a composition of h1 with the op. exp.

4.2 Control for feature complexity
We set a maximum size for the generated features. We

define the size of a feature as the count of original variables
and operators appearing in the feature. For instance, the

size of the features x1, log(x1), and x3
(x1+x2)

is respectively

1, 2, and 5. Newly generated features are discarded if their
size is greater than the preset maximum. Let hp1 , hp2 be
the features combined to generate a given feature hi. Then,
the size of hi is given by:

size(hi) =

{
size(hp1) + size(hp2) + 1, if binary op
size(hp1) + 1, if unary op

(6)

In this work, the maximum size is set to 5 in order to
obtain readable features that can be interpreted by domain
experts. This technique is also used to control model com-
plexity in tree-based Genetic Programming. In fact, the
proposed complexity measure can be seen as the size of the
expression tree representing a given feature.

4.3 Differences with Genetic Programming
It is important to stress the following differences with re-

spect to the crossover and mutation steps employed in tree-
based Genetic Programming:

Vectorial operations vs. postponed evaluation: Given
two existing features and an operator, the generation of a
new feature is a vectorial (column-wise) operation. Vecto-
rial operations are efficient and suitable for parallel execu-
tion. On the other hand, in tree-based Genetic Program-
ming, crossover and mutation only modify the tree repre-
sentation of the models. Later, in the evaluation step, each
of the modified models needs to be traversed n times, where
n is the number of exemplars in the dataset.

No symbolic representation: The values of a given fea-
ture are computed on the fly when the feature is first gener-
ated. Therefore, no symbolic representation is needed. Note
that, however, a string representation of the generated fea-
ture is stored for logging purposes.
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5. METHODS FOR FEATURE SELECTION
We introduce two strategies that run pathwise LASSO

regression on the features of the population, and that exploit
the generated information to guide feature selection.

5.1 Strategy 1: Flexible Model Size
Given a population of features P with size |P | = M , the

goal is to select a subset P ′ ⊂ P such that |P ′| ≤ M . As a
first approach, we simply analyze the weights of the model
obtained with LASSO on the augmented population and
discard the features with zero weights. The steps involved
in this first approach are described below:

Step 1: We run LASSO via pathwise coordinate descent
(see [5]) on the extended population. As a result, we
obtain the weight vectors βλ, ∀λ ∈ Γ, i.e. for a set
of decreasing regularization coefficients. Note that the
coefficient of multiple correlation R2 of each weight
vector can be retrieved at no additional cost.

Step 2: We select the weights that maximize the coeffi-
cient of multiple correlation R2. That is, we select the
weights βm such that R2

m ≥ R2
λ, ∀λ ∈ Γ.

Step 3: We keep the original variables and the composed
features with non-zero weights, and discard the rest.
Note that the number of zero weights is not fixed be-
forehand, and thus the number of selected features will
vary from an iteration to the other. The surviving fea-
tures will be included in a new model and will be used
to compose new features in the next generation.

This method presents one major drawback since, in the
case where all the features have non-zero weights, no reduc-
tion occurs and the process stops prematurely.

As a preliminary test, we benchmark this approach with
the heating energy efficiency (ENH) regression problem in-
troduced in [19]. The characteristics of this dataset are sum-
marized in Table 3. We explore three different population
sizes M = 2p = 16, M = 4p = 32, and M = 6p = 48,
where p is the number of original variables of the problem
(in this case p = 8) and perform 20 runs for each of the three
configurations.

Figure 3 shows the mean squared error (MSE) over time
of the models obtained with the three population sizes. In
the case where M = 2p (Figure 3a), it can be seen that,
although an average error of 5.866 is achieved, the method
presents a great variance over the 20 runs. The variance is
the consequence of premature stops of the search, observed
when all the features of the population are assigned non-
zero weights. In fact, all the 20 runs stopped in less than
0.44s and executed an average of only 13 generations. On
the other hand, when M = 4p or M = 6p (Figure 3b), the
average MSE is reduced over time, and achieves respectively
1.536 and 1.107 in less that 5 seconds. The variance seems to
decrease for increasing population sizes since the case where
M = 6p presents the lowest variability between runs.

These results show that our method is capable of finding
features leading to a better accuracy on the training set.
However, this error reduction is achieved at the expense of
an increased complexity of the final model. Next, we explore
an extension of this approach that achieves simpler models.

(a) Flexible model size: M=2p

(b) Flexible model size: M=4p vs M=6p

(c) Fixed model Size: (q=p;M=3p) vs
(q=2p;M=4p) vs (q=3p;M=5p)

(d) Fixed model size: 2 example runs with (q =
p;M =3p)

(e) Fixed model size: (q=2p;M=4p) vs correlation
filtering with (q=2p;M=4p;r>0.95)

Figure 3: Mean Squared Error (MSE) on training data vs
time (seconds) with the different studied subset selection
strategies. The plots are obtained by averaging 20 runs on
the heating energy efficiency dataset. The error bars show
the standard deviation.
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5.2 Strategy 2: Fixed Model Size
We set a maximum model size, that is, a maximum num-

ber of features included in the model. Note that, as in the
previous strategy, we force the survival of the original vari-
ables of the problem.

Let P be a population of features with size |P |=M , then
the goal is to select a subset of P ′ ⊂ P such that |P ′|<M
and |P ′|=p+ q, where p is the number of original variables
of the problem and q is fixed and represents the number of
composed features added to the model. This strategy results
in a model including at most p+q features and µ=M−(p+q)
discarded features.

In this case, looking at non-zero weights is not enough,
since the number of composed features with non-zero weights
can be greater than the preset q. Instead, we perform a com-
plete ranking of the M features of the population according
to an estimation of their importance. The proposed impor-
tance measure captures the number of times a given feature
appears in the model for different values of the regulariza-
tion coefficient λ, as well as the accuracy of the models in
which it appears:

Step 1: As in Strategy 1, we run LASSO via pathwise co-
ordinate descent on the extended population.

Step 2: We estimate the importance of each feature hj as:

importance(hj) =
∑
λi∈Γ

score(j, βλi) (7)

score(j, βλi) =

{
R2
λi

if βλi
j 6= 0

0 otherwise
(8)

where R2
λi

and βλi
j are respectively the coefficient of multiple

correlation and the weight of hj obtained for λi.

Step 3: We rank the features according to the estimated
importance. The p original variables and the top q
composed features survive and will be used in the next
generation to compose new features. The rest of the
features are discarded.

We perform a preliminary test with the heating energy
efficiency dataset also used to benchmark the previous se-
lection strategy. Since the goal is to obtain simpler models,
we explore the following configurations:

- q=p;M=3p: the model includes at most 2p features
- q=2p;M=4p: the model includes at most 3p features
- q=3p;M=5p: the model includes at most 4p features

Table 1 shows a model obtained with q=2p and M =4p.
Note that we verified that none of the 19 features of the
presented model are constants, and that removing any of
the features has an impact on the model’s error.

Figure 3c shows the MSE over time of the models obtained
with the three configurations. In all cases, the error is re-
duced over time. The first setup (q = p;M = 3p) depicted
in blue yields the highest MSE (1.278). The second config-
uration (green), minimizes the error of the resulting model
(0.875) and also includes less features than the third (red)
configuration (MSE=1.081). Therefore, we fix the parame-
ters q=2p and M=4p going forward.

The performed analysis reveals a great variance of the er-
ror over the different runs. This variance is due to the fact

TRAIN SET MSE: 0.251

- 40.763
+ 0.328 * X6
- 20.690 * X7
- 0.838 * X8
- 150.026 * (log(cos(cube(sin X4))))
+ 2.528 * (sin(sin(sin(sin X2))))
- 0.434 * (sin(cube(* X5 X3)))
+ 1.313 * (sin(cos(* X5 X3)))
+ 1.280E-14 * (square(square(* X2 X5)))
- 0.066 * (sin(cos(+ X8 X5)))
+ 12.014 * (sqrt(divide X5 (cos X7)))
+ 8.156 * (exp(sqrt(* X1 X7)))
+ 0.361 * (- (square(sin X8)) X6)
+ 55.787 * (sqrt(divide(sqrt X8) X4))
- 12.661 * (cos(sin(divide X4 X1)))
- 0.487 * (sin X8)
- 3.417 * (sin(sin(divide X4 X1)))
+ 8.834 * (sqrt(sqrt(square(cos X2))))
+ 19.890 * (cos(square(square(cos X2))))
+ 0.094 * (*(* X1 X7)X3)

Table 1: Model reached in 8.648 seconds for the ENH dataset
with q=2p;M=4p. The maximum feature size is set to 5.

FEATURE RANK IMPORT.

(-(sin(cos X3))X5)
(div(cube(cos X4))X1)
(* X3(* X7 X5))
(sqrt(sqrt(sqrt(sqrt X8))))
(cos(cos(cube(sin X3))))
(square X6)
(sin(square X6))
(cube(exp(sin X2)))
----------------------------
(cos X2)
(log(exp(sin X2)))
(exp(cos X2))
(div X1(square X6))
(exp(sin X2))
(cos X1)
(exp X8)

1st
2nd
3rd
4th
5th
6th
7th
8th
----
9th
10th
11th
12th
13th
14th
15th

87.3
86.1
83.8
67.1
64.4
55.2
49.7
49.7
----
43.7
42.3
34.7
30.9
30.0
27.6
24.1

Table 2: Features present in the extended population and
their rank and score. The two features in red (9th and 11th)
are discarded because they are highly correlated (r= 0.975).

that model error is not systematically reduced after each se-
lection step. Figure 3d shows two runs illustrating this issue.
The first (run 1) is an example of appropriate behavior of
the search where the MSE of the generated model decreases
over time. On the other hand, in the second run there is a
spike at 0.92s, corresponding to the 7th generation, where
the MSE on the training set jumps from 3.064 to 8.878.

To understand the causes of such undesirable behavior, we
report in Table 2 the ranking of the extended population of
features at the end of the 7th generation. Note that, in this
particular case, 8 features need to be selected. We highlight
two features, cosX2 (9th) and exp(cosX2) (11th), that are
discarded although their estimated importance shows that
they are relevant. These two features are highly correlated,
with a Pearson correlation coefficient of 0.975. This shows
that, because these two features are correlated, their impor-
tance is split between them and thus neither gets picked,
while the desired behavior would be to pick one and discard
the other. Next, we further improve our method to alleviate
the issues caused by correlated variables.

5.3 Strategy 3: Correlation Filtering
A complete correlation analysis of the M features of the

population is expensive since M2 correlations need to be
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calculated, and each of the computations requires a pass
over the data. To avoid the extra computational cost, we
only check the Pearson correlation coefficient r of a given
feature with its parent(s) (see Section 4): the feature in
question is discarded if the correlation with any of its parents
is higher than a given threshold t. We implement this filter
during the feature composition step, updating the partial
sums necessary for the computation of r as the values of the
new feature are computed. This way, no extra passes over
the data are required.

We set the correlation threshold to t= 0.95 and the pa-
rameters q=2p and M=4p and benchmark our method with
the same heating energy dataset used previously. Figure 3e
shows the MSE over time of the models obtained without
correlation filtering and with the filter r>0.95. The average
MSE obtained with both approaches is almost identical. The
variance over the 20 runs, however, is reduced when the fil-
tering strategy is adopted. Therefore, the correlation check,
done at a negligible cost, seems to improve the robustness
of our method against correlated features.

With this final design, we turn to analyze whether EFS
is competitive against state-of-the-art regression methods in
terms of accuracy and running time, while generating read-
able symbolic models.

6. EXPERIMENTAL SETUP
In this section, we introduce the datasets and regression

approaches used to benchmark EFS.

6.1 Datasets
We consider datasets where the variables correspond to

physical measurements. Such benchmarks are suitable to
analyze whether EFS is capable of finding higher-level fea-
tures that result in a more accurate model. Table 3 sum-
marizes the regression problems used in this study. The
datasets ENH and ENC (energy efficiency of heating and
cooling loads) come from simulations [19] while the NOx
emissions dataset is a collection of real power plant data [20].
In both the red and white wine quality datasets, the origi-
nal variables are physical measurements, but the dependent
variable is a subjective grade, expressed on a scale from very
bad (0) to excellent (10). Finally, the Million Song Dataset
(MSD) year prediction challenge, introduced in [3], is a re-
gression problem in which the goal is to predict the release
year of a large set of songs. The size and dimensionality
of the dataset are challenging, since it is composed of 515K
songs, each described with 90 features and a year label.

6.2 Compared Approaches
We introduce the compared regression methods:

Multiple Linear Regression (MR): We obtain a linear
model of the data using the least squares approach.

Dataset p Exemplars
Training Test Total

ENC 8 512 256 768
ENH 8 512 256 768
NOX 18 4017 1210 5227
WIR 11 1066 533 1559
WIW 11 3265 1633 4898
MSD 90 413124 102440 515564

Table 3: Benchmark datasets.

LASSO: The same implementation of LASSO embedded in
EFS is used to perform L1-regularized linear regression.
Vowpal Wabbit (VW): Vowpal Wabbit [14] is a fast out-
of-core online learning algorithm based on sparse gradient
descent. VW generates linear models of large datasets (that
might not fit in RAM) in minimal time.
Feed Forward Neural Networks (FFNN): We consider
a configuration with one hidden layer of 10 neurons. We
employ Matlab’s Neural Network Toolbox [16] to train the
FFNNs. The networks are trained via backpropagation with
the Levenberg-Marquardt optimization.
Multiple Regression Genetic Programming (MRGP):
MRGP is a hybrid method that combines tree-based Genetic
Programming with LASSO [1, 2]. MRGP outperforms both
multiple linear regression and traditional GP-based symbolic
regression methods. We exploit MRGP’s parallelism by ex-
ecuting it in a 4-threaded fashion.
EFS: We run EFS with the following parameters: q=2p and
M =4p (see Section 5.2). Additionally, we adopt the corre-
lation filtering strategy (r>0.95) presented in Section 5.3.

7. RESULTS
We compare the mean squared error (MSE) and running

time of the compared approaches. Note that we perform 20
runs of the algorithms that present a stochastic nature, that
is, FFNN, MRGP, and EFS.

7.1 Comparison in terms of error
Table 4 reports the average test MSE achieved by the

compared approaches for the different datasets and Figure 4
shows the boxplots generated with the 20 runs.

ENH: Nonlinear methods, i.e. FFNN, MRGP, and EFS
clearly outperform the linear ones (MR, LASSO, and VW).
In particular MRGP and EFS perform particularly well reach-
ing an MSE of 0.314 and 0.317 respectively.
ENC: As in the previous case, FFNN, MRGP, and EFS
significantly reduce the error of the linear methods. In this
case, EFS presents the lowest MSE (2.548).
NOx: MRGP and EFS remain close to the linear methods
in terms of accuracy. FFNN performs particularly well on
this dataset, reaching an MSE of only 0.025.
WIR: This is the only dataset where the linear methods MR
and LASSO, with an MSE of 0.400, outperform the rest of
the methods. EFS remains close to the linear models with
an MSE of 0.402.
WIW: Nonlinear methods improve the accuracy of MR or
LASSO only marginally, reducing the MSE from 0.580 to
0.533 in the case of EFS.
MSD: MRGP obtains an MSE of 87.233, similar to that of
the linear models. On the other hand, EFS obtains an error
of 82.903 and FFNN further reduces it to 77.019.

Overall, FFNN and EFS present the lowest error, with an
average rank of 2.333. They are followed by MRGP, LASSO,
and MR with a rank of 3.167, 3.583, and 3.750 respectively.
Finally, VW ranks 5.833 on average. It is worth mentioning
that VW is sensitive to the parameters governing the learn-
ing process, and, according to our experience, it is possible
to find a set of parameters that will achieve an accuracy
close to that of MR.
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ENH ENC NOx WIR WIW MSD Rank
MSE Time MSE Time MSE Time MSE Time MSE Time MSE Time MSE Time

MR 8.303 0.040 10.576 0.030 0.038 0.120 0.400 0.030 0.580 0.050 87.225 41.100 3.750 2.167
LASSO 8.282 0.142 10.584 0.154 0.038 0.319 0.400 0.162 0.580 0.224 87.217 17.409 3.583 2.833

VW 9.577 0.007 13.012 0.014 0.080 0.039 0.417 0.011 0.599 0.039 87.233 12.473 5.833 1.000
FFNN 0.400 1.036 2.649 1.042 0.025 3.186 0.414 0.622 0.542 1.415 77.019 2013.900 2.333 4.000
MRGP 0.314 60.000 2.703 60.000 0.037 60.000 0.407 60.000 0.548 60.000 87.313 3600.000 3.167 5.917

EFS 0.317 10.575 2.548 14.161 0.039 58.852 0.402 21.906 0.533 35.498 82.903 3600.000 2.333 5.083

Table 4: Testing set Mean Squared Error (MSE) and learning time in seconds of the compared regression techniques.

(a) ENH (b) ENC (c) NOx

(d) WIR (e) WIW (f) MSD

Figure 4: Testing set Mean Squared Error (MSE) of the compared regression techniques.

7.2 Comparison in terms of speed
As shown in Table 4, the studied methods are ranked by

running time as follows.
VW: VW is the fastest method. It is worth mentioning
that, in the case of the MSD dataset, it achieves an error
close to that of MR in only 12.473 seconds.
MR and LASSO: The linear methods MR and LASSO
rank second and third. The employed pathwise coordinate
descent implementation is better suited for larger datasets.
In fact, in the case of the largest dataset (MSD), MR runs
for 41.100 seconds while LASSO needs 17.409 seconds to
execute.
FFNN: FFNN are remarkably fast in the case of the ENH,
ENC, NOx, WIR, and WIW datasets, taking between 0.622
and 3.186 seconds. The training time of FFNNs depends
on the number of parameters that need to be learned. In
the case of MSD, 910 parameters are learned, consuming an
average of 2013.900 seconds.
EFS: Since we are interested in fast learning, we allowed
EFS to run for one minute for the first five datasets, while
the maximum running time for MSD was set to 60 minutes.
EFS converged in 10.575 and 14.161 seconds for the ENH
and ENC datasets respectively. In the case of the WIR
(21.906s) and WIW (35.498s) datasets, it also finished before
the established budget. On the other hand, the method did
not converge in the established time for the NOx and MSD
datasets.
MRGP: As for EFS, we allowed MRGP to run for 60 sec-
onds for the ENH, ENC, NOx, WIR, and WIW datasets.
For the larger MSD dataset, MRGP ran for one hour.

It is important to stress a key difference between MRGP
and EFS and the rest of the approaches. The linear methods
and FFNN focus the learning process on tuning the param-
eters of a model with a predefined structure. On the other

hand, MRGP and EFS search for both the structure of the
model and its parameters, resulting in longer training times
which sometimes pay off with better accuracy while remain-
ing acceptable in time cost.

7.3 A note on the complexity of the models
We comment the complexity of the retrieved models:

MR, LASSO, and VW: These linear methods obtain the
simplest models. Given a dataset composed of p original
variables, only p + 1 weights need to be tuned during the
learning process. In the case of LASSO and VW, the model
is further simplified by means of a regularization penalty.
FFNN: The complexity of the FFNN is given by the struc-
ture of the network. In this case, although the designed
network only counts one hidden layer of 10 neurons, the re-
sulting model is hardly interpretable.
MRGP: MRGP models are expression trees coupled with
a set of weights, each associated with one node of the tree.
These models can be seen as highly complex basis expansion
models (see Eq. (2)). Note that, in the case of a complete
binary tree, the size of the resulting basis expansion model
would be 2h−1, where h denotes the height of the tree. The
size of MRGP models can quickly explode for the standard
maximum tree height h=17 used in tree-based GP.
EFS: EFS provides readable basis expansion models com-
posed of the original variables and a set of composed fea-
tures. We have determined that considering models of size
p(original variables)+2p(additional features)= 3p provides
appropriate performance in practice. In this work, we lim-
ited the size of the composed features to be at most 5 (5 el-
ements between variables and operators). We consider that
this setting results in readable models that can be analyzed
and interpreted by domain experts.
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8. RELATED WORK
A large corpus of research uses GP to generate features;

examples are [15], [7] and [12]. The combination of GP with
LASSO is also exploited by the MRGP method [2].

EFS shares the feature synthesis paradigm with Kaizen
Programming [4]. The main difference between the two
methods is the feature subset selection strategy. EFS ex-
ploits pathwise regularized linear regression to avoid search
stagnation, thus eliminating the need of restarting the run
with a larger population size. Additionally, EFS does not
require a symbolic representation of the features, yet it still
provides flexibility to model nonlinear data.

Basis expansions allow domain experts to include knowl-
edge of the problem to model nonlinear data. FFX [17]
is a non-evolutionary technique that exploits this idea: it
generates many basis functions and uses regularized linear
regression to combine them. Icke et al. expand the FFX
approach by running GP-based symbolic regression on the
augmented space of features [11]. In these two works, the
set of augmented features is fixed beforehand and is not ex-
plored during the learning process. It is the realization that
the feature space can be efficiently searched with evolution-
ary computation that led us to develop the EFS method.

9. SUMMARY AND FUTURE WORK
We have introduced Evolutionary Feature Synthesis (EFS).

EFS generates readable, nonlinear models of small to medium
size datasets in seconds. In terms of accuracy, it is compet-
itive against neural networks and outperforms both linear
methods and MRGP, up to now the best regression tool
based on evolutionary computation.

In future work, we will exploit the variable selection pro-
cedures involved in other machine learning algorithms such
as decision tree induction algorithms. Also, the exploration
of the feature synthesis paradigm in combination with the
link functions used in generalized linear models, such as the
logistic function, opens an wide area for exploration.
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