
"Divide and Conquer"
Machine Learning

to
Exploit

Big Data
Knowledge Discovery

Una-May O’Reilly
The Alfa Group

MIT ICT Conference

April 24, 2013

Lots of Data Everywhere

Knowledge Mining Opportunities

3

Agenda
For each of SCALE, FlexGP and EC-Star
•  System Layer:

–  Resource and Task Management/Mapping
–  Task = execute a ML algorithm on a distributed system

•  ML Algorithm Layer
–  Algorithm scaling:
–  Divide and Conquer data strategy

»  Factor
»  Filter,
»  Fuse Look at all the data everywhere

–  Experiments related to divide and conquer with the data
Endfor
•  Compare and contrast
•  Going Forward

SCALE Introduction

SCALE

Divide and Conquer

SCALE Server-Client Architecture

Resource and System Management Layer

SCALE Results

320 hours
~60 nodes
32,256 tasks
1200 classifiers

SCALE

Divide and Conquer

Scaling Up to 1000s: from SCALE to FlexGP

SCALE:
–  Every learner has to

know IP of task
handler

–  Task handler is a
bottleneck and
central point of
failure

–  No communication
to accelerate
learning

–  Inelastic

FlexGP
–  No central task

handler or point
of failure

–  Learners gossip
to learn each
others IP

–  Elastic

Scaling up to 1000’s: from SCALE to FlexGP

SCALE
•  Modest # of

features
•  Data must fit into

RAM
•  Explicit algorithm

tasks
•  Small scale, serial

algorithms
•  No learner

communication

FlexGP
•  Factor

–  100s of features-
•  Big Data
•  Statistically directs

algorithm islands
•  Large scale,

distributed algorithm
–  Local algorithms

coordinated
•  Learners share and

integrate progress

FlexGP

Introduction

L (π,D)

L (π,D)

L (π,D) L (π,D)

L (π,D)

L (π,D)

L (π,D)

L (π,D)
L (π,D)

L (π,D)

L (π,D)

L (π,D)

L (π,D)

L (π,D)

L (π,D)

L (π,D)

L (π,D)

L (π,D)

L (π,D)

L (π,D)

L (π,D)

L (π,D)

L (π,D)

FlexGP

Introduction

Goal: Model y = f(x1,x2,… xn)

FlexGP: launch and IP discovery

FlexGP

Launch
128.21.32.237 N, k

FlexGP: launch and IP discovery

FlexGP Launch

Launch
128.21.32.237

N, k [IP-list]

128.21.32.238 128.21.32.239

N, k [IP-list]

FlexGP: launch and IP discovery

FlexGP Launch

Launch

Gossip

128.21.32.238 128.21.32.239

FlexGP: launch and IP discovery

FlexGP Launch

Launch

Gossip

L (π,D)
 128.21.32.238 128.21.32.239

128.21.32.113 128.21.31.506 128.21.32.230 128.21.32.734

N, k [IP-list] N, k [IP-list] N, k [IP-list] N, k [IP-list]

FlexGP: launch and IP discovery

FlexGP Launch

Launch

Gossip

L (π,D)

128.21.32.238 128.21.32.239

128.21.32.113 128.21.31.506 128.21.32.230 128.21.32.734

FlexGP: launch and IP discovery

FlexGP Launch

Launch

Gossip

L (π,D)

128.21.32.237
128.21.32.239

128.21.32.237
128.21.32.238

128.21.32.113 128.21.31.506 128.21.32.230 128.21.32.734

N, k [IP-list]

FlexGP: launch and IP discovery

FlexGP Launch

Launch

Gossip

L (π,D)

128.21.32.113 128.21.31.506 128.21.32.230 128.21.32.734

 N, k [IP-list]

128.21.32.123 128.21.31.512 128.21.31.542 128.21.31.6 12 128.21.31.332 128.21.31.832 128.21.31.812 128.21.41.832

N, k [IP-list] N, k [IP-list] N, k [IP-list] N, k [IP-list] [IP-list] [IP-list]

FlexGP: launch and IP discovery

FlexGP Launch

Launch

Gossip

L (π,D)

128.21.32.123 128.21.31.512 128.21.31.542 128.21.31.6 12 128.21.31.332 128.21.31.832 128.21.31.812 128.21.41.832

FlexGP: launch and IP discovery

FlexGP Launch

Launch

Gossip

L (π,D)

128.21.32.123 128.21.31.512 128.21.31.542 128.21.31.6 12 128.21.31.332 128.21.31.832 128.21.31.812 128.21.41.832

FlexGP: launch and IP discovery

FlexGP Launch

Launch

Gossip

L (π,D)

128.21.32.123 128.21.31.512 128.21.31.542 128.21.31.6 12 128.21.31.332 128.21.31.832 128.21.31.812 128.21.41.832

FlexGP: launch and IP discovery

FlexGP Launch

Launch

Gossip

L (π,D)

FlexGP: launch and IP discovery

FlexGP Launch

Launch

Gossip

L (π,D)

Launch complete!

FlexGP Launch

… and ready to expand or contract
…. and gossiping intermittently

Statistically Parameterized Factoring

FlexGP Launch

Launch
π,D, N, k

π,D, k, cl, [IP-list] π,D, k, cl, [IP-list]

Π: Probability of feature, objective function, operator
D: factoring of the data

Divide and Conquer
•  Factor:

–  Random subsets using statistical distribution
»  Demonstrate independent learners -> weak learners

–  Features
•  Filter:

–  uncorrelated and accurate models
•  Fuse

–  How far can we pare down the dataset?
»  Effectiveness of divide and conquer

§  Show results and conclude whether it is sensitive to dataset?

–  harvest "best to date" results from the system as it
continues to work away

FlexGP Filter and Fusion

FlexGP Overview

… … … …

Filter to select
diverse models

X y Fusion to derive
an ensemble prediction

Divide and Conquer
•  Factor: Random subsets using statistical

distribution
–  Demonstrate independent learners -> weak learners

•  Filter:
–  uncorrelated and accurate models

•  Fuse
–  Which fusion algorithm is best?
–  Is fusion better than best?
–  How far can we pare down the dataset?

»  Effectiveness of divide and conquer
§  Show results and conclude whether it is sensitive to dataset?

–  Harvest "best to date" results from the system as it
continues to work away

FlexGP Fusion: Better than Best?

Results

FlexGP: Best So Far Fusion

ECStar
•  Goal: compute very cost effectively on *VAST*

number of nodes
–  Runs on thousand to 10’Ks 100K’s million nodes
–  Vast requires cost effective -> volunteer

•  Domain: learn from time series
–  Finance, medical signals domain

•  Solution is strategy or classifier expressed as rule
sets

FromFlexGP to ECStar
•  Clear separation between system layer vs algorithm

layer
•  The volunteer compute nodes of EC-Star change that

picture
–  They have unpredictable availability – when they start and

stop
–  A client’s host can fail
–  Host imposes

»  Small memory footprint,
»  need to save and migrate state
»  client-to-client communication ban
»  Design decisions negotiating responsibilities between VCN and

dedicated servers
»  Result is a distributed algorithm with divide and conquer strategy

for data handling that is
§  tightly integrated with the resource layer design

Seque

EC-Star Divide and Conquer

Resources Federation

Under to Over Sampling

EC-Star Divide and Conquer

Blood Pressure Problem

Experimental Results

Impact of Partially Evaluating Models

Experimental Results

System Layer Comparison

Scale FlexGP EC-Star
ML domain Classification Regression

Classification
Rule Learning

Resource Scale 10’s to 100 100’s to 1000 10^3 to 10^6
Resource Type Cloud Cloud Volunteer and

Dedicated
Fusion External External Integrated
Local Algorithm Different Same Same
Server:Client
ratio

1: many Decentralized many:many

SCALE FlexGP EC-Star
Factor Subsets Subsets Under to

oversampling
Filter Correlation

Accuracy
Correlation
Accuracy

Layered
competition

Fuse Voting Non-
parametric
output space
approaches

Migration and
ancestral
properties

Automation
•  "In the end, the biggest bottleneck is not data or

CPU cycles, but human cycles."

Looking Forward

ML requires a lot of Human Effort

Looking Forward

Domain Knowledge
Analysis and Transfer

Data Preconditioning

Feature
Identification

Feature Extraction

Problem Definition

Algorithm Selection

Algorithm Customization

Parameter Selection

Training and Test Data
Selection

Results Evaluation

Solution Deployment

Thanks for your attention!
Thanks to…
•  ALFA group members

–  Large team of students
–  Postdoc: Dr. Erik Hemberg
–  Research Scientist: Dr. Kalyan Veeramachaneni

•  Our collaborators and sponsors

