"Divide and Conquer" Machine Learning to Exploit Big Data Knowledge Discovery

Una-May O'Reilly The Alfa Group

MIT ICT Conference April 24, 2013

Lots of Data Everywhere

Knowledge Mining Opportunities

Agenda

For each of SCALE, FlexGP and EC-Star

- System Layer:
 - Resource and Task Management/Mapping
 - Task = execute a ML algorithm on a distributed system
- ML Algorithm Layer
 - Algorithm scaling:
 - Divide and Conquer data strategy
 - » Factor
 - » Filter,
 - » Fuse Look at all the data everywhere
- Experiments related to divide and conquer with the data
 Endfor
- Compare and contrast
- Going Forward

SCALE Introduction

Divide and Conquer

SCALE Server-Client Architecture

Resource and System Management Layer

Divide and Conquer

Scaling Up to 1000s: from SCALE to FlexGP

SCALE:

- Every learner has to know IP of task handler
- Task handler is a bottleneck and central point of failure
- No communication to accelerate learning
- Inelastic

FlexGP

- No central task handler or point of failure
- Learners gossip to learn each others IP
- Elastic

Scaling up to 1000's: from SCALE to FlexGP

SCALE

- Modest # of features
- Data must fit into RAM
- Explicit algorithm tasks
- Small scale, serial algorithms
- No learner
 communication

FlexGP

- Factor
 - 100s of features-
- Big Data
- Statistically directs
 algorithm islands
- Large scale, distributed algorithm
 - Local algorithms coordinated
- Learners share and integrate progress

FlexGP

Introduction

ANYSCALE LEARNING FOR ALL

CSAIL

Launch complete!

Statistically Parameterized Factoring

 Π : Probability of feature, objective function, operator $\ensuremath{\mathcal{D}}$: factoring of the data

Divide and Conquer

- Factor:
 - Random subsets using statistical distribution
 - » Demonstrate independent learners -> weak learners
 - Features
- Filter:
 - uncorrelated and accurate models
- Fuse
 - How far can we pare down the dataset?
 - » Effectiveness of divide and conquer
 - Show results and conclude whether it is sensitive to dataset?
 - harvest "best to date" results from the system as it continues to work away

FlexGP Filter and Fusion

Divide and Conquer

- Factor: Random subsets using statistical distribution
 - Demonstrate independent learners -> weak learners
- Filter:
 - uncorrelated and accurate models
- Fuse
 - Which fusion algorithm is best?
 - Is fusion better than best?
 - How far can we pare down the dataset?
 - » Effectiveness of divide and conquer
 - Show results and conclude whether it is sensitive to dataset?
 - Harvest "best to date" results from the system as it continues to work away

FlexGP Fusion: Better than Best?

Figure 1: The quartile distribution of PG_{MSE} of models used for fusion in each experiment. The circles represent the best PG_{MSE} from fusion. Left Results for NOx experiments; KDE was the best fusion method. Right Results for MSD experiments; ARM was the best fusion method.

Results

ECStar

- Goal: compute very cost effectively on *VAST* number of nodes
 - Runs on thousand to 10'Ks 100K's million nodes
 - Vast requires cost effective -> volunteer
- Domain: learn from time series
 - Finance, medical signals domain
- Solution is strategy or classifier expressed as rule sets

FromFlexGP to ECStar

- Clear separation between system layer vs algorithm layer
- The volunteer compute nodes of EC-Star change that picture
 - They have unpredictable availability when they start and stop
 - A client's host can fail
 - Host imposes
 - » Small memory footprint,
 - » need to save and migrate state
 - » client-to-client communication ban
 - » Design decisions negotiating responsibilities between VCN and dedicated servers
 - » Result is a distributed algorithm with divide and conquer strategy for data handling that is
 - tightly integrated with the resource layer design

EC-Star Divide and Conquer

Resources Federation

Under to Over Sampling

EC-Star Divide and Conquer

Blood Pressure Problem

Experimental Results

Impact of Partially Evaluating Models

Experimental Results

System Layer Comparison

	Scale	FlexGP	EC-Star
ML domain	Classification	Regression Classification	Rule Learning
Resource Scale	10's to 100	100's to 1000	10^3 to 10^6
Resource Type	Cloud	Cloud	Volunteer and Dedicated
Fusion	External	External	Integrated
Local Algorithm	Different	Same	Same
Server:Client ratio	1: many	Decentralized	many:many

	SCALE	FlexGP	EC-Star
Factor	Subsets	Subsets	Under to oversampling
Filter	Correlation Accuracy	Correlation Accuracy	Layered competition
Fuse	Voting	Non- parametric output space approaches	Migration and ancestral properties

Automation

• "In the end, the biggest bottleneck is not data or CPU cycles, but human cycles."

Looking Forward

ML requires a lot of Human Effort

Looking Forward

Thanks for your attention!

Thanks to...

- ALFA group members
 - Large team of students
 - Postdoc: Dr. Erik Hemberg
 - Research Scientist: Dr. Kalyan Veeramachaneni
- Our collaborators and sponsors

