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Lots of Data Everywhere

Knowledge Mining Opportunities






Agenda

For each of SCALE, FlexGP and EC-Star

o System Layer:
— Resource and Task Management/Mapping
— Task = execute a ML algorithm on a distributed system
« ML Algorithm Layer
— Algorithm scaling:
— Divide and Conquer data strategy
» Factor

» Filter,
» Fuse Look at all the data everywhere

— Experiments related to divide and conquer with the data

Endfor
e Compare and contrast
e Going Forward
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SCALE
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SCALE Results
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Scaling Up to 1000s: from SCALE to FlexGP

SCALE:

— Every learner has to
know IP of task
handler

— Task handler is a
bottleneck and
central point of
failure

— No communication
to accelerate
learning

— Inelastic

LFA:
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FlexGP

— No central task
handler or point
of failure

— Learners gossip
to learn each
others IP

— Elastic

CSAIL



Scaling up to 1000’s: from SCALE to FlexGP

SCALE

e Modest # of
features

« Data must fit into
RAM

 Explicit algorithm
tasks

« Small scale, serial
algorithms

e No learner
communhnication

AAAAAAAAAAAAAAAAAAAAAA

FlexGP

e Factor
— 100s of features-

 Big Data

o Statistically directs
algorithm islands

e Large scale,
distributed algorithm

— Local algorithms
coordinated

e Learners share and
integrate progress

e
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Goal: Model y = f(X4,Xy, ..

Form GP Trees
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FlexGP: launch and IP discovery

T O Launch
12 7

ALFA dbd
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FlexGP: launch and IP discovery

O Launch

LFA " FlexGP Launch @E’
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FlexGP: launch and IP discovery

O Launch
® Gossip

LFA " FlexGP Launch @E’
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FlexGP: launch and IP discovery

O Launch
@ Gossip

LFA " FlexGP Launch @E’
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FlexGP: launch and IP discovery

O Launch
@ Gossip
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FlexGP: launch and IP discovery
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FlexGP: launch and IP discovery
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FlexGP: launch and IP discovery

O Launch
O Gossip

2
HEA FlexGP Launch @g}:}l
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FlexGP: launch and IP discovery

O Launch
O Gossip

2
HEA FlexGP Launch @g}:}l
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FlexGP: launch and IP discovery
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FlexGP: launch and IP discovery

O Launch
@ Gossip
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Launch complete!

. and ready to expand or contract
.. and gossiping intermittently
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Statistically Parameterized Factoring

O Launch
D, N, k —>

M, D, k, cl; [IP-list] M, D, k, cl, [IP-list]

[1: Probability of feature, objective function, operator
D: factoring of the data
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Divide and Conquer

 Factor:

— Random subsets using statistical distribution
» Demonstrate independent learners -> weak learners

— Features

e Filter:

— uncorrelated and accurate models
e Fuse

»

LFA A
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FlexGP Filter and Fusion

2\ T1a - GOV EEn DOV ]
,D M, D ﬂ-@

x151n X5 + Xo \/_ \ ﬁ)ﬁ)— + sqrt(x3)
coS(Xy) /sin(Xz) + /X3 — X4 o) T X5 + 2

= Filter to select
diverse models

x1 sin Xg + —2—

xlsin(X5)+Xz\\/i> / ﬁ)ﬂ# + sqrt(xs)

Y Fusion to derive
an ensemble prediction

LFA " FlexGP Overview @g&
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Divide and Conquer

e Fuse
— Which fusion algorithm is best?
— |Is fusion better than best?

— How far can we pare down the dataset?

» Effectiveness of divide and conquer
= Show results and conclude whether it is sensitive to dataset?

— Harvest "best to date" results from the system as it
continues to work away

LFA A
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PGmse

FlexGP Fusion: Better than Best?

PG se V-8 factorization for NOX PG vs. factorization for MSD
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Figure 1: The quartile distribution of PGrse of models used for fusion in each experiment. The circles
represent the best PG ;s from fusion. Left Results for NOx experiments; KDE was the best fusion method.
Right Results for MSD experiments; ARM was the best fusion method.
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FlexGP: Best So Far Fusion
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ECStar

 Goal: compute very cost effectively on *VAST*
number of nodes
— Runs on thousand to 10°’Ks 100K’s million nodes
— Vast requires cost effective -> volunteer

e Domain: learn from time series
— Finance, medical signals domain

e Solution is strategy or classifier expressed as rule
sets

LFA A

ANYSCALE LEARNING FOR ALL C s A I I.



FromFlexGP to ECStar

e Clear separation between system layer vs algorithm

layer
e The volunteer compute nodes of EC-Star change that
picture
— They have unpredictable availability — when they start and
stop

— A client’s host can fail

— Host imposes
» Small memory footprint,
» need to save and migrate state
» client-to-client communication ban

» Design decisions negotiating responsibilities between VCN and
dedicated servers

» Result is a distributed algorithm with divide and conquer strategy
for data handling that is

= tightly integrated with the resource layer design

- LFA . Seque @g&
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Migrants Graduates
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Resources Federation
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Under to Over Sampling
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EC-Star Divide and Conquer

Training Case
Server
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Blood Pressure Problem

ICU Admission Forecast
windo
! v' Forecast
Memory ' period

To'm hourS To T0+ f T0+ f + p

LFA < Experimental Results @E&I
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Impact of Partially Evaluating Models

0.82

0.8 %

0.78: %
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: ALFA i Experimental Results @g&l

AAAAAAAAAAAAAAAAAAAAAA CSAIL



System Layer Comparison

Scale | FlexGP___| EC-Star

ML domain Classification Regression Rule Learning
Classification
SCETI (-1 13 10’s to 100 100’s to 1000 1073 to 10”6
Resource Type [®{[es[e Cloud Volunteer and
Dedicated

External External Integrated

Local Algorithm QBJji{=I{=1a] Same Same

Server:Client 1: many Decentralized many:many

ratio

ALFA e
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Subsets

Correlation
Accuracy

Voting

Subsets

Correlation
Accuracy

Non-
parametric
output space
approaches

 SCALE____|FlexGP____|EC-Star

Under to
oversampling

Layered
competition

Migration and
ancestral
properties

e
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Automation

 "In the end, the biggest bottleneck is not data or
CPU cycles, but human cycles.”

LFA " Looking Forward @5\%
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ML requires a lot of Human Effort

Domain Knowledge

_ Algorithm Selection
Analysis and Transfer

Algorithm Customization
Problem Definition
Parameter Selection

Data Preconditioning Training and Test Data

Feature Selection

|dentification Results Evaluation

Feature Extraction ‘ ‘ Solution Deployment

LFA " Looking Forward {%
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Thanks for your attention!

Thanks to...
e ALFA group members

— Large team of students

— Postdoc: Dr. Erik Hemberg
— Research Scientist: Dr. Kalyan Veeramachaneni

e Our collaborators and sponsors

FHRBEETR

LI KA SHING FOUNDATION

imagination at work

@ We bring good things to life.
. I o/
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