
FlexGP: a Scalable System for Factored Learning

in the Cloud
by

Owen C. Derby

Submitted to the Department of Electrical Engineering
and Computer Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2013

c© Owen C. Derby, MMXIII. All rights reserved.

The author hereby grants to MIT permission to reproduce and to
distribute publicly paper and electronic copies of this thesis document
in whole or in part in any medium now known or hereafter created.

Author .
Department of Electrical Engineering

and Computer Science
May 23, 2013

Certified by. .
Kalyan Veeramachaneni

Research Scientist
Thesis Supervisor

Certified by. .
Una-May O’Reilly

Principal Research Scientist
Thesis Supervisor

Accepted by .
Prof. Dennis M. Freeman

Chairman, Masters of Engineering Thesis Committee

2

FlexGP: a Scalable System for Factored Learning

in the Cloud

by

Owen C. Derby

Submitted to the Department of Electrical Engineering
and Computer Science

on May 23, 2013, in partial fulfillment of the
requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

Abstract

This work presents FlexGP, a new system designed for scalable machine learning in
the cloud. FlexGP presents a learner-agnostic, data-parallel approach to cloud-based
distributed learning using existing single-machine algorithms, without any depen-
dence on distributed file systems or shared memory between instances. We design
and implement asynchronous and decentralized launch and peer discovery protocols
to start and configure a distributed network of learners. Through a unique process of
factoring the data and parameters across the learners, FlexGP ensures this network
consists of heterogeneous learners producing diverse models. These models are then
filtered and fused to produce a meta-model for prediction.

Using a thoughtfully designed test framework, FlexGP is run on a real-world
regression problem from a large database. The results demonstrate the reliability
and robustness of the system, even when learning from very little training data and
multiple factorings, and demonstrate FlexGP as a vital tool to effectively leverage
the cloud for machine learning tasks.

Thesis Supervisor: Kalyan Veeramachaneni
Title: Research Scientist

Thesis Supervisor: Una-May O’Reilly
Title: Principal Research Scientist

3

4

Acknowledgments

First and foremost, I would like to thank Una-May O’Reilly for her guidance and

feedback over the course of my research and for enabling me to make this project my

own. Likewise, the support and supervision I received from Kalyan Veeramachaneni

was second to none. His insights and dedication were critical to formulating much of

this work. Finally, I am grateful to Dylan Sherry and Alexander Waldin, my partners-

in-crime in 32-D433, along with the rest of the ALFA group, for their support and

suggestions this past year.

My friends and peers have been tremendously supportive and a constant source

of inspiration. These past 5 years have been truly amazing and went by too quickly.

And last but definitely not least, I am forever grateful to my parents. Words

simply are not enough to express my gratitude. Thank you.

5

6

Contents

1 Introduction 15

2 Related Work 19

2.1 Systems for Distributed Machine Learning 19

2.2 Distributing Evolutionary Computation 21

2.3 Previous Work Leading to FlexGP 22

3 FlexGP Overview 23

3.1 Running in the Cloud . 23

3.2 Goals . 25

3.3 Design . 25

3.3.1 Computational Dichotomy . 26

3.3.2 Learners . 27

3.3.3 Asynchronous Message Passing Network 28

3.3.4 Factored Learning . 29

3.3.5 Filtering and Fusing . 30

4 Implementation 31

4.1 Learning with Genetic Programming 31

4.2 Splitting the Data . 33

4.3 Parallel Asynchronous Startup . 34

4.3.1 Tolerating Failures . 36

4.3.2 Selecting Ψ.k . 37

7

4.4 Factored Learners . 37

4.5 Peer Discovery . 40

4.6 Gathering and Filtering Models . 42

4.7 Combining Models . 43

4.7.1 Fusion Methods for GP . 43

4.7.2 Advantages and limitations 45

4.7.3 Selecting Methods for Filtering and Fusion 45

4.7.4 Producing a Meta-Model . 46

5 Evaluating FlexGP 47

5.1 Cloud Infrastructure . 47

5.2 Dataset Description . 48

5.2.1 Splitting the Data . 49

5.3 Experimental Setup . 49

5.3.1 System Configurations . 49

5.3.2 A Framework for Experimentation 50

5.3.3 Establishing Notation . 53

5.4 Analysis of FlexGP . 54

5.4.1 Study 1: Comparing FlexGP with GP 56

5.4.2 Study 2: Impact of Different Factorings 59

5.4.3 Study 3: Changing the Size of the Data 63

5.5 Summary of Findings . 64

6 Conclusion 67

6.1 Summary of Contributions . 67

6.2 Directions for Future Work . 68

6.3 Conclusion . 70

A Starting Nodes in the Cloud 71

B GP Learner 73

8

C Experimental Results 75

9

10

List of Figures

3-1 The FlexGP workflow . 26

4-1 How FlexGP works . 32

4-2 A sample individual in genetic programming. 33

4-3 Launching FlexGP . 35

4-4 Benefits of starting early . 36

4-5 Importance of Ψ.k . 37

4-6 How FlexGP works, without data factoring 39

4-7 Peer discovery . 41

4-8 Comparing filtering and fusing methods 46

5-1 Description of how results are presented. 51

5-2 Experimentation framework . 52

5-3 Notational convention for reporting results. 53

5-4 Second order statistics . 54

5-5 Comparing SGP and FGP . 57

5-6 Breaking SGP and FGP down by folds 58

5-7 FAC results . 60

5-8 Total variance and its two components. 62

5-9 TDS results . 65

5-10 Components of total variance for the FAC experiments. 66

A-1 PDF of times to acquire nodes . 72

11

12

List of Tables

4.1 Factoring Parameters . 38

4.2 Problem Notation . 43

5.1 Values used for various parameters. 50

5.2 Experimental Settings . 55

5.3 Summary of results from SGP and FGP experiments. 56

5.4 Summary of results from the FAC experiments. 60

5.5 Summary of results from the TDS experiments. 64

C.1 Results for different filter and fusion methods 76

C.2 SGP and FGP results . 77

C.3 FAC and TDS results . 78

13

14

Chapter 1

Introduction

The past decade has seen tremendous growth in both the power and availability of

computational resources. New technologies have emerged around these resources,

bringing transformation to all parts of daily life. The cloud, a resource of seemingly

infinite computational power, available on-demand and at your fingertips, stands out

in particular as a new technology of importance for both professionals and academics

alike. The growth and maturation of the cloud as a platform for computation has

enabled machine learning at a scale never before seen. Simultaneously, we have seen

an explosion of large, rich datasets; largely as a result of the increased availability

of computers and the decreased cost of storage. Gone are the days when machine

learning researchers were restricted to using small, hand-crafted datasets to train

their models. Instead, the challenge now is constructing systems and algorithms for

efficient learning in the cloud with these large datasets.

Developing systems for machine learning in the cloud presents several challenges.

Taking advantage of the many compute resources available requires developing a

system in a distributed computing environment. In addition to ensuring the algorithm

is correct and performs well, concerns over shared memory, task distribution and

coordination, and consistency arise in this environment. Addressing these challenges

requires new approaches and often major refactoring of existing algorithms to fully

and efficiently take advantage of the promise of more computational resources.

15

Oftentimes, the motivation for using clouds and other distributed computing plat-

forms for learning is to deal with large datasets. Having a lot of data presents two

major problems. First, it can be almost impossible, or so difficult as to be imprac-

tical, to learn on an entire dataset using just a single machine or simple cluster of

machines. The data may simply be too big to fit into the available RAM. Second, the

time taken to learn from a dataset is at least proportional to the size of the dataset.

With such large datasets, learning time increases drastically, oftentimes so much that

the learning may never finish. Further, existing methods for working with overly large

datasets in the available RAM of a small cluster often introduces significant delays.

Amidst an era of “cloud computing” and “large-scale machine learning,” many

systems and platforms have emerged for distributing a given algorithm efficiently.

Indeed, many common algorithms have been implemented on top of systems like

GraphLab [11] or Mahout [13]. GraphLab, Mahout and similar distributed computing

frameworks make strong assumptions about the organization of the algorithm or the

structure of the datasets. Such assumptions enable these systems to run efficiently

on the cloud. Unfortunately, different algorithms decompose in different, unique

ways, often requiring extensive work and tweaking before they can run under these

assumptions. When trying to use your algorithm with these systems, you are left

either trying to fit a square peg (your algorithm + data) into a round hole (their

system) or hacking your own solution. Neither option is very satisfactory.

This work presents FlexGP, a third option and potential solution for many re-

searchers facing this problem. FlexGP1 is an alternative approach for running machine

learning in the cloud. Rather than decomposing and distributing a single learning al-

gorithm across the cloud, FlexGP presents a learner-agnostic, data-parallel approach

to cloud-based distributed learning, without any dependence on distributed file sys-

tems or shared memory between instances. With FlexGP, you can simply run your

existing algorithm on hundreds of instances in the cloud with a large dataset and

receive a fused model of significant improved quality.

1The “GP” in FlexGP stands for genetic programming. Even though the system is constructed to
handle arbitrary learning algorithms, it currently runs genetic programming as the sample learner.

16

FlexGP addresses machine learning in the cloud by mirroring the full learner across

the cloud and providing each instance with a subset of training data and algorithm

parameters. In FlexGP, there is no single controller coordinating the system and the

entire network is setup with peer-to-peer gossip-based protocols. Using simple fusion

techniques, FlexGP produces a meta-model which enables predictions on withheld

data. For historical and illustrative purposes, this work applies FlexGP to a real-world

regression problem while using genetic programming (GP) as the learning algorithm.

We define and present a rigorous test framework for experimenting with FlexGP.

Using this framework and our regression problem, we run a series of studies to an-

alyze FlexGP, observing its performance and measuring the variance. Using these

measurements, we infer the reliability of FlexGP and identify sources of variance in

the performance. From these results, we show that FlexGP simultaneously provides

improves performance while decreasing the variance when compared to a baseline

single-machine learner.

The remainder of this work proceeds as follows. Chapter 2 discusses existing

systems for distributed machine learning and work leading to the development of

FlexGP. Chapter 3 gives an overview of the challenges FlexGP faces, its stated goals,

and how the system is designed to meet those challenges and goals. Chapter 4 goes

into the details of how the system is implemented, as well as briefly describing the

GP library used. Chapter 5 discusses the regression problem, experimental setup and

results from our studies. Finally, Chapter 6 concludes and discusses several ways in

which FlexGP can be extended in the future.

17

Reviewer
Reviewer May 30, 2013 11:53 PM
Here the results may be specific to GP because other ML algs may be completely deterministic or not need multiple runs. However we know NNs do.

18

Chapter 2

Related Work

The advent of today’s cloud computing platforms has dramatically lowered the cost

and increased the availability of large-scale computations. Previously, researchers

would require large, expensive clusters to perform the same computation available

now with a few clicks on a website. This has spurred researchers to revisit their

algorithms, looking for ways to run them effectively in the cloud. Several systems for

running machine learning on the cloud have been proposed as a result. While these

systems each have their unique strengths and have seen wide-spread adoption, they

only work well for particular types of algorithms and fail to provide a general purpose

solution.

2.1 Systems for Distributed Machine Learning

MapReduce [2] is perhaps the most popular approach to running computation in

parallel in the cloud. The MapReduce model requires users to specify a map function,

which specifies how to decompose the input data into chunks of work for the many

slaves to compute. After computation, the results are merged into a single set of

answers using the user-defined reduce. Apache Mahout is an open source collection of

machine learning algorithms which have been adapted to run within the MapReduce

framework [13]. Systems implementing MapReduce, like Mahout, follow a master-

slave model of computation where a special node is responsible for configuring and

19

coordinating an army of slaves. Further, MapReduce relies on a distributed file system

for passing data between slaves and report results.

There are three challenges encountered when trying to complete machine learning

tasks using the MapReduce model. First, the centralized architecture is prone to

failure and can become a bottleneck in practice. A failed master, even in the presence

of periodic snapshots, means hours of computation time lost. Further, with any

centralized architecture, the scalability of MapReduce is limited in practice by the

bandwidth and implementation of the master. Second, the reliance on a distributed

file system proves difficult to support in practice and is not well-matched for running

on the cloud. Configuring and maintaining a distributed file system is a non-trivial

task, and something most researchers can’t afford to bother with. Finally, MapReduce

is a one-off approach, with no support for iterative processes, which is problematic for

some machine learning algorithms. Each algorithm has several ways in which it can

be broken down for parallelization in the cloud, but sometimes these sub-problems

require an iterative approach, which is at odds with the MapReduce framework.

Without support for iteration, it becomes a contortionist’s act to run these learning

algorithms on the cloud with MapReduce. Promising work has begun to add iteration

to MapReduce [14], but it is still preliminary.

GraphLab [11] and Pregel [12] take a different approach to distributed machine

learning. These systems adopt a graph-parallel view of the world. By this, they as-

sume the problem can be broken down into a graph abstraction, where data resides

on vertices and/or edges between vertices and each vertex executes a local program

using its data and the data of its edges and its neighbors. These systems extend

the Bulk Synchronous Parallel (BSP) [18] model for parallel computation with this

graph abstraction. The BSP model supports message passing and distributed compu-

tation free of deadlocks with barrier synchronization. This model supports iterative

algorithms, and as such is a better match for distributed machine learning.

Unfortunately, there are some severe practical limitations to GraphLab and similar

systems. The graph abstraction does not work with all machine learning algorithms,

in particular GP. In such cases it becomes just as hard to use as MapReduce. Further,

20

Reviewer

Reviewer

Reviewer

Reviewer

Reviewer

Reviewer

Reviewer

Reviewer

Reviewer

Reviewer

Pregel relies on a distributed file system, like Hadoop, and suffers from similar prob-

lems Mahout. While GraphLab can work without a distributed file system, it instead

requires a shared or distributed memory system. Such systems are complex and ex-

pensive to set up, and have a strict limit on their scalability. To use shared memory,

all the cores must reside in the same machine, restricting the size of a computation to

the maximum number of cores available on a cloud machine, which is around 128 cores

on most public cloud platforms. With distributed memory, the number of nodes isn’t

a restriction, but the overhead involved with maintaining memory consistency quickly

dominates the algorithm’s run time. Finally, despite using a graph abstraction, these

systems still heavily rely on a centralized control structure for synchronization, and

therefore suffer from the same drawbacks as Mahout in this respect.

2.2 Distributing Evolutionary Computation

There is a large body of existing research in distributed evolutionary computation

[4, 25, 21, 22, 5] focused on modeling evolutionary dynamics and improving col-

laborative solution building by enabling communication between multiple evolving

islands. Much of this work ignore the problem of matching the distributed system

to a particular resource type or communication layer. Thus, much of this work is

only tangentially related to FlexGP, as we are focused on writing a platform which

takes advantage of the cloud platform. Further, these systems rely on MapReduce

for parallelization and therefore suffer from the problems outlined in Section 2.1.

FlexGP’s IP discovery is like other EC peer-to-peer systems. For example, the

EvAg system [7, 10] also relies upon gossiping for node discovery. Little information

is available on its startup method. It is not specialized to run on particular resource

types whereas it is designed to investigate topology and a fine grained distribution

model. EvAg and FlexGP differ in how they introduce evolutionary diversity: EvAg

employs different operators across randomized neighbourhood whereas FlexGP factors

each island with differentiation of data, GP objective function, operator set and input

variables.

21

Eureqa [15] is a cloud-based system for evolving natural laws of complex systems

with GP for symbolic regression. Because the system has since been commercialized,

it is unclear what paradigm Eureqa uses for running in the cloud and whether it relies

on a distributed file system, shared memory, neither or both. However, Eureqa does

not support data sub-sampling or different learners, making it difficult to operate

with large datasets.

2.3 Previous Work Leading to FlexGP

Historically, FlexGP was preceded by FlexGP-ECJ [16], a pilot exercise to explore

adapting an existing system to the cloud. FlexGP-ECJ attempted to retrofit an

existing grid-based evolutionary computation framework, called ECJ [15], to run in

the cloud. Several difficulties were encountered. A grid-based system assumes all re-

sources and their IPs are available at its startup so it starts with centralized migration

topology initialization. In FlexGP-ECJ all islands start running genetic programming

(GP) only once the topology is completely communicated to the entire network. When

resource acquisition was later prefixed to the code, a bottleneck arose. The central-

ized start node had to wait (sometimes quite a while) until the final acquired instance

sent in its IP before it established the topology and told each island to start GP.

The original intent of the exercise was to try and simply run ECJ in the cloud

instead of on a cluster. However, several unique features of how ECJ was imple-

mented made the process of porting it over extremely difficult. As with other exist-

ing distributed evolutionary computation models, ECJ was not designed for machine

learning tasks. It was designed primarily to simulate the evolutionary dynamics of

multiple independently evolving populations trying to maximize a fitness function.

Because of this, most of the flexibility in the system focused on setting up different

configurations of populations and evolutionary strategies, not system configuration.

In the end, the work reduced to rewriting much of the underlying system, such that

it became clear the work would be better achieved by starting from scratch. Thus,

FlexGP was born.

22

Chapter 3

FlexGP Overview

FlexGP as a system is designed to run in the cloud. Through a carefully considered

design, it takes full advantage of the advantages offered by the cloud platform while

accommodating its failures and drawbacks. It is designed with an understanding that

the cloud supplies sufficient computational resources upon request, yet expects those

resources might fail or be delivered with unknown latency. It is conceived as a long-

running computational learner, evolutionarily adapting and continuously improving

its model whilst allowing for drastic changes in supplied cloud resources and network

topology. It is realized as a collaboration of many heterogeneous FlexGP instances,

independently learning a model and observing the topology of the network.

3.1 Running in the Cloud

The term “cloud” has become ubiquitous. Before proceeding with an overview of

the design of FlexGP, it is necessary to refine what we mean by the term and its

connection with FlexGP.

A cloud is a platform providing practically infinite computational resources on-

demand. These resources are partitioned into virtualized instances, running on top of

commodity hardware, typically running a full-fledged operating system. Because they

are virtualized, instances can be created with various numbers of CPUs and amounts

hard drive and RAM available. The cloud provides an API for starting, managing,

23

and stopping instances. Users can also change and configure the operating system,

or “image,” instances start up with, allowing for easy customization of what software

instances have installed when they start.

With this platform construction comes various challenges and cautions to consider:

Distributed Environment Launched instances normally run independent of each

other – it is left to the user to setup a network and coordinate work between

them. Managing and executing a system in such a distributed landscape is very

different from managing a local machine or cluster of machines.

Variable Startup Time Because instances are virtualized and clouds handle re-

quests from many users at once, launching a new instance is a complicated

process and is opaque to the user. From the user’s perspective, requests for

cloud instances are subject to arbitrary delays and failures. This means that it

may take a while before a requested instance starts, if it even starts at all. See

Appendix A for a more comprehensive discussion of this point.

Random Failures Most clouds are built using commodity hardware, which makes

maintenance, repair and upgrade easy and cost effective. However, it also means

hardware failure is a common occurrence and instances can crash without warn-

ing.

Virtual Hardware Unlike a physical CPU, the processing power of a virtual CPU is

not very well defined and tends to fluctuate. Anything requiring precise timing

or exact processor specifications will have trouble.

Price Fluctuation Pricing schemes for running on clouds tend to be complicated.

Generally, the price rate (cost per unit time) for running an instance depends

on the type of instance selected and the time at which it is run. Minimizing

this cost is important.

24

3.2 Goals

The task for building FlexGP was undertaken with several goals in mind. These goals

were conceived with respect to the presented cloud challenges and how the system

will be used.

Graceful Scaling Running with 10 nodes should be as easy as running with 1000.

When new instances start up, they should be quickly and effortlessly incorpo-

rated into the network.

Zero-Delay Computing Despite running on the cloud, the system should feel re-

sponsive. The user shouldn’t have to wait for the last node to start for compu-

tation to begin. The current best results should be available at any time.

Fault Tolerant As with any distributed system on the cloud, failures will occur.

FlexGP needs to tolerate such failures without compromising the system or

computational results.

Robust Learning The user ought to be able to trust the results from a single run

of FlexGP. Despite the stochastic nature of the system, the system ought to

produce reliable results, with low variance across trials.

Heterogeneous Learning There is little value to be gained by running the same

computation on 100 cloud instances. Instead, every instance should be comput-

ing something different, contributing in a valuable way to the end result.

Elastic Resource Allocation The cloud enables seamless launching of new in-

stances. FlexGP ought to provide this functionality as well, enabling users

to seamlessly add to or remove new instances from the computation as needed.

3.3 Design

At its core, FlexGP constructs a simple workflow for machine learning. The input to

the workflow is a desired learner library L, a dataset D to learn on, and a distribution

25

Figure 3-1: Overview of workflow in FlexGP. Given a learner L, a dataset D and
parameter distributions Π, FlexGP launches n cloud instances to run L with data
subset di and parameters πi. The resulting models are collected, filtered and fused to
produce a single model M.

of parameter settings Π. These inputs are fed to cloud instances in parallel, with each

instance running the learner on a randomly chosen subset of the dataset and randomly

selected parameters from the distribution. Using the data, the learners perform the

typical machine learning task of producing and refining models. The objective for

each learner is to produce models which can predict the output for unseen data. The

models can be collected from every learner to form an ensemble of learners. This

ensemble goes through a filtering stage, to remove models which perform poorly or

are very similar to other models. A fusion technique is then applied to the ensemble,

producing a single meta-model which can be used to give individual prediction values

for data input. This workflow is depicted in Figure 3-1.

What follows is a discussion of the central design concepts behind FlexGP, building

off of the goals from Section 3.2.

3.3.1 Computational Dichotomy

The computational components of FlexGP are split between two systems. One com-

ponent runs locally, on the user’s machine. The other runs in the cloud, across

hundreds of instances. The user of FlexGP provides a learner library, required con-

figuration information, the dataset to use, and his/her cloud credentials. From the

user’s machine, FlexGP initiates the cloud component, consistent with the provided

26

configuration, with the learner library and dataset. The cloud component then ex-

pands to the desired capacity (number of nodes) and learning begins. At any point,

the user can begin construction of the ensemble of learners. This entails the local

component initiating a process for collecting and downloading the models from all

instances in the cloud component. Then filtering and fusion can be run locally.

It is important to remember that the cloud component is a collection of au-

tonomous, independent instances in the cloud. There is no controller or master

directing or controlling their collective action.

3.3.2 Learners

In FlexGP, a learner is the conceptual entity responsible for learning a model given

some data. FlexGP operates on learners, while the cloud platform provides instances,

a single unit of computational resource. To run efficiently on the cloud, FlexGP

adopts a simple one-to-one mapping of learners to instances. This choice of mapping

provides several benefits. First, it means the granularity of learning matches the

granularity of compute resources, so FlexGP never has to deal with partial failures.

If an instance fails, the learner fails completely as well. Second, it simplifies the

considerations of how many instances to launch vs. how large to make each instance.

The computational requirements of the learner dictate instance size, while dataset

size and user requirements specify how many instances to launch. Finally, it makes

system elasticity simple to implement and reason about. Shrinking the computation

by n instances will simply remove n learners.

Once started, learners are completely autonomous units of learning, operating

independently from each other, and communicating asynchronously. They fail inde-

pendently1 and can be queried independently of each other. Further, each learner is

constructed (and potentially configured) identically. That is, every learner runs on

the same instance type with the same user-provided library, has access to the same

dataset and parameter space, and has the same capability to spawn new learners.

1This is approximately true. The frequency of the underlying hardware failing in a cascading or
other dependent manner is low.

27

The learners form a true network of peers. This is not to say they are all performing

the same work. Indeed, each learner may randomly partition the data and choose

different parameters to learn with, as explained in Section 3.3.4.

3.3.3 Asynchronous Message Passing Network

While having independent and autonomous learners provides a nice abstraction to

build upon, it may still be necessary to enable inter-learner communication. Learn-

ers may want to collaborate or compare models periodically or simply inform each

other of progress. For example, a popular strategy for distributed genetic program-

ming is the “island model,” wherein each learner is an island evolving a population

in isolation. Occasionally, individuals migrate between islands, establishing a loose

collaboration network between the islands, leading to improved global results. With

an established network, the GP island model could easily be built on top of FlexGP.

A communication network is also necessary for any sort of reporting or monitoring

to be implemented.

Most existing systems achieve networking with a centralized architecture, as dis-

cussed in Section 2.1. While this allows for the creation of arbitrary network topolo-

gies by the master, the nodes cannot begin computing until they receive parameters

and IP lists from the master. However, on a cloud the master cannot know the IP

addresses until all the instances have started. Because the latency for acquiring hun-

dreds of instances in the cloud can be arbitrarily large2, such an architecture does

not scale well [16].

FlexGP is an entirely peer to peer (P2P) system, where the network is established

organically and peers (learners) communicate asynchronously via message passing.

This is a good match for the cloud, because instances can discover peers as they start

up and gradually construct the network.

2Some of the requested nodes might even fail before reporting to the master, complicating matters
further.

28

3.3.4 Factored Learning

To enable learning from very large datasets, where the data is too large for a single

learner to feasibly learn from, several or many learners need to be used to learn

anything in a reasonable amount of time. These learners can look at subsets of the

data, and their resulting models can be combined.

As described so far, FlexGP provides a way for learning with many learners and

fusing their results. To get each learner in FlexGP to use a different subset of the data,

each learner must locally generate a subset of the dataset before learning starts. This

sub-sampling step is performed randomly, according to a user-provided distribution

and with a user-provided resampling method3.

Because it is a stochastic process, this step does not guarantee that every learner

runs with non-overlapping subsets of the data. However, when viewed collectively

across the entire FlexGP network of learners, we expect to see the distribution of

subsets to converge to the user-provided sampling distribution. And this will only

improve as the number of learners increases.

FlexGP abstracts this process of learner-local sampling according to a user-defined

distribution in a process labeled “factoring.” Factoring is used to achieve varied

learners and can be applied to any of the inputs to the learners. If the dataset is viewed

as a matrix, where rows correspond to different samples and columns correspond to

the features of each sample, the sub-sampling process above can be viewed as selecting

a subset of the rows. However, a subset of the columns could also be selected. These

form two axis along which the learners can be factored. Combining the two produces

random partitions of the dataset. Further, the setting of various algorithm parameters

of the learner can be factored.

It is this abstraction of factoring, paired with a distributed launch protocol and

peer discovery algorithm, that makes up the heart of FlexGP and makes it so well

adapted to running on the cloud. The independent learner assumption enables it

to shamelessly start up in the cloud and remain tolerant of failures (when running

3Depending on the resampling method, in particular if samples are drawn with or without re-
placement, this process can be seen as generating many bootstraps or jackknifes of the data[26].

29

hundreds of nodes, losing a few doesn’t matter), while factoring ensure every learner

is providing a unique contribution towards the overall solution, and contributes to a

greatly diverse ensemble for fusion.

3.3.5 Filtering and Fusing

To produce a final model with FlexGP, the models produced by each learner need to be

collected, filtered and fused. The collection step is achieved by simply retrieving the

current model, training data and parameter settings from every instance in parallel4.

This forms an ensemble of models, which can then be filtered. The filtering step is

user specified. At a minimum, it should remove any models which perform poorly

on validation data (data which was not selected for training at each instance). More

sophisticated filtering, such as removing duplicates or highly-correlated models could

also be done.

After the filtering step, the remaining models in the ensemble are fused. This

fusion process is also user-specified, and takes an ensemble of models and returns a

single model which can produce a predicted output value given some data. Because

we treat the learning algorithm as a black box, this fusion is performed using the

model predictions (and associated errors), and is expressly not a fusion of model

parameters5 A more extensive discussion of how fusing can be performed and what

is produced can be found in Section 4.7.

4This retrieval step does not interfere with the learners’ progress. Therefore we can perform
collection, filtering and fusion again later on if need be.

5Nevertheless, model parameter fusion could be performed if an appropriate model was used
instead of GP.

30

Chapter 4

Implementation

This chapter focuses on the details of how FlexGP is implemented. It is broken down

into several sections, according to the different points along the FlexGP workflow.

Section 4.1 provides a description of the learning algorithm used in this work. Sections

4.3, 4.4 and 4.5 detail how the system is launched and configured on the cloud. Finally,

Sections 4.6 and 4.7 discuss how the results are collected and analyzed to produce

a final model. A diagram summarizing the entire FlexGP system is provided for

reference in Figure 4-1. Each section explains a particular part of this diagram.

4.1 Learning with Genetic Programming

FlexGP is a platform for machine learning on the cloud. As such, it assumes nothing

about the learning algorithm used. However, for this work, FlexGP was run with

Genetic Programming (GP) as the learner as a concrete example. Although it is not

important to understand all the details of how the GP learner was implemented, there

are a few points worth noting.

In this case, GP was used in a symbolic regression task. Therefore, we can consider

GP to be an evolutionary algorithm which optimizes a set of executable expressions

encoding nonlinear functions mapping the data samples in the training dataset to

their associated output variables. These expressions are considered “individuals” in

31

Figure 4-1: Detailed overview of how the FlexGP system runs. The top bar rep-
resents the system inputs (learner L, settings Π and data Dtr) and output (model
M).

a “population”1. These individuals are represented as trees, where the terminals

are features of the data samples and non-terminals are simple functions (arithmetic,

trigonometric, power, etc). A sample individual is given in Figure 4-2.

GP progresses in an iterative fashion, moving through “generations” of the pop-

ulation, in much the same way a population of animals progresses via evolutionary

adaptation from one generation to the next: individuals in the previous generation

recombine and random mutations occur, giving rise to the next generation of the pop-

ulation. This process continues, until one of the individuals satisfies some goodness

of fit cutoff or the learning is halted.

When running GP, there are many parameters to be set. The number of genera-

1The terminology of GP and the larger family of evolutionary algorithms borrow heavily from
the field of evolutionary biology.

32

Figure 4-2: A sample individual in genetic programming.

tions to run for; the number of individuals in the population; the maximum size of any

individual tree; how individuals are recombined; etc. For most of these parameters,

there are commonly recommended values to use that seem to work well, regardless

of the dataset being used. However, the objective function to use when measuring

the goodness of fit and the set of functions to select non-terminals from often do

depend on the dataset used. Often, these parameters are set arbitrarily or after a

brief, superficial explorations of their possible settings. However, with FlexGP, we

can explore the effect of setting these parameters to different values, as described in

Section 4.4. A full description of the remaining parameters and the settings selected

for them, as well as more information about the implemented GP learner, can be

found in Appendix B.

4.2 Splitting the Data

The user provides the FlexGP system with the training dataset Dtr. Immediately,

Dtr is split into two separate subsets: Dal for passing to the FlexGP instances in the

cloud for training and Dfs for training the fusion model. The ith FlexGP instance

may2 further split Dal into two more datasets: di for training a model with and Di
va

for validation of the produced model. Note that if all samples from Dal are to be used

for training the model, di is just Dal and Di
va is empty. This process is summarized

in the top part of Figure 4-1.

2As described in Section 4.4, if data factoring is not turned on, this step is not performed.

33

Algorithm 1 NodeStart(n, R)
n: nodes to launch, R: list of ancestor IP addresses
Ψ: launch parameters, Π: FlexGP meta-parameters
ip← last(R)
retrieve(ip, Ψ, Π)
R← cat(R, MyIP())
n← n− 1
if n ≤ Ψ.k and n ≥ 1 then

for i = 1 to n do
ci ← BootNode(1, R)

else
for i = 1 to Ψ.k do

k ← & n

Ψ.k−i+1
'

ci ← BootNode(k, R)
n← n− k

IPDiscovery(R)
GPMLCompute()

4.3 Parallel Asynchronous Startup

Given the goals of scaling gracefully and zero-delay learning from Section 3.2 and

the charge from 3.3.3 for a peer-to-peer system, FlexGP implements a decentralized,

peer-to-peer (P2P) startup algorithm. Every FlexGP instance is capable of launching

other FlexGP instances. Immediately after booting, every FlexGP instance retrieves

parameters from the node which started it. The parameters Ψ.k and Ψ.p indicate

the number of nodes to start and the target IP list size (see Sect. 4.5), respectively.

The FlexGP meta-parameters, Π, are used to determine the parameterization of each

FlexGP learner (see Sect. 4.4). These steps are detailed in the NodeStart function

in Algorithm 1.

Figure 4-3a illustrates how FlexGP would launch the 7 instances in Figure 4-1

when Ψ.k = 2. Node A is launched and runs NodeStart(7, []), where [] indicates

an empty list. A then boots nodes B and X, each of which will run NodeStart(3,

[IPA]), and will go on to boot 2 more nodes each. Figure 4-3b details the timeline of

two nodes during startup, illustrating the concurrency present in the FlexGP startup.

As soon as node A finishes executing NodeStart and started nodes B and X, it

starts a new thread to begin running GP computation and then continues into the

IPDiscovery algorithm, as described in Section 4.5. This enables us to run GP

34

XB

A

C ZD Y

(a)

GPMLComputeNodeStart(7, [])
NodeA IPDiscovery([IPA])

NodeStart(3,[IPA])
NodeB

uA uB
GlobalTime

(b)

Figure 4-3: A view of the launch of FlexGP for the 7 nodes in Figure 4-1. Left:
An initial node is launched and it brings up 2 more, which in turn bring up 2 more
each, in a cascading fashion. Right: Timeline of booting and launching of instances.
After starting more nodes, node A begins computation. The quantities uA and uB

are described in Appendix B.

concurrent with IP discovery and network discovery.

To illustrate the benefits of this design decision, we look at how much progress each

FlexGP instance makes. Of particular interest is how much progress is made by all

instances when the last instance starts, which is when most centralized architectures

would begin computing. Figure 4-4 presents two different views of this question. The

first, presented in Figure 4-4a, measures total progress as the number of individuals

evaluated across all instances as time passes. The second, presented in Figure 4-4b,

examines the distribution of completed generations across all instances when the last

instance starts (around the 1800th second).

The cumulative effect of this is that by the time the last instance starts, some

instances have completed as many as 30 generations and some 2.2 million individuals

have been evaluated across the FlexGP system. Since each evaluation requires a

pass through the training data points, this corresponds to at least 2.2 million passes

through the problem dataset3.

3Note that our instance is a single core machine, but for more complex problems we could use a
instance with 8 cores and run GP via multithreading allowing us to finish ∼ 8 times as many fitness
evaluations. Additionally if the instances include GPUs the number of fitness evaluations would be
much higher.

35

0 500 1000 1500
0

1

2

3 x 10
6

Time (sec)

T
o

t.
 E

v
a
lu

a
ti

o
n

s

(a)

0 10 20 30
0

5

10

15

20

Generation

(b)

Figure 4-4: Progress of GP on each node during system launch. Left: Cumulative
fitness evaluations completed by all FlexGP instances. Right: Histogram of number
of generations completed when the last instance starts (marked as red line on left
figure).

4.3.1 Tolerating Failures

Another goal from Section 3.2 is for FlexGP to be resilient to failures of cloud in-

stances. With this asynchronous startup protocol, fault tolerance is achieved. The

failure of one node interrupts the acquisition of further instances by that node, but

does not hinder launches by other running nodes. For example, in Figure 4-3a, if

node X failed to launch properly, nodes Y and Z will never be requested, but there is

no affect on the acquisition of nodes B, C or D. In general, while the actual number

of acquired nodes may not meet the requested N , GP (and IP discovery) can execute

on all nodes that have been acquired. We have taken the view that N will usually

be large enough and failure will be sufficiently infrequent that we do not need to be

concerned about any reporting, tracking and explicit recovery of node failures.

There may still be cases where the launch did not acquire a sufficient proportion

of N instances. This may occur in the unlikely event that a node crashes very early

on in the launch or in the face of intermittent cloud service interruptions. If such a

scenario arises, we can simply tap an existing node and have it run the startup with

new parameters which will try to populate the network with more resources. This

same strategy can also be used to increase the number of running instances after

startup. We might want to do this at night, when cloud instances become cheaper to

run.

36

0 500 1000 1500
0

10

20

30

40

50

Time (sec)

N
o

d
e
s
 B

o
o

te
d

Ψ.k=2
Ψ.k=4

Ψ.k=8
Ψ.k=16

Figure 4-5: Time to acquire 50 instances at different values of Ψ.k. Values reported
are averages taken over 30 trials at each value.

4.3.2 Selecting Ψ.k

An important parameter of the launch process is Ψ.k, which controls how many new

instances are started by each instance. Figure 4-3a illustrates a launch with Ψ.k = 2.

In Fig. 4-5 we compare how long it takes to start up 50 nodes for Ψ.k ∈ [2, 4, 8, 16].

As expected, the time decreases as Ψ.k increases, until Ψ.k = 8. Then the time gets

worse for a value of 16. This is likely due to the wider variation in latencies for larger

batch request sizes, as discussed in Appendix A. Note that the specific tradeoff point

at Ψ.k = 8 is largely dependent on the properties of our cloud, how cloud instances

are scheduled to be launched and the load it is under at the time of measurement.

Therefore, we expect this point would change over time or if measured on a different

cloud system.

4.4 Factored Learners

FlexGP generates a large set of diverse models for ensemble learning. This is achieved

by varying the data partition and parameters each GP learner starts with. This leads

to a set of factored learners, working in parallel to learn a diverse set of models.

FlexGP factors up to 4 different parameters at each FlexGP instance i: The

training data samples (di), the training data features (F), the non-terminal functions

37

Parameter Value Definition Default

Operator Set (L)

W {+,−, /, ∗}

W ∪X ∪ Y ∪ Z
X {exp, ln}
Y {sqrt, x2, x3, x4}
Z {sin, cos}

Objective Function (O)

Norm-1 Mean absolute error

Norm-2
Norm-2 Mean squared error
Norm-3 Mean |cubed| error
Norm-4 Mean error4

Norm-inf Max error
Training Cases (d) n Subset of Dal, of size n user-defined
Feature Set (F) m Subset of features, of size m all features

Table 4.1: Data and GP parameters and their definitions, possible values and default
values.

of GP trees (L) and the objective function used by GP (O). Factoring each of these

parameters consists of selecting a particular setting for each parameter by drawing

from a user-defined distribution over possible parameter settings. Note that while for

some parameters like objective function, this setting is a particular value4, for others

it may be a set of values5. The different options available for these parameters are

summarized in Table 4.1. If a particular factoring is not enabled in a run, then the

default setting is used instead.

We take Π, the set of meta-parameters retrieved from the parent (see Sect. 4.3),

to define the distributions over these options, guiding how FlexGP selects the values

for each parameter. We will use the notation p(O) to represent the distribution over

the options for O. p(L) gives probabilities for each of the 8 possible values of L.6

p(O) gives probabilities for each of the five Norms defined. L and O are each chosen

as a single sample from p(L) and p(O), respectively. p(Dal) defines probabilities of

selecting each training case (from Dal, the set of all training cases). d is constructed

by sampling without replacement n times from p(Dal). The distribution for F is split

into two parts. p1(F) gives probabilities for the number m of features to use. p2(F)

4Actually the specific objective function to use.
5i.e. a set of non-terminal functions to use while building GP trees.
6These values being W , W ∪ X, W ∪ Y , W ∪ Z, W ∪ X ∪ Y , W ∪ X ∪ Z, W ∪ Y ∪ Z, and

W ∪X ∪ Y ∪ Z.

38

Figure 4-6: Detailed summary of how FlexGP runs, when data factoring is disabled.

defines the probabilities of using each feature. F is constructed by sampling m from

p1(F) and then drawing m samples from p2(F) without replacement. Then Π is the

set {p(L), p(O), p(Dal), p1(F), p2(F)} and the settings of parameters sampled from Π

by instance i is πi. For example, πi could be {W,Norm− 2, di, {x1, x2}} for instance

i, while another instance j might have πj = {{W ∪X}, Norm− 4, dj , {x1, x4}}.

Note that in the special case when the training data is not being factored, the

process outlined in Figure 4-1 can be simplified to Figure 4-6. The main difference

here is that since every instance will learn with the same training set, Dal is split into

d and Dva before the cloud is launched and only d is passed to each instance and Dva

is passed directly to the filter step.

39

Algorithm 2 IPDiscovery(R)
Λ← R
loop
λ← set of new messages received
for m in λ do
if m.type is RequestIPList then
Λ← merge(Λ, m.Λ)
RespondIPList(m.ip, Λ)

else if m.type is RespondIPList then
Λ← merge(Λ, m.Λ)

if len(Λ)< Ψ.p then
ε← random(Λ)
RequestIPList(ε)

4.5 Peer Discovery

As discussed in Section 3.3.3, a key requirement of any cloud-based ML application is

the support for communications between learners. Further, cloud-scale systems need

an established network to robustly extract information and results. To address these

requirements, FlexGP has a distributed IP discovery protocol. Note, the focus here

is on the initial bootstrapping of the network - the “IP discovery” problem. This is

separate from the problem of creating particular topologies in P2P networks [6].

Recall that as part of startup a parent node shares its IP list with all its children.

A node at level i therefore has i IP addresses at startup. We then use a gossip protocol

to populate the neighbor list at each node. First, we set a lower limit, Ψ.p, for the

number of IP addresses a node needs to acquire. It generally is a function of the total

number of nodes. We then follow an address passing protocol per Algorithm 2. In

this protocol’s active phase, each node selfishly tries to increase its IP addresses up

to its limit by requesting more IP addresses from its neighbors while it shares with

its neighbors its IP addresses in exchange. After it meets or exceeds the limit, in its

passive phase, it serves any request it receives in exchange for their IP addresses.

Although our application does not require networking between instances, it is

still important to examine the dynamics of the network constructed, especially how

quickly instances connect to others after starting. To explore the network, we ran

40

FlexGP to launch 150 instances, with Ψ.p = 25. Recall Ψ.p controls how many

other instances each instance actively seeks to establish a link with before entering

the passive phase of discovery. Thus, Ψ.p controls the connectivity of the FlexGP

network. The plots in Fig. 4-7 show global time progressing along the x-axis. In Fig.

4-7a, the y-axis denotes the number of other instances each instance has connected

with. Each trace represents an instance and, for clarity, we only show a subset of the

instances. Observe that all instances eventually acquire IP addresses of over half the

network. Each trace changes from solid to dashed when that instance switches from

the active to the passive phase of discovery (discussed in Section 4.5. Interestingly,

the later instances to start discover a very large number of instances very shortly after

launch. In fact, the last instance discovers nearly 150 instances almost immediately.

This ensures connectivity if more instances are added later.

0 500 1000 1500
0

50

100

150

Time (sec)

S
iz

e
 o

f
N

e
ig

h
b

o
r

L
is

t

(a)

0 10 20 30 40
0

20

40

60

Time (sec)

Pre 26

Node 26

Post 26

(b)

Figure 4-7: IP discovery through gossip. Left: Progress of IP discovery as a func-
tion of global system time. Each line represents the number of IP addresses a node
accumulates as time progresses. Right: Time it took for each node to acquire Ψ.p IP
addresses.

Figure 4-7b shows the distribution of delays for nodes to enter the passive phase

of IP discovery. This delay for the ith node is calculated as follows. Let Si be the time

at which the ith node started and let Ti be the time at which the ith node discovered

its 25th IP address. Then the latency for node i is given as Ti − max(Si, S26). We

notice that almost 130 nodes take less than 25 seconds to enter the passive phase.

41

4.6 Gathering and Filtering Models

Given that the FlexGP instances in the cloud have been running for a while and have

produced results, it is then necessary to retrieve the results to the user’s local machine

for fusion. Part of retrieving the models from the instances is recording what subsets

of the data each instance used for training. This retrieval activity can be performed

in parallel and at any time, satisfying the zero-delay computing goal of Section 3.2.

Once the models and training data descriptions have been retrieved, the ensemble

needs to be cleaned up and possibly sub-selected. This process is called filtering.

On average, during a typical 2 hour run of FlexGP, each instances will generate

between 15 and 30 models, due to the iterative nature of the GP learner. This gives

approximately 2000 models. A primary purpose of filtering is to remove models which

overfit the training data, by trying them with the validation subset (Di
va = Dal \di),

removing any which produce invalid results, or are duplicated models (since we collect

the best model from every generation of each GP learner, it’s possible to get the same

best model for several generations). Further filtering can be done to sub-select for

more diverse models or simply fewer models.

FlexGP provides 3 simple filter methods for now. The simplest method simply

removes invalid models, and otherwise tries to include as many models as possible in

the ensemble. For simplicity, this method is referred to as “all.” The remaining two

build off of “all” and present simple variations on ways of sub-selecting the ensemble

to contain fewer, better models. The first, “per node,” selects the single best model

produced by each instance. The second, “best n,” selects the best n results, for some

predetermined value of n, based again on the performance of the models on Di
va.

Once the ensemble has been filtered, it is ready for fusion.

42

Variable Notation Definition

Data

Dal GP training data

di
Subset of Dal used by
instance i for training

Di
va

Subset of Dal used by
instance i for validation

Dfs Fusion training data
Dte Testing data

Data sample xj xj= {xl|l = 1...γ}
Output variable zj zj ∈ R, for xj

Model m Model m

Prediction ŷmj = fm(xj)
Model m’s prediction,
non-linear in xj

Candidate models Ω Set of models for fusion
Predictions for xj yj yj= {ŷmj|∀m ∈ Ω }
Predictions of model

Y
m
D Y

m
D= {ŷmj|∀xj∈ D}

m, given D
Output estimate ẑj ensemble’s estimate of zj

Table 4.2: Problem Notation

4.7 Combining Models

4.7.1 Fusion Methods for GP

Since GP produces non-parametric models, we must rely on predictions for analyz-

ing the model performance constructing meta-model. Each GP learner produces an

output ŷmj = fm(xj) for each input data sample xj, where m and other notational

conventions are defined in Table 4.2. An example of a GP model m is

f̂m(x) = log(x1) + x4x5 +
x6

ex9

We propose and define three methods for combining ensembles of GP models for

regression problems. These methods all produce predictions by fusing the predictions

from a mixture of models in the ensemble. They vary in how they mix the models

and combine those models’ predictions.

Average Ensemble Prediction (AVE)

The simplest fusion method is to generate yj for a new query xj and then report

43

the average of those predictions. That is, ẑj =
1
m

∑m
i=1 ŷij for each test point xj[8, 20].

Median Average Model (MAD)

A variant of AVE, MAD finds the median prediction among yj and a prediction

for a new query is computed as the average of the prediction of this median model

and those of its two neighbors in the prediction space [23].

Adaptive Regression Mixing (ARM)

In Adaptive Regression by Mixing (ARM), each model m is assigned a weight,

Wm, which is used to compute ẑj via a weighted average [27]. The fusion process

consists of learning the weight for each model. Let r = |Dfs |, the size of the fusion

training set, and o = |Ω|, the number of models in the ensemble. Here, we assume

that the errors for each model are normally distributed. We then use the variance in

these errors to identify the weights by executing the following steps:

Step 1: Split Dfs randomly into two equally sized subsets D(1) and D(2).

Step 2: Evaluate σ2
m which is the maximum likelihood estimate of the variance of

the errors, em = {ŷmj−zj|xj, zj ∈ D(1)}. Compute the sum of squared errors on

D(2), βm =
∑r

j= r
2
+1(ŷmj−zj)2.

Step 3: Estimate the weights using:

Wm =
(σm)−r/2exp(−σ−2

m βm/2)∑o
j=1(σj)−r/2exp(−σ−2

j βj/2)
(4.1)

Step 4: Repeat steps 1-3 for a fixed number of times7. Average the weights from

each iteration to get the final weights for the models.

Given a test sample xj, predict ẑj as the weighted average of model predictions:

ẑj =
∑o

m=1 Wmŷmj.

Transformation for large r: For large values of r, the calculation of the weights

as given by equation 4.1 encounters an underflow error. To avoid this problem we

equivalently compute the weights using equations 4.2 and 4.3.

7We used a fixed number of 100. However, a more intelligent stopping criteria could be used
instead.

44

Am = −
r

2
log(σm) + log(

−σm
−2βm

2
) (4.2)

Wm = exp(Am − log(
o∑

q=1

Aq)) (4.3)

4.7.2 Advantages and limitations

Each of the fusion approaches we presented above has certain advantages and limi-

tations. AVE is the simplest of all but could bias the estimation in the presence of

many correlated models producing similar outputs for a training sample. It could also

be affected by outliers. MAD, though robust to outliers, ignores a lot of the informa-

tion embedded in our large ensembles. Both of these techniques do not differentiate

between models based on their performance on the training data and consider the

models themselves to be independent.

ARM presents a unique way of identifying the weights for each model however it

can become computationally intensive. The approach is also sensitive to the amount

and order of data presented for training the weights. Once the weights are identified,

real time execution of the deployed model is extremely efficient.

ARM, AVE and MAD require an outlier detection algorithm to remove any outliers

before fusion. The outlier detection algorithm has to be run in real time. In our

approach we estimate the minimum and maximum values for the output variable

z = (zmin, zmax) and any model producing predictions that are outside these bounds

are removed before fusion. For ARM, the weights are renormalized after removing

the weights that correspond to the outlier models.

4.7.3 Selecting Methods for Filtering and Fusion

In order to determine which of the methods to use for the remainder of the exper-

iments, we performed a brief study of the results achieved by all 9 combinations of

the 3 filtering strategies and 3 fusion strategies from Sections 4.6 and 4.7.1, respec-

tively. Previous work with FlexGP [19] has already taken a comprehensive look at

45

this question, so we only perform a cursory study of it here. We perform this study on

the models collected for the FGP experiments, repeating the 9 filtering/fusing pairs

for all possible inputs. We construct a simple plot of the results8 in Figure 4-8 to

compare the performance achieved with each pair. From this, we can easily see that

MAD and AVE achieve good results when the best nodes are selected (the “best”

filter method), while ARM achieves similar results regardless of which filter method

is used. In fact, it appears that the simplest filtering method is best with ARM.

Because ARM assigns a weight for each model based during training, it is essentially

performing its own filtering. Therefore, we select the minimalist filtering method,

“all,” to use with ARM in the rest of the analysis.

Per Node All Best n
107

108

109

110

111

112

113

114

115

116

117

M
S

E

Median MSE performance after Fusion vs Filtering Methods

MAD

AVE

ARM

Figure 4-8: Comparison of system performance for different choices of filtering and
fusion methods.

4.7.4 Producing a Meta-Model

After filtering and fusing the ensemble, we have produced the meta-model M which is

modeled as f̂M(x) =
o∑

m=1
Wmf̂m(x). We can now use this model to produce predictions

on Dte and assign a test MSE to M, which forms the result of a run. This completes

the specification of the implementation of FlexGP system, and now we are ready to

analyze it.

8Results reported in Table C.1.

46

Chapter 5

Evaluating FlexGP

Chapter 4 described the full implementation of FlexGP. We now begin a compre-

hensive examination of the overall performance of this implementation. To perform

this in a rigorous manner, we outline a reusable framework for experimentation with

FlexGP, which accounts for data and systemic sources of variance. Using this frame-

work, we analyze results from large scale experiments on a real world dataset. The

cloud component of the experiments took over 40,000 node-hours of compute time

(the equivalent of running a single machine with just one CPU for 40,000 consecutive

hours).

We begin with a description of the particular cloud platform we used, followed

by a summary of the dataset selected for our experiments. We then present the our

experimental framework and finally our experiments. Through these experiments, we

see that FlexGP performs better and with less variance than stand-alone GP.

5.1 Cloud Infrastructure

Testing and development was completed using a private cloud. This cloud runs Open-

Stack1, which is free and open source software for building both private and public

clouds. Our cloud currently has 768 physical cores consisting of Intel Xeon 2.27GHz

chips configured as 1536 virtual nodes with 3+ terabytes of available RAM. The

1http://www.openstack.org

47

http://www.openstack.org

OpenStack software provides cloud instance control (starting, stopping, and config-

uring individual instances) via the open-source eucatools2 package, which is based on

the API provided by the Amazon Elastic Compute Cloud3 (EC2) cloud service.

Like with EC2, there are a variety of instance sizes available on the private cloud,

with varying numbers of cores, RAM and hard drive capacity. For these experiments,

the smallest instance size was chosen, to demonstrate the flexibility of the system

and for ease of comparison across implementations. This instance has 2GB RAM,

30 GB of ephemeral storage and 1 virtualized CPU. This is very similar to the EC2

m1.small instance type, but with more RAM and significantly less storage. Note that

there is nothing special about this instances size and FlexGP users could select larger

instances if their problem required it and their budgets allowed.

Each instance runs Ubuntu 12.04 and has Java JRE installed. To integrate times-

tamps across nodes, we rely on Network Time Protocol (NTP), standard on Ubuntu

12.04, to provide accurate time synchronization. This is sufficient for our purposes,

as FlexGP operates on the scale of many seconds to minutes, and is not affected by

microsecond variations.

5.2 Dataset Description

For these experiments, we use the Million Song Dataset [1] (MSD for short) from

the music information retrieval (MIR) community. This community has created a

dataset of one million tracks (songs) and their associated meta-data, to push the focus

towards solving large scale MIR problems. In particular, we use the year prediction

problem4 from this dataset, where the task is to predict the release year of a song,

given a set of 90 track features. Of the million tracks in the dataset, 515,564 have

valid year data.

Because of the 5-fold cross-validation (Section 5.3.1) in use, Dte is 20% of D

(103,113 tracks). The remaining 80% constitutes Dtr. If running FlexGP, 12.5% of

2http://www.eucalyptus.com/download/euca2ools
3https://aws.amazon.com/ec2
4http://labrosa.ee.columbia.edu/millionsong/pages/tasks-demos#yearrecognition

48

http://www.eucalyptus.com/download/euca2ools
https://aws.amazon.com/ec2
http://labrosa.ee.columbia.edu/millionsong/pages/tasks-demos#yearrecognition

Dtr (10% of D) is split off for Dfs (producing 51,556 tracks) and the remaining Dal

(a total of 360,895 tracks) is further split (independently) by each node, as described

in Section 4.2.

5.2.1 Splitting the Data

As discussed in Section 4.2 and later on in Section 5.3.1, there are several places

where the data needs to be split into distinct subsets. With most typical datasets,

generating splits is trivial as one can just randomly sample from the dataset n times

to select a subset of size n. However, with MSD and the year prediction task, there

is a complication. When splitting a set of tracks into two or more splits, one needs to

be careful to avoid the “producer effect” [1]: since a single artist may author multiple

tracks, having tracks from the same artist in different subset needs to be avoided. If

not, it’s possible to learn a model of the (hidden) artists instead of the tracks and

achieve artificially better performance on the withheld subset with common artists.

To avoid the producer effect, splits need to occur between artists, not tracks5.

However, since the number of tracks per artists is not constant, it is impossible to

guarantee that a split will produce a subset with exactly n tracks. Therefore, when

a split is stated as producing a subset of size n, it should be read instead as a subset

of target size n.

5.3 Experimental Setup

5.3.1 System Configurations

FlexGP is a complex system with many parameters. Before examining the various

experiments conducted and analyzing the results, Table 5.1 reviews those parameters

which have been set to a definite value for the experiments, and points to where they

are discussed. Note that some values were selected based on previous work.

5In particular, we sort the artists by the average year of all their tracks. Then we iterate over
this sorted list with a window of size n, randomly picking one from each window to be in the subset.
n is just the inverse of the target proportion of tracks to be in the subset.

49

Parameter Notation Description Value Reference
instances – Number of instances to launch

in the cloud
100 –a

Instance type – Type of instance to launch in
the cloud

– 5.1

Branching
factor

Ψ.k Maximum number of instances
launched by each instance

8 4.3.2, [3]

Peer list size Ψ.p Minimum number of peers to
discover before an instance
switches to passive phase

25 [3]

Collection
method

– Method for deciding what
models from each instance are
included in ensemble

The best
model per
generation

[19]

Filter method – Method for filtering collected
ensemble

“all” 4.7.3

Fusion
method

– Method for fusing models from
filtered ensemble

ARM 4.7, 4.7.3

Norms dist. p(O) Distribution to select O from uniform 4.4
Function set
dist.

p(L) Distribution to select L from uniform 4.4

Training
cases dist.

p(Dal) Distribution to select d from uniform 4.4

Data features
dist.

p1(F) Distribution over how many
features to use

–b 4.4

Data features
dist.

p2(F) Distribution over feature in-
dices

uniform 4.4

Table 5.1: Values used for various parameters.

aThis is mostly arbitrary, but was also an artifact of being resource limited on our cloud.
bThe probability mass function with equal mass at the values (5, 10, 20, 40, 60, 80, 90).

5.3.2 A Framework for Experimentation

FlexGP is a highly stochastic system - not only is the GP learner non-deterministic,

but the factoring mechanism (Section 4.4) is also stochastic. This randomness is an

important part of FlexGP, but can make it challenging to properly test and analyze

the system. This section presents an overview of the process followed to run the

experiments presented in Section 5.4. Each experiment specifies a specific Πe to use.

One concern for these experiments is isolating the variance in system performance

due to how the data is split. That is, for any given split of the dataset, numerous

50

(a) Matrix representation of results.

(b) Terminology of experiments.

Figure 5-1: Description of how results are presented.

possible subsets could result. Some of those subsets will be easier or harder to learn

with, which can bias the results. To control for this, we run a 5-fold cross-validation

over the entire FlexGP system6. To perform the cross-validation, D was split into 5

equal subsets7 (D1
te, D

2
te, D

3
te, D

4
te, D

5
te), which we refer to as folds.

The results are reported in a matrix, as depicted in Figure 5-1a. We refer to a

single execution of FlexGP for a given fold and system settings Πe as a run. The

five runs of FlexGP with a given set of system settings over the different folds is a

trial. Finally, the set of one or more trials with the same system settings forms an

experiment. Figure 5-1b illustrates these distinctions in the context of our results

6It would be better to run cross-validation for k > 5, but it every trial requires k runs, and so it
turns into a tradeoff with computation time.

7As discussed in Section 5.2.1, these will not be equally-sized subsets. However, the largest and
smallest subsets differ in size by less than 0.1%, allowing us to treat them as equal for all intents
and purposes.

51

Figure 5-2: The flow of an experimental run. Here, fold 3 is being tested, with D3
te

being withheld for testing. Note that system is FlexGP for all but SGP .

matrix. The result of a trial is reported as the mean of the MSE from each of the five

runs it is composed of. Because this result is averaged over the different folds of the

data, it can be considered invariant to the effect of different data splits. Orthogonally,

averaging the results of runs from the same experiment for a given split (averaging

down a column instead of across a row) produces a result which is invariant to the

randomness of the FlexGP process, as noted in the result rows of Figure 5-1a.

To execute FlexGP for fold j and trial i of experiment e, we proceed as follows:

Step 1 Construct Dtr = D \Dj
te.

Step 2 Run FlexGP on Dtr with settings Πe, as outlined in Figure 4-1, producing

model Me.

Step 3 Compute the MSE of Me on Dj
te, recording the result.

Figure 5-2 illustrates this procedure, with the three steps highlighted in red. This

procedure is repeated for every fold, for every trial, for every experiment.

Variance in FlexGP performance might arise when running with different datasets.

Unfortunately, such a study is outside the scope of this work. However, the experi-

mental framework outlined here could easily be repeated for different datasets in the

52

Figure 5-3: Notational convention for reporting results.

future. Then the results could be compared to those presented here to gain insight

into how FlexGP performance varies with different datasets.

5.3.3 Establishing Notation

To aid in the following discussion, we define some additional notation by expanding

the matrix representation of results from Section 5.3.1.

For a given experiment, the run of trial i on CV fold j produces an ensemble of

models Ωi,j . After filtering and fusing this ensemble, we report the MSE of the fused

model on Dte, the test dataset, as ei,j. We then can compute summary statistics

per trial or per fold (row or column, respectively). Let µ represent a mean and σ2 a

variance, then we define the mean MSE of trial i as µf |t=i = 1/5
∑5

j=1 ei,j and likewise

for the variance σ2
f |t=i. We can also compute the mean MSE for a given CV fold j,

across the n trials of a given experiment, as µt|f=j = 1/n
∑n

i=1 ei,j and for variance

σ2
t|f=j as well. Figure 5-3 illustrates where these values can be found in reported

tables.

Additionally, we occasionally need to refer to aggregate statistics of the models

in the ensemble Ωi,j . Let mi,j,k denote the kth model from ensemble Ωi,j , ri,j,k be the

MSE of mi,j,k on the training dataset associated with it8, and ti,j,k be the MSE of

mi,j,k on Dte. Then we define the mean MSE on training data for ensemble Ωi,j to be

8Recall that if data factoring is turned on, instance i is trained with a unique dataset di. Other-
wise, all instances train with the same dataset d.

53

Figure 5-4: Illustration of notations for second order statistics of distribution of
errors in ensembles for FAC11 .

ζtri,j=
1

|Ωi,j |

|Ωi,j |∑
k=1

ri,j,k. Similarly, let the variance of the MSE on training data for Ωi,j

be γtr
i,j=

1
|Ωi,j |

|Ωi,j |∑
k=1

(ri,j,k−ζtri,j)
2. Additionally, let ζtei,j and γte

i,j be the same statistics,

but calculated from ti,j,k instead of ri,j,k. Notice how we have one value for each of

ζtri,j , γ
tr
i,j , ζ

te
i,j , and γte

i,j per run. Finally, we can define several second order statistics,

resulting from computing the mean and variance (var) of these values along a row

or column. For example, mean(ζtr1,j)=
1
5

5∑
j=1

ζtr1,j would be the mean over all j (the CV

folds) of the mean MSE on training data of each ensemble in the first trial of an

experiment. Figure 5-4 illustrates this with the results from FAC11 .

5.4 Analysis of FlexGP

Having built and validated a robust, decentralized cloud-based system for machine

learning in Chapter 4, and defined a rigorous framework for experimenting, we turn

our focus to the dynamics of the whole FlexGP system. As discussed in Section 5.2,

we apply FlexGP to the year prediction task from the Million Song Dataset (MSD).

To evaluate the performance of FlexGP and better understand the dynamics of the

system, we perform three studies, summarized in Table 5.2, to examine four questions:

54

1. How does FlexGP improve overall performance for a given problem?

(5.4.1)

2. How reliable are FlexGP results? (5.4.1)

3. How do different factorings impact the overall performance of the

system? (5.4.2)

4. How much training data is enough for FlexGP to perform well? (5.4.3)

Exp.
Factoring |Di

tr|
|Dgp|

Samples # Trials
Run Time

F D L O (hours)

Study 1
SGP – 412451 10 21
FGP ! ! ! ! 10% 36090 10 2

Study 2

FAC01 10% 36090 1 2
FAC02 ! 10% 36090 1 2
FAC03 ! 10% 36090 1 2
FAC04 ! 10% 36090 1 2
FAC05 ! 10% 36090 1 2
FAC06 ! ! 10% 36090 1 2
FAC07 ! ! 10% 36090 1 2
FAC08 ! ! 10% 36090 1 2
FAC09 ! ! 10% 36090 1 2
FAC10 ! ! 10% 36090 1 2
FAC11 ! ! 10% 36090 1 2
FAC12 ! ! ! 10% 36090 1 2
FAC13 ! ! ! 10% 36090 1 2
FAC14 ! ! ! 10% 36090 1 2
FAC15 ! ! ! 10% 36090 1 2
FAC16 ! ! ! ! 10% 36090 1 2

Study 3

TDS01 ! ! ! ! 0.1% 361 1 6
TDS02 ! ! ! ! 1% 3609 1 6
TDS03 ! ! ! ! 10% 36090 1 6
TDS04 ! ! ! ! 25% 90224 1 6
TDS05 ! ! ! ! 50% 180448 1 6
TDS06 ! ! ! ! 100% 360895 1 6

Table 5.2: Settings of the different experiments. Note that FGP , FAC16 , and
TDS06 have the same settings. Instead of running the same exact thing multiple
times, the first trial of FGP was used for FAC16 and TDS06 .

55

SGP FGP
µf |t=i σf |t=i µf |t=i σf |t=i

113.790 3.768 107.674 3.196
112.075 3.492 107.322 1.774
113.447 6.173 108.342 2.615
114.280 4.267 108.012 3.048
114.828 4.668 107.570 2.386
109.635 5.369 107.214 2.459
115.912 5.144 108.344 2.543
111.608 3.842 107.558 3.043
110.533 3.167 106.200 2.867
116.354 2.074 108.138 1.692

Table 5.3: Summary of results from SGP and FGP experiments.

5.4.1 Study 1: Comparing FlexGP with GP

To study the benefits gained from using FlexGP, we run two experiments. In the

first, denoted SGP (for Standard GP), we run the stand-alone GP learner (Section

4.1) with the full Dtr subset for each fold to establish a baseline of performance on

the MSD problem. The second, denoted FGP (for FlexGP), runs the full FlexGP

system with all factorings enabled and each instance selecting 10% of Dal for each

fold. Both experiments are run for 10 trials.

To answer the first question, we directly compare the results from SGP and FGP .

The mean and standard deviation of these results are reported in Table 5.39. Each

trial of SGP was run for 21 hours10, while each trial of FGP was only run for two

hours. Figure 5-5 compares the distribution of SGP results (left) with the distribution

of FGP results (right). The middle distribution of Figure 5-5 is computed from the

errors (on Dte) of every model generated by each run from FGP which was used for

fusion.

From Figure 5-5 we see two things. First, FlexGP significantly outperforms a

single learner, even when each leaner in FlexGP ran for 1
10 as long and with 1

10 as

much training data. Further, when comparing the distribution of individual model

9The raw results for SGP and FGP are reported in Table C.2.
10To allow each run to complete a comparable number of generations to what FGP learners

completed.

56

105

110

115

120

125

130

GP Models FlexGP

Distribution of Performance per Learning Process

M
S

E

Figure 5-5: Boxplots of (left to right): µf |t=i for SGP , MSE of all ensemble models
from every fold of every trial in FGP , and µf |t=i for FGP . The whiskers extend to
1.5 IQR and outliers are omitted.

performances with the performance after fusion (compare the middle and rightmost

distributions), we see just how powerful fusion can be. Individually, most of the mod-

els perform worse than in SGP and there’s a huge variance in their performances.

However, when fused, the ensembled models produce a result better than any indi-

vidual model and even better than the baseline. Further, the FlexGP results have

much less variance than SGP (σ2 = 0.42 versus σ2 = 5.01), indicating that FlexGP

produces more consistent results than GP, even when learning with different splits of

the data.

To answer the second question, we examine how FlexGP results vary for the same

fold. By looking at the results within each fold from FGP , an estimate of the variance

of the FlexGP system itself can be obtained. We can compute a similar estimate for

SGP , and compare them.

Figure 5-6 compares the variance of µt|f=i across each of the five CV folds for each

of SGP and FGP . This corresponds to reading down the columns of Table C.2. Notice

that the median is less and the spread is smaller for each fold in FGP compared to

57

102

104

106

108

110

112

114

116

118

120

122

124

1 2 3 4 5

CV Folds

M
S

E

Distribution of Performance per CV Fold for GP

(a) SGP

102

104

106

108

110

112

114

116

118

120

122

124

1 2 3 4 5

CV Folds

M
S

E

Distribution of Performance per CV Fold for FlexGP

(b) FGP

Figure 5-6: Boxplots of µt|f=i over CV folds for SGP and FGP . Notice how different
folds are harder than others. Whiskers extend to 1.5 IQR.

58

that of SGP . This is consistent with Figure 5-5 and further confirms the benefit of

running FlexGP.

However, what’s also interesting to note is how the relative difficulty of different

splits is nearly consistent between the two experiments. Both GP and FlexGP perform

worst on fold 1, while they both performing best on folds 3 and 5. This suggests that

performance depends on how the data is split and thus validating our use of cross

validation to get a true estimate of system performance.

5.4.2 Study 2: Impact of Different Factorings

A key component of the FlexGP system is its ability to factor the learners over several

parameters. This makes the system much more flexible than it otherwise would be.

It also increases the diversity of the individual learners, which in turn impacts how

they perform. To examine the role of these factorings in system performance, we

run 16 experiments, each for one trial, with different subsets of factorings enabled.

In particular, with the four factorings defined by Section 4.4, we examine all 24

combinations of enabling/disabling each factoring. Previous work of ours has shown

that factorings do produce diverse learners, and that diversity may have an impact

on performance [19]. These experiments are denoted as FAC01 through FAC16 .

The experimental results are reported in Table C.3 and summarized in Table 5.4

(along with the factoring settings). Each run within each trial lasted two hours. In

Figure 5-7 we compare the fused performance (µf |t=1) with that of the constituent

ensembles (mean(ζtr1,j), mean(ζte1,j)).

Looking at 5-7, we can see that FlexGP continues to give a significant improve-

ment in performance over the models that form the ensemble. Notice, however, that

the performance of FlexGP does not significantly vary with the different factorings

explored. Given the low variance of FlexGP results demonstrated by the right-most

boxplot of Figure 5-5, we do not expect to see varied results if we ran more trials

for each experiment. Further, the FlexGP results are not at all correlated with the

training MSE of the ensemble11.

11Although highly correlated with the test MSE, at a correlation coefficient of 0.81.

59

Exp. F D L O µf |t=1 σf |t=1

FAC01 105.074 3.081
FAC02 ! 104.812 2.131
FAC03 ! 105.198 2.507
FAC04 ! 106.252 1.956
FAC05 ! 106.330 2.349
FAC06 ! ! 106.460 2.076
FAC07 ! ! 107.230 3.264
FAC08 ! ! 107.476 1.599
FAC09 ! ! 105.734 1.821
FAC10 ! ! 105.754 3.092
FAC11 ! ! 107.198 2.002
FAC12 ! ! ! 107.108 4.056
FAC13 ! ! ! 106.620 3.713
FAC14 ! ! ! 108.306 1.560
FAC15 ! ! ! 106.772 4.499
FAC16 ! ! ! ! 107.674 3.196

Table 5.4: Summary of results from the FAC experiments.

FAC01 FAC03 FAC05 FAC07 FAC09 FAC11 FAC13 FAC15
104

106

108

110

112

114

116

118

120

122

124
MSE vs. Factorings

M
S

E

 mean(ζtr
1,j

)

 mean(ζte
1,j

)

µ
f|t=1

Figure 5-7: Plots of FlexGP ensemble and fused performance from the FAC exper-
iments. The mean(ζte1,j) (green line) and mean(ζte1,j) (red line) for each experiment is
plotted, along with the resulting µf |t=1 after fusion (blue line).

60

This shows us that varying the factorings has little impact on the average per-

formance of the models in the ensemble. We next turn to examining the variance

of the training performance of the ensemble. By drilling down and looking at the

variance of the training MSE across models in the underlying ensemble, we can begin

to see some effects from factorings. In particular, the enabling or disabling of data

factoring has a very interesting effect. The two plots split the experiments between

those which run with data factoring turned on (Figure 5-8a) and those which don’t

(Figure 5-8b). In Figure 5-8a you can see that when the di is sampled locally at every

FlexGP instance, the total variance12 (solid line) is relatively stable. However, when

data is not factored and the training data is identical for every instance, the total

variance is erratic.

Digging further, if we treat the MSE of the models from each run in a trial as

(five) separate distributions, we can (approximately) break the total variance down

into two components. The first component is mean(γtr
1,j), the mean of the variances of

these distributions, which indicates how much of the variance is due to the different

factorings. The second component is var(ζtr1,j), or the variance of the means of these

distribution. This tells us how much of the variance can be explained by the CV

folds, which we have already shown to be uneven (see Figure 5-6).

With this decomposition, we now see something extraordinary. With data fac-

toring enabled, the effect of the splits (var(ζtr1,j)) is minimized and the majority of

the variance is due to the instances all learning on different subsets of the data

(mean(γtr
1,j). Further, this result appears to be stable across the other factorings

(suggesting that the data factoring is the predominant source of variance). However,

as soon as the data is no longer factored, the ordering flips and the splits contribute

a significant amount of variance, even moreso than the variance from the remain-

ing factorings. Additionally, the amount of variance from the splits is itself erratic,

contributing to the erratic nature of the total variance.

This result makes intuitive sense. If every instance is looking at a different subset

12The total variance is defined as the variance in the training MSEs of all models from all ensembles
of a given trial (i.e. the concatenation of all five ensembles from a trial).

61

FAC03 FAC06 FAC09 FAC10 FAC12 FAC13 FAC15 FAC16
0

10

20

30

40

50

60

70
Variance Decomposition when Data is Factored

V
a

ri
a

n
c

e
 o

f
M

S
E

 o
n

 T
ra

in
in

g
 D

a
ta

 mean(γtr
1,j

)

 var(ζtr
1,j

)

Total Variance

(a)

FAC01 FAC02 FAC04 FAC05 FAC07 FAC08 FAC11 FAC14
0

10

20

30

40

50

60

70
Variance Decomposition when Data is not Factored

V
a

ri
a

n
c

e
 o

f
M

S
E

 o
n

 T
ra

in
in

g
 D

a
ta

 mean(γtr
1,j

)

 var(ζtr
1,j

)

Total Variance

(b)

Figure 5-8: Total variance and its two components.

62

of the training data, then instances are resampling the data, ensuring they are learning

in different areas of the problem and negating the variance arising from only studying

the data within the provided split (Dal). However, as soon as data factoring is

disabled, every instance learns from the same subset, which only acts to magnify the

problems associated with using a particular split of the data.

In the end, despite the increased variance of the ensembles when data factoring is

turned off, FlexGP improves performance over the ensemble average. This suggests

that even though which factorings are used can have a dramatic effect on the per-

formance within the ensemble, FlexGP is not as sensitive. However, this could be a

dataset-dependent result and warrants further study with other datasets.

5.4.3 Study 3: Changing the Size of the Data

Another key aspect of FlexGP is the opportunity to vary the amount of training data

used by the local learners. This enables faster learning and also leads to more diverse

learners. However, learning on less data typically comes at the risk of overfitting. To

explore this concern, we run six experiments, each for one trial, with varying sizes of

di. In particular, for each experiment, all instances still sample a fixed-size training

set, but between experiments that size is changed. Previous work of ours has shown

that while individual model performance suffers, FlexGP performance remains stable

as training set size decreases [19]. These experiments are denoted as TDS01 through

TDS06 .

As before, raw results from the experiments are reported in Table C.3 and sum-

marized in Table 5.5. Each of these experiments was run for six hours each13. Figure

5-9 is structured identically to Figure 5-7 and reports how the µf |t=1 after fusion

compares to the average train and test MSE of the ensembles.

Examining Figure 5-9 yields several interesting observations. First, unlike Figure

5-7, we see that the size of d has a significant impact on FlexGP performance. While

fused performance still outperforms the average ensemble test MSE, it suffers when

the training set is either too small or too large. In the case where the training set

13To account for the delayed learning in TDS16 due to learning on over 350,000 datapoints

63

Exp. |di|
|Dgp|

samples µf |t=1 σf |t=1

TDS01 0.10% 361 113.644 3.557
TDS02 1.00% 3,609 104.464 4.622
TDS03 10.0% 36,090 107.674 3.196
TDS04 25.00% 90,224 107.080 3.545
TDS05 50.00% 180,448 110.398 1.700
TDS06 100.00% 360,895 112.258 3.049

Table 5.5: Summary of results from the TDS experiments.

is extremely small (0.1% of Dal) the ensemble models simply overfit and have poor

generalization, as shown by the extremely low (good) train MSE performance but

extremely bad test MSE performance at the 0.1% point. Conversely, as the size of di

increases, there becomes too much data to learn effectively with and the models begin

to bloat and underfit. Fortunately, even in the case of severe overfitting, FlexGP is

still able to do something reasonable and produce improved results.

Following the discussion of the total variance decomposition in Section 5.4.2, Fig-

ure 5-10 examines this decomposition in the TDS experiments. And, consistent with

the results from the previous section, we see that with all factorings on, the majority

of the variance is due to the factorings and not the data splits. In fact, the amount

of variance arising from the factorings increases exponentially as the training set size

decreases. One likely explanation for this phenomenon is that as the dataset size de-

creases, there are more possible subsets to choose for training when data factoring is

enabled. Thus, we see an increase in ensemble variance as the data factoring becomes

more and more important. Further study of turning on and off data factoring while

changing training data set amounts is needed to make any definitive conclusions,

however.

5.5 Summary of Findings

We conclude briefly by summarizing the four questions explored above, and the in-

sights we gained from our analysis:

Q1 How does FlexGP improve overall performance for a given problem?

64

TDS01 TDS02 TDS03 TDS04 TDS05 TDS06
90

95

100

105

110

115

120

125

130

135

140

145
MSE vs. Size of Training Dataset

M
S

E

 mean(ζtr
1,j

)

 mean(ζte
1,j

)

µ
f|t=1

Figure 5-9: Plots of FlexGP ensemble and fused performance for TDS experiments.
The mean(ζte1,j) (green line) and mean(ζte1,j) (red line) for each experiment is plotted,
along with the resulting µf |t=1 after fusion (blue line).

A1 FlexGP performs significantly better than a single learner, while also

producing results with lower variance.

Q2 How reliable are the FlexGP results?

A2 FlexGP produces better results than a single learner in all folds, al-

though those results vary with each split.

Q3 How do the different factorings impact the overall performance of the

system?

A3 Different factorings have little impact on the mean performance of

FlexGP. However, data factoring has a tremendous impact on the

quality of the performance, acting to stabilize the results and greatly

decrease the variance while increasing the diversity of the learners.

Q4 How much training data is enough for FlexGP to perform well?

65

TDS01 TDS02 TDS03 TDS04 TDS05 TDS06

10
0

10
1

10
2

10
3

Variance Decomposition vs Size of Training Data

V
a

ri
a

n
c

e
 o

f
M

S
E

 o
n

 T
ra

in
in

g
 D

a
ta

 (
lo

g
 s

c
a

le
)

 mean(γtr
1,j

)

 var(ζtr
1,j

)

Total Variance

Figure 5-10: Components of total variance for the FAC experiments.

A4 When the target training data size is too small or too large, FlexGP

performance is degraded compared to more optimal settings. How-

ever, the fused results are still better than the baseline and of signif-

icantly lower variance.

66

Chapter 6

Conclusion

6.1 Summary of Contributions

This work presented FlexGP, a scalable system for learning in the cloud. In today’s

environment of cheap, massive-scale computing resources, running existing machine

learning algorithms in the cloud is a very appealing option for handling the increasing

size of datasets. FlexGP provides a system for scaling any machine learning algorithm

on the cloud effortlessly. By treating the learning algorithm as a black box which takes

a data partition and algorithm parameter settings as input and outputs a model,

FlexGP presents a unique approach to cloud-based distributed learning which will

work for any existing algorithm.

Starting from a principled discussion of existing solutions, we outlined the ways in

which MapReduce- and BSP-based distributed computing paradigms are insufficient

for the general problem of scaling all types of machine learning algorithms with the

cloud. We also described previous work to retrofit a cluster-focused system to the

cloud and how that work motivated the development of FlexGP. We presented the

challenges to any cloud-based learning system, and the goals we set for FlexGP to

ensure it met those challenges.

Next, we presented a sketch of our design for FlexGP, shaped by those goals, to

run efficiently in the cloud. This included:

67

• an efficient workflow for machine learning, where factored learners are run in

parallel, and then collected and filtered to form an ensemble, which is then fused

to produce a meta-model.

• a parallel, asynchronous and recursive startup protocol which allows for the

distributed launching of hundreds of instances quickly.

• a distributed peer discovery protocol for the creation a communication layer

between instances simultaneously with learning.

• a novel approach to factored learning, which enables FlexGP to run a network

of diverse learners.

We then gave a detailed description of how each of these features was implemented.

This description included empirical results demonstrating the efficacy of various crit-

ical components.

Finally, We outlined an experimentation framework for testing FlexGP which

controls for the variance due to arbitrary splits of the data as well as variance due

to single trials. This framework can be taken and used in future work involving

FlexGP or adopted for other distributed computing systems. Using this framework,

we investigated four overarching questions about the performance of FlexGP and

demonstrated that FlexGP improves performance over a baseline learner. We also

showed that factoring indirectly contributes to a lower variance by creating more

diverse ensembles.

6.2 Directions for Future Work

The contributions of this work have been many. Yet, there remains a lot to do and

many directions for future work and extensions to the FlexGP system. In this section

several candidate areas for improvement are discussed.

68

Elastic Management

FlexGP supports arbitrarily starting and stopping learners to expand and contract

the learning effort. However, it has to be done by hand and there is no automated way

of retrieving the progress from the killed learners before they are stopped. Concurrent

work is looking at how to automate this process, so the computation footprint can be

automatically expanded and contracted according to an input signal or user command.

Restarting Learners

Once started, learners continuously compute until the learning algorithm terminates

or they are forcefully stopped (by the user or some management process). If the

learning algorithm terminates, the learner will just sit there, burning cpu time (and

therefore $). Instead, the learner should restart, selecting a new set of algorithm

parameters and data partition. Further, it might be desirable to restart learners

which are either doing very poorly (they chose the “wrong” setting of parameters or

data partition) or happen to be running with identical settings to another learner

(depending on what is being factored, this could be more or less likely).

Sophisticated Logging and Monitoring

Currently, FlexGP implements rudimentary event-based logging of system info, learner

progress and state, and network communications. These logs serve as the only form

of system monitoring as well. This is sufficient for a developmental version of FlexGP,

but for any non-developer users, advanced monitoring facilities will be needed. Such

monitoring would enable the user to inspect the progress at each learner, assess over-

all system health, and make informed decisions as to when the learning should be

expanded, shrunk, or stopped completely. Some work is being done to help with

visualizing the log information in real time, which is a first step towards monitoring.

69

Online Fusion

In addition to adding monitoring facilities, the usability of FlexGP would be greatly

improved if fusion could be performed online. This would make the system truly

cloud-based, as opposed to the current version where the user needs sufficient memory

and space on their local machine to compute the filter and fusion steps. The challenge

here is to determine how best to share the work of computing the fusion across the

learners.

Moving beyond GP

Currently, FlexGP has only been tested with genetic programming as the learning

library. However, there is nothing about FlexGP which requires this. To demon-

strate this, and to validate FlexGP as a generally useful tool, it should be run with

several other learning libraries (support vector machines, k-nearest neighbors, neural

networks, etc.) and performance should be examined.

6.3 Conclusion

FlexGP is designed explicitly to take advantage of the unique opportunities of the

cloud. By combining the process of factoring algorithm parameters and data parti-

tions with parallel startup and peer discovery protocols, FlexGP constructs a com-

pletely peer-to-peer network of heterogeneous learners, producing many diverse mod-

els. Further, FlexGP provides efficient mechanisms for collecting the learned models

into an ensemble, which can then be filtered and fused into a single meta-model.

FlexGP is a robust system designed for scalable, factored learning on large datasets.

As FlexGP continues to develop, we are excited to see FlexGP extended in new direc-

tions and solve new problems, on its path to becoming an essential tool for researchers

the world over.

70

Appendix A

Starting Nodes in the Cloud

Applications typically request instances from a cloud in batches. The cloud possi-

bly queues these batch requests and may decompose them; interleaving them with

requests from other users. This might depend on batch size or the cloud’s use of an

internal fine-grained queue and a scheduler. Regardless of what a particular cloud

does, the instance scheduler implementation should be treated as opaque by applica-

tion designers.

To fully understand how FlexGP would need to interact with the underlying cloud

platform, a study of the latency in acquiring cloud instances was undertaken. This is

important to understand the choices made in designing FlexGP’s launch protocol.

To begin, we develop a theoretical framework for analyzing our observations. We

assume that the time elapsed between requesting an instance and when that instance

has booted and begins running our code, the latency, is modeled by some distribution

P (u). We first estimated P (u) by acquiring a single instance 1,000 times and measur-

ing the latency, u, of each request. The data and its distribution are reported in Fig.

A-1a. If we optimistically assume a batch request of n instances is served in parallel

as n independent requests by the scheduler, then the total latency, vn, of the request

ought to be the maximum of n independent samples drawn from P (u). We estimated

P (vn) for n ∈ [5, 50, 100] with 500 samples and then fit a non-parametric distribution

to the data. We report the observed data and fitted distributions alongside the pre-

dicted distributions (based on our measured P (u)) in Fig. A-1. While the predicted

71

and empirical distributions for P (v5) are close, the actual latency distributions for

P (v50) and P (v100) are significantly larger than predicted.

0 500 1000
0

0.2

0.4

0.6

Time (sec)

Empirical
Fitted PDF

(a) Times to acquire 1 node.

0 300 600 900 1200
0

0.2

0.4

0.6

Time (sec)

Empirical
Fitted PDF
Expected PDF

(b) Times to acquire 5 nodes.

0 300 600 900 1200
0

0.2

0.4

0.6

Time (sec)

Empirical

Fitted PDF

Expected PDF

(c) Times to acquire 50 nodes.

0 300 600 900 1200
0

0.2

0.4

0.6

Time (sec)

Empirical

Fitted PDF

Expected PDF

(d) Times to acquire 100 nodes.

Figure A-1: Probability distribution functions (PDF) of times to acquire nodes.

This discrepancy indicates that smaller batch requests achieve closer to optimal

latency than larger requests, and so our system ought to emphasize small batch re-

quests over large ones. Futher, because acquiring many (50 or 100) instances may

take significantly longer than acquiring the first 10 instances, we should start running

GP on an instance immediately after it boots, long before the entire set of nodes

is acquired. Another concern when computing using the cloud is failing nodes. Re-

quested nodes may never be acquired and running nodes may fail. This necessitates

an architecture which is resilient to failures.

72

Appendix B

GP Learner

This section presents the GP implementation used in detail, for the sake of repro-

ducibility. The GP learner is implemented in Java.

This GP implementation is configured as described by Koza [9], with the following

differences. The learner is set with a population of size 1000. The mutation rate is 0.2,

the crossover rate is 0.6 and nodes were selected uniformly at random for crossover.

The max depth is set to 6 for initialization and then trees are allowed to grow to a

depth of 12 afterwards. Tournament selection was used, with a tournament size of

7. and trees were initialized with the ramped-half-and-half algorithm. The learners

were allowed to run until they were stopped or ran through 50 generations, whichever

occurred first. Bloating is prevented by using Silva’s dynamic operator equalization

[17] with a bin width of 5. During fitness evaluation, individuals’ predictions are

transformed with Vladislavleva’s approximate linear scaling [24]. Finally, because

the years in MSD are only reported as integers, fitness values are rounded to the

nearest years before computing an error.

73

74

Appendix C

Experimental Results

For reference purposes, we report here the raw results of all experiments. The tables

appear in the order they are referenced from the text.

75

Exp. per node none best n

ARM

107.796 107.674 107.798
107.356 107.322 107.21
108.316 108.342 108.314
108.346 108.012 108.674
107.956 107.57 107.926
107.51 107.214 107.352
108.394 108.344 108.336
107.778 107.558 107.708
106.318 106.2 106.146
108.15 108.138 108.122

AVE

115.878 116.502 110.122
115.624 116.304 109.73
115.898 116.54 110.088
115.728 116.394 109.882
115.598 116.302 110.118
115.564 116.276 109.196
115.748 116.48 109.874
115.816 116.414 109.278
115.934 116.304 109.292
115.67 116.292 109.598

MAD

116.742 116.214 113.058
116.744 115.962 112.24
116.614 116.206 112.342
116.532 116.134 112.48
116.312 115.97 112.046
116.774 116.054 111.75
116.812 116.126 112.368
116.632 115.99 112.51
116.924 115.872 111.968
116.71 115.978 112.164

Table C.1: Mean MSE performance (µf |t=i) for each trial i in FGP per filter/fusion
pair.

76

Exp. CV Folds

SGP

118.30 116.73 113.66 110.85 109.41
117.43 107.73 112.46 111.66 111.10
123.33 114.04 108.71 113.35 107.80
119.90 116.38 114.69 111.60 108.85
118.51 118.18 107.35 116.82 113.28
118.72 107.15 108.21 104.69 109.42
119.24 117.85 107.02 119.36 116.10
115.37 108.13 109.70 116.15 108.69
110.01 110.21 106.51 115.39 110.55
119.68 115.25 114.27 115.75 116.81

FGP

111.72 109.27 105.70 108.22 103.46
110.30 107.58 106.57 106.11 106.05
109.89 107.19 104.97 111.81 107.85
111.72 108.45 104.65 110.03 105.21
111.77 105.98 106.23 106.96 106.91
109.60 107.22 103.68 109.42 106.15
111.41 109.45 104.93 109.25 106.68
111.96 107.26 103.46 108.18 106.93
109.56 103.71 107.78 107.20 102.75
109.94 106.81 106.93 110.04 106.97

Table C.2: RawMSE performance (ei,j) for every fold of every trial from experiments
SGP and FGP .

77

Exp. CV Folds
FAC01 109.82 103.04 102.30 106.45 103.76
FAC02 105.90 102.14 103.44 107.63 104.95
FAC03 108.40 104.49 103.71 107.11 102.28
FAC04 107.85 105.37 104.97 108.79 104.28
FAC05 107.74 105.17 103.51 109.55 105.68
FAC06 109.12 105.10 104.64 108.28 105.16
FAC07 110.59 106.28 104.09 110.78 104.41
FAC08 107.82 108.09 106.86 109.46 105.15
FAC09 108.08 104.71 104.02 107.29 104.57
FAC10 110.45 104.27 104.12 107.21 102.72
FAC11 109.91 106.50 105.54 108.66 105.38
FAC12 112.51 101.78 105.02 109.08 107.15
FAC13 111.04 107.29 101.91 108.97 103.89
FAC14 110.75 107.09 107.57 108.96 107.16
FAC15 112.35 107.21 100.43 109.10 104.77
FAC16 111.72 109.27 105.70 108.22 103.46

TDS01 118.40 108.98 111.78 115.30 113.76
TDS02 110.90 107.22 101.27 103.50 99.43
TDS03 111.72 109.27 105.70 108.22 103.46
TDS04 110.58 102.59 107.29 110.43 104.51
TDS05 112.17 110.17 109.48 112.00 108.17
TDS06 114.47 110.46 109.21 116.43 110.72

Table C.3: Raw MSE performance (ei,j) for every fold of every trial from FAC and
TDS experiments.

78

Bibliography

[1] T. Bertin-Mahieux, D.P.W. Ellis, B. Whitman, and P. Lamere. The million song
dataset. In ISMIR 2011: Proceedings of the 12th International Society for Music
Information Retrieval Conference, October 24-28, 2011, Miami, Florida, pages
591–596. University of Miami, 2011.

[2] Jeffrey Dean and Sanjay Ghemawat. MapReduce: simplified data processing on
large clusters. page 1, 2004.

[3] Owen Derby, Kalyan Veeramachaneni, and Una-May OReilly. Cloud driven de-
sign of a distributed genetic programming platform. In Anna I. Esparcia-Alczar,
editor, Applications of Evolutionary Computation, number 7835 in Lecture Notes
in Computer Science, pages 509–518. Springer Berlin Heidelberg, January 2013.

[4] Pedro Fazenda, James McDermott, and Una-May OReilly. A library to run evo-
lutionary algorithms in the cloud using MapReduce. In Cecilia Chio, Alexandros
Agapitos, Stefano Cagnoni, Carlos Cotta, FranciscoFernndez Vega, GianniA.
Caro, Rolf Drechsler, Anik Ekrt, AnnaI. Esparcia-Alczar, Muddassar Farooq,
WilliamB. Langdon, JuanJ. Merelo-Guervs, Mike Preuss, Hendrik Richter, Sara
Silva, Anabela Simes, Giovanni Squillero, Ernesto Tarantino, AndreaG.B. Tet-
tamanzi, Julian Togelius, Neil Urquhart, ima Uyar, and Georgios Yannakakis,
editors, Applications of Evolutionary Computation, volume 7248 of Lecture Notes
in Computer Science, pages 416–425. Springer Berlin Heidelberg, 2012.

[5] Di-Wei Huang and J. Lin. Scaling populations of a genetic algorithm for job
shop scheduling problems using MapReduce. In Cloud Computing Technology
and Science (CloudCom), 2010 IEEE Second International Conference on, pages
780–785, December 2010.

[6] Mrk Jelasity, Alberto Montresor, and Ozalp Babaoglu. T-Man: Gossip-based
fast overlay topology construction. Computer Networks, 53(13):2321–2339, 2009.
Gossiping in Distributed Systems.

[7] JuanLuis Jimnez Laredo, Daniel Lombraa Gonzlez, Francisco Fernndez de Vega,
Maribel Garca Arenas, and JuanJulin Merelo Guervs. A peer-to-peer approach
to genetic programming. In Sara Silva, JamesA. Foster, Miguel Nicolau, Penousal
Machado, and Mario Giacobini, editors, Genetic Programming, volume 6621 of
Lecture Notes in Computer Science, pages 108–117. Springer Berlin Heidelberg,
2011.

79

[8] M. Kotanchek, G. Smits, and E. Vladislavleva. Trustable symbolic regression
models. Genetic Programming Theory and Practice V, Genetic and Evolutionary
Computation, pages 203–222, 2007.

[9] John R. Koza. Genetic Programming: On the Programming of Computers by
Means of Natural Selection. MIT Press, Cambridge, MA, USA, 1992.

[10] J.L.J. Laredo, A.E. Eiben, M. Steen, and J.J. Merelo. Evag: a scalable peer-
to-peer evolutionary algorithm. Genetic Programming and Evolvable Machines,
11:227–246, 2010.

[11] Yucheng Low, Danny Bickson, Joseph Gonzalez, Carlos Guestrin, Aapo Kyrola,
and Joseph M. Hellerstein. Distributed GraphLab: A framework for machine
learning and data mining in the cloud. Proc. VLDB Endow., 5(8):716–727, April
2012.

[12] Grzegorz Malewicz, Matthew H. Austern, Aart JC Bik, James C. Dehnert, Ilan
Horn, Naty Leiser, and Grzegorz Czajkowski. Pregel: a system for large-scale
graph processing. In Proceedings of the 2010 ACM SIGMOD International Con-
ference on Management of data, page 135146, 2010.

[13] Sean Owen, Robin Anil, Ted Dunning, and Ellen Friedman. Mahout in Action.
Manning Publications Co., 2011.

[14] Joshua Rosen, Neoklis Polyzotis, Vinayak Borkar, Yingyi Bu, Michael J. Carey,
Markus Weimer, Tyson Condie, and Raghu Ramakrishnan. Iterative MapReduce
for large scale machine learning. March 2013.

[15] Michael Schmidt and Hod Lipson. Distilling free-form natural laws from experi-
mental data. Science, 324(5923):81–85, April 2009. PMID: 19342586.

[16] Dylan Sherry, Kalyan Veeramachaneni, James McDermott, and Una-May OR-
eilly. Flex-GP: genetic programming on the cloud. In Cecilia Di Chio, Alexandros
Agapitos, Stefano Cagnoni, Carlos Cotta, Francisco Fernndez de Vega, Gianni
A. Di Caro, Rolf Drechsler, Anik Ekrt, Anna I. Esparcia-Alczar, Muddassar
Farooq, William B. Langdon, Juan J. Merelo-Guervs, Mike Preuss, Hendrik
Richter, Sara Silva, Anabela Simes, Giovanni Squillero, Ernesto Tarantino, An-
drea G. B. Tettamanzi, Julian Togelius, Neil Urquhart, A. ima Uyar, and Geor-
gios N. Yannakakis, editors, Applications of Evolutionary Computation, number
7248 in Lecture Notes in Computer Science, pages 477–486. Springer Berlin Hei-
delberg, January 2012.

[17] Sara Silva. Handling bloat in GP. In Proceedings of the 13th annual conference
companion on Genetic and evolutionary computation, GECCO ’11, pages 1481–
1508, New York, NY, USA, 2011. ACM.

[18] Leslie G. Valiant. A bridging model for parallel computation. 33(8):103111,
1990.

80

[19] Kalyan Veeramachaneni, Owen Derby, Dylan Sherry, and Una-May OReilly.
Learning regression ensembles with genetic programming at scale. in press, 2013.

[20] Kalyan Veeramachaneni, Katya Vladislavleva, Matt Burland, Jason Parcon, and
Una May O’Reilly. Evolutionary optimization of flavors. In Juergen Branke and
et al, editors, GECCO ’10: Proceedings of the 12th annual conference on Genetic
and evolutionary computation, pages 1291–1298, Portland, Oregon, USA, 7-11
July 2010. ACM.

[21] A. Verma, X. Llora, D.E. Goldberg, and R.H. Campbell. Scaling genetic algo-
rithms using mapreduce. In Intelligent Systems Design and Applications, 2009.
ISDA ’09. Ninth International Conference on, pages 13–18, December 2009.

[22] A. Verma, X. Llora, S. Venkataraman, D.E. Goldberg, and R.H. Campbell. Scal-
ing eCGA model building via data-intensive computing. In Evolutionary Com-
putation (CEC), 2010 IEEE Congress on, pages 1–8, July 2010.

[23] C. Vladislavleva and G. Smits. Symbolic regression via genetic programming.
Final Thesis for Dow Benelux BV, 2005.

[24] E.Y. Vladislavleva. Model-based problem solving through symbolic regression via
pareto genetic programming. PhD thesis, CentER, Tilburg University, 2008.

[25] Shuaiqiang Wang, Byron J. Gao, Ke Wang, and Hady W. Lauw. Parallel learn-
ing to rank for information retrieval. In Proceedings of the 34th International
ACM SIGIR Conference on Research and Development in Information Retrieval,
SIGIR ’11, pages 1083–1084, New York, NY, USA, 2011. ACM.

[26] Larry Wasserman. All of nonparametric statistics. Springer, New York; London,
2006.

[27] Yuhong Yang. Regression with multiple candidate models: selecting or mixing?
Statistica Sinica, 13(3):783–810, 2003.

81

	Introduction
	Related Work
	Systems for Distributed Machine Learning
	Distributing Evolutionary Computation
	Previous Work Leading to FlexGP

	FlexGP Overview
	Running in the Cloud
	Goals
	Design
	Computational Dichotomy
	Learners
	Asynchronous Message Passing Network
	Factored Learning
	Filtering and Fusing

	Implementation
	Learning with Genetic Programming
	Splitting the Data
	Parallel Asynchronous Startup
	Tolerating Failures
	Selecting .k

	Factored Learners
	Peer Discovery
	Gathering and Filtering Models
	Combining Models
	Fusion Methods for GP
	Advantages and limitations
	Selecting Methods for Filtering and Fusion
	Producing a Meta-Model

	Evaluating FlexGP
	Cloud Infrastructure
	Dataset Description
	Splitting the Data

	Experimental Setup
	System Configurations
	A Framework for Experimentation
	Establishing Notation

	Analysis of FlexGP
	Study 1: Comparing FlexGP with GP
	Study 2: Impact of Different Factorings
	Study 3: Changing the Size of the Data

	Summary of Findings

	Conclusion
	Summary of Contributions
	Directions for Future Work
	Conclusion

	Starting Nodes in the Cloud
	GP Learner
	Experimental Results

