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ABSTRACT
Recent studies warn of a possible major earthquake off the
coast of State of Guerrero, Mexico, so that, it turns impor-
tant to alert the population as long as possible and avoid
a great disaster. This requires the construction of a net-
work of seismic sensing stations, located at strategical po-
sitions, to detect earthquakes and issue a timely warning.
In this research, we investigate how a genetic algorithm can
be applied to design this network and determine the opti-
mal location of each seismic sensing station. The number of
earthquakes detected by the designed network will be used
as a reference point with respect to the currently installed
seismic alert system (SAS). This metric will justify the use
of the genetic algorithms as a designing tool prior to the con-
struction of the network in different regions of Mexico. The
SAS stations and each solution proposed by a genetic algo-
rithm underwent a procedure, in which it is simulated the
occurrence of earthquakes obtained from the Mexico’s Na-
tional Seismological Service (SSN) database, to determinate
its efficiency in terms of the time to warn Mexico City.

Categories and Subject Descriptors
I.2.1 [Artificial Intelligence]: Applications and Experts
Systems—Medicine and science; I.2.8 [Artificial Intelli-
gence]: Problem Solving, Control Methods, and Search
Heuristic methods; J.2. [Computer application]: Physi-
cal sciences and engineering Earth and atmospheric science
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Design, Reliability
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Genetic algorithm, Design of seismic sensor networks, Pat-
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1. INTRODUCTION
Historical information and studies about the seismic activ-

ity on the coast of Guerrero State prove that exist a seismic
silence between the ports of Zihuatanejo and Acapulco [7].
In this region, an earthquake could occur in similar propor-
tions to that which occurred in 1985 making an extensive
damage in Mexico City.

Actually, the seismic alert system (SAS) has 12 seismic
stations located along the coast of Guerrero. The primary
function of the SAS is to issue a public warning to Mexico
City when it detects an earthquake of magnitude greater
than 5.0 ◦ on the Richter scale. This system is capable of
alerting the population up to 60 seconds before the seismic
wave reaches Mexico City. It gives us the opportunity to
execute procedures and actions that reduce the possibility
of having a new earthquake disaster.

Several studies about seismology and geodesy have been
published in the last years. Most of them are focused on the
analysis of the spread and magnitude of seismic waves [2][5].
Some of these researches are related to the measurement and
the instrumentation design [1][3]. Moreover, new techniques
based on the statistics and computing intelligence have been
focused to the prediction of earthquakes [11][10]. Particu-
larly, the use of neural networks and evolutionary strategies
have gain attention in the recent years[12]. Although all
these works are of great interest and importance, it is also
necessary a designing phase to determine the strategical lo-
cation and construction of sensor stations aimed to detect
earthquakes and prevent the population as fast as possible.

This research focuses on the optimal design for a network
of seismic stations finding their best locations through a ge-
netic algorithm that allows us to search the optimal solution
to the problem. Subsequently, the solutions provided by the
genetic algorithm will be compared against the actual seis-
mic alert system and validated in terms of the warning time.

Sections 2 and 3 will describe some basic concepts needed
to solve the problem above. Section 4 describes in details
how the solution to the problem is coded into the chromo-
some (individual) of the genetic algorithm. In the same
section, it is also described the proposed objective function
which models the solution to our problem. This is followed
by the section 5 which presents the experimental results ob-
tained with the proposed method and the simulations to de-
termine its efficiency. Finally, the paper is concluded with
some results and future work.
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2. GENETIC ALGORITHM
The genetic algorithm leads to the search for an opti-

mal solution to a problem, inspired by inheritance mech-
anisms observed in nature. This heuristic process keeps the
set of solutions (individuals or chromosomes) called popu-
lation in genetic terms. During each iteration (generation)
of the algorithm, the performance (fitness) of all solutions
of the population is measured by the objective function f
that evaluates a particular problem. Then, some solutions
are selected from the population (parents) to create the next
generation of solutions. This selection depends on the val-
ues of f and can follow several schemes such as the elitist
or roulette selection among the most popular [4][8]. The
selected solutions undergo a series of combinations, usually
consisting of the random exchange of certain parts of the
parents. In this process, the useful features of parent so-
lutions are preserved. Thereafter, children were randomly
chosen to undergo a mutation. The sequence of evaluation,
selection and recombination is repeated until an individual
has a satisfactory value for f or until a predefined number
of generations is reached. A simple genetic algorithm, algo-
rithm 1, is presented in its algorithmic form.

Algorithm 1 Simple genetic algorithm

1: Choose the initial population of individuals
2: Evaluate the fitness of each individual in that population
3: repeat
4: Select the best-fit individuals for reproduction
5: Breed new individuales through crossover and muta-

tion operations to give birth to offspring
6: Evaluate the individual fitness of new individuals
7: Replace least-fit population with new individuals
8: until termination (time limit, sufficient fitness achieved,

etc.)

3. LINEAR DISCRIMINANT FUNCTIONS
As we will describe in the next sections, it is important to

evaluate the location of the stations and validate a feasible
region for its construction. This means that we have to use
a method that allows us discriminate between feasible and
infeasible regions to construct a station. Nowadays, exist
several methods that allow discriminates among regions. In
our case, we decided to adopt the well-known linear func-
tions widely used in pattern recognition.

The main function of a pattern recognition system is to
take decisions on membership of a class of patterns. An easy
way to separate a pattern from another is drawing a straight
line that divides them and generates a single decision sur-
face.

Following the straight-line equation 1, we could observe
that if a pattern is substituted in d(x) and a positive value is
obtained, then the pattern belongs to the ci class; otherwise,
a negative value is obtained.

d(x) = w1x1 + w2x2 + w3 = 0 (1)

where wi are the line parameters and x1, x2 are the variables
of general coordinates.

These principle can be generalized to the n-dimensional
case d(x) = w′x where x = (x1, x2, · · · , xn, 1)′ is called an
increased pattern vector and w = (w1, w2, · · · , wn, 1)′ is the
weight vector.

Figure 1: Decision regions that classify 3 classes

Therefore, for the case of identification of two classes, the
decision function has the property:

d (x) = w′x
j

> 0 if x ∈ c1

< 0 if x ∈ c2

Figure 1, shows a three classes identification sample.

4. METHODOLOGY
Since have been explained some general concepts, this sec-

tion of the article will be devoted to the methodology used to
determine the location of a set of seismic stations by means
of the genetic algorithm. We will start describing the chro-
mosome representation and after that, we well describe the
proposed objective function to solve our problem.

4.1 Chromosome representation
First of all, it must be clear that the solution to our prob-

lem is the location of each seismic station. For that reason,
the solution (individual) is composed of n pairs of genes
where n is the number of seismic-sense stations. Each pair
of genes represents the location of a station in terms of its
longitude Gnx and latitude Gny. Figure 2 shows the chro-
mosome and gene representation.

Figure 2: Graphical representation of chromosome

The value (phenotype) of each gene will have real repre-
sentation in binary encoding, and shall be a vector of bits
(alleles). This value is calculated using the equation 2 to
encode from binary to real values:

v =
(vmax − vmin)

(2n − 1)
· vbin + vmin (2)

where vmax and vmin are the maximum and minimum gene
values, n is the number of bits (alleles) and vbin the real
representation in binary encoding (phenotype). The range
of values of the genes, correspond to the geographical coor-
dinates of a specific region.

4.2 Objective function
The main idea is to design a configuration where each

station covers the major number of epicenters. Therefore,
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the objective function has to maximize the fitness of each
individual assessed by the sum of the number of detected
epicenters.

To compute the fitness of the individual, we first deter-
mine whether the epicenters are within the coverage of the
station’s area using the geographical distance.

To calculate the geographical distance between two points
on the earth’s surface, we apply the cosine theorem of spher-
ical geometry [6] and the proportion of 360 ◦ to 40000 kms.
(Ecuador diameter). This gives the approximated equation:

dg(p, p′) =
40000

360
· (3)

· arccos `
cos θ· cos θ′ + sin θ· sin θ′· cos `

λ − λ′´´
where p is the first point, θ the latitude of p, λ the longitude
of p, p′ the second point, θ′ the latitude of p′ and λ′ the
longitude of p′.

Let gi ∈ R
2 be the location of a station i, and αj ∈ R

2 be
the location of an epicenter j. To determinate if an epicenter
is into the area covered by a station, we have to calculate the
geographical distance between the epicenter and the desired
station. If the distance is less than the radius of the covered
area, then the epicenter is detected by the station. This
relationship will be represented by the equation 4

hij =

j
1 if dg(gi, αj) < ρ
0 otherwise

(4)

where i, j ∈ N, i �= j, i = 1, ..., n, j = 1, ..., r, n is the number
of stations, r is the total number of epicenters and ρ is the
radius of the area covered by the station.

The number of epicenters detected si ∈ N by each station
i is computed using the equation 5

si =
rX

j=1

hij (5)

where r is the total number of epicenters.
Finally, the individual’s fitness f(x) is the sum of epicen-

ters detected by whole stations, which is computed by means
of the equation 6

f(x) =
nX

i=1

si (6)

where n is the number of pairs stations.
In most optimization problems, the objective function is

subject to constraints. For this research, we include two
constrains: the first one is related to the overlap between
the areas covered by the stations, and the second one for
the event that any station is located in a not desired area as
at the Pacific Ocean.

These constraints directly affect the fitness of individuals.
The idea is to extend the domain of the objective function,
which will be affected according to the equation 7:

f(x) = f(x) ·
nY

i=1

ci(x) (7)

for i = 1, 2, 3, ..., n − 1, n where n is the total number of
constraints and ci(x) is a constraint. In this particular case,

we have two constraints, then the next equation 8 will be
applied:

f(x) = f(x) · δ(x) · γ(x) (8)

where δ(x) and γ(x) are penalty functions corresponding to
the first and second constraints respectively.

As it was described above, the objective function maxi-
mizes the number of epicenters detected by the individual.
This would mean that geographical distance among stations
must be greater to cover a larger area and thus provoke that
more epicenters will be detected. On the contrary, if the
geographical distance among stations is less than a specific
radius, then two or more stations could detect the same epi-
centers, which does not help to maximize the individual’s
fitness.

Therefore, the first constraint is the condition in which
the geographical distance between stations is greater than
the double coverage of a station’s area dg(pi, pj) > 2ρ for
i, j = 1, 2, 3, ..., n − 1, n where n is the stations’ number,
i �= j and ρ is the radius of the area covered by a station.

Considering that the geographical distance between some
SAS stations is little less than 20 km, at least a radius of
10 km between stations was chosen. Hence, if the distance
between some of the stations does not meet that condition,
the death penalty is applied to the individual, assigning a
value of zero to its fitness and declaring it not feasible for
the solution. Otherwise, the fitness will be one.

δ(x) =

j
0 if dg(pi, pj) < 2ρ
1 otherwise

(9)

The second constraint will be applied to prevent that any
of the stations are located in a reject region where it is not
feasible for its construction; for example, when a station is
located at the ocean.

To determine the rejection region, 60 geographical points
along the coast of Guerrero and a point called the origin
located in the ocean, were taken. The location of this ori-
gin point is −103.0 ◦ longitude and 16.0 ◦ latitude, which
corresponds to lower limits of the State of Guerrero.

As it was previously shown, a decision region with linear
functions is defined by a set of straight lines R. Knowing
that the straight-line equation through two points P0(X1, Y1)
and Pi(Xi, Yi) where P0 is the origin and Pi any point lim-
iting the coast of Guerrero, the set of lines that defines the
reject region is R = {r1(P0, Pi), r2(P0, Pi+1), r3(Pi, Pi+1)}
for i = 1, 2, 3, ..., n−2, n−1 where n is the number of points
that limits the coast.

Therefore, a point p(x1, x2) will be located in the reject
region when it is evaluated in each ri ∈ R, in its general
form r = Ax1 + Bx2 + c = 0, and satisfies the condition
r1(p) > 0 ∧ r2(p) < 0 ∧ r3(p) > 0.

Finally, the individual will be penalized according to

γ(x) =
m

n
(10)

where m is the number of stations that are in the reject
region and n the total number of stations.

5. EXPERIMENTAL RESULTS
We performed several experiments to test the effectiveness

of the network provided by the genetic algorithm. We vary
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Figure 3: Detection of a station belonging to a reject
region

the amount of earthquakes, the crossover and the mutation
rates during the designing phase.

These experimental results are divided into three parts.
The first one will focus on the settings and conditions of the
genetic algorithm. The second one will describe the condi-
tions to simulate all the earthquakes. And the last one shows
the results and some observations about the behavior of the
genetic algorithm. Particularly, we perform all experiments
using the earthquakes registered from 1998 to 2006 in the
State of Guerrero, Mexico.

5.1 Genetic algorithm settings
We pretend to use the genetic algorithm to cover as much

territory as possible, considering the greater amount of earth-
quakes around the covered area of the proposed stations.

The range values used for genes are from −102.11 ◦ to
−98.00 ◦ longitude and from 16.19 ◦ to 18.53 ◦ latitude. These
values correspond to the geographical coordinates of the
State of Guerrero and thus limits the stations to be located
in this range of coordinates.

To ensure that the fittest individuals of the population
survive and continue evolving to the next generation, we
chose the elitist selection. In this case 20% of the individ-
uals of the population with the highest scores will continue
in the process of evolution considering the penalties on the
constraints.

In previous section was indicated that the alleles have a
binary encoding, for that reason n crossing points crossover
method was used and for simplicity, one point crosses was
selected. The crossover rates used were 90%, 70% and 50%
for exploring the search space. With each crossover rate, we
used the 1%, 3%, 5% and 10% of mutation rate to generate
solutions that the cross cannot produce and thus achieve
the optimum value. The number of generations done by the
genetic algorithm was set to 200.

The epicenters used to evaluate individuals in the objec-
tive function, correspond to all the earthquakes recorded in
México from 1998 to 2006, for a total of 5974. We selected
the 2539 records belonged to the territory of interest located
between −103.0 ◦ and 98.0 ◦ longitude and 16.0 ◦ to 19.0 ◦

latitude. This information was obtained from the database
of Mexico’s National Seismological Service (SSN) [9].

In order to have almost the same conditions in which SAS
was designed, we choose the 100%, 50% and 10% from the
2539 earthquakes (the entire sample space), for the training
phase of the genetic algorithm. It is worth mentioning that
this research does not pretend to discredit the labor of build-

ing SAS stations, but to have a real parameter to compare
and demonstrate that this work could be feasible.

Based on the parameters already described, 36 configura-
tions were created to run the genetic algorithm. In order
to observe the behavior of the genetic algorithm and select
the best optimal configuration, we tested over 20 times each
configuration.

In addition, we also compare the genetic algorithm against
a simple greedy search. For that purpose, one more group of
20 tests was done to observe if the greedy search produced
a better configuration than either the SAS or the genetic
algorithm.

5.2 Settings for simulation
In this section, we compare the results of 20 solutions

obtained using the proposed genetic algorithm against the
current SAS configuration.

To determine the efficiency of the algorithm in terms of
the time to alert Mexico City, the SAS stations and each
solution proposed by the genetic algorithm underwent into
a procedure in which the occurrence of the 2539 earthquakes
was simulated. We obtain the warning time computing the
difference between the time that the seismic stations detect
an earthquake and the time that the seismic wave reaches
Mexico City. This approach was subject to the next consid-
erations during the simulation process:

1. The same 2539 earthquakes registered in the database
from 1998 to 2006 were used.

2. The speed of propagation of seismic waves varies be-
tween 4 km/s and 8 km/s. Fortunately, most ener-
getic waves are transmitted to the lower speed, so we
propose the following proportions.

(a) If an earthquake has a magnitude greater than
5.0 ◦ Richter, is propagated at a speed of 4 km/s.

(b) For an earthquake of magnitude between 4.0 ◦ and
5.0 ◦ Richter will propagate at a speed of 6 km/s.

(c) And for an earthquake of magnitude less than
4.0 ◦ Richter, propagation velocity will be 8 km/s.

3. To determine the number of stations that detects an
earthquake and issue a warning, the following rules
were proposed.

(a) For an earthquake of magnitude lower than 4.0 ◦

Richter was determined that at least three sta-
tions have to detect the earthquake in order to
reduce the likelihood that the sensor is stimulated
at a station for reasons unrelated to seismic activ-
ity, possibly caused by heavy goods vehicles that
cause a movement of the earth. This means that
when the seismic wave reaches the third nearest
station the epicenter, is the time to issue a warn-
ing.

(b) In the event that the magnitude of the earthquake
is between 4.0 ◦ and 5.0 ◦ Richter and continuing
with the above criteria, at least two stations must
detect the occurrence of the earthquake. In this
case when the seismic wave reaches the second
nearest station, a warning is issued.

(c) Finally, if the earthquake’s magnitude is greater
than 5.0 ◦ Richter (highly risky), it is enough that
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Earthquakes Location of SAS stations

Configuration 1 Configuration 2

Figure 4: Configurations proposed by genetic algorithm

the first nearest station detects it and issues a
warning. In this case, there is a low probability
that the sensor is stimulated by activities other
than seismic.

The speed formula v =
dg(pp′)

t
was used to calculate the

time that a station issues a warning signal and the time for
seismic waves spreads and reaches Mexico City.

5.3 Results
The solutions obtained with the genetic algorithm show

that the stations are divided into a northern region and
southern region along the coast, locating them where most
of the earthquakes are concentrated, similar to earthquakes
recorded. Figure 4 shows the current distribution of SAS
and some of the solutions proposed by the genetic algorithm.

It was observed that, when the algorithm starts, the num-
ber of earthquakes detected and the individual’s fitness was
different. This occurred because some stations were located
at the Pacific Ocean and the fitness was affected by a penalty
caused by the second constraint. In average, until the 31th
generation, all the stations are located within the feasible
region. After this phase, the genetic algorithm continues
with the optimization of the individual’s fitness. In average,
the optimum value was reached after the 97th generation.
Figure 5 shows the behavior of the genetic algorithm.

Figure 5: Genetic algorithm’s behavior

On the other hand, the greedy algorithm has a not ho-
mogenous behavior and locates the stations along the terri-

tory of the State of Guerrero without a pattern or a specific
order. Figure 6 shows the behavior of greedy algorithm.

Figure 6: Greedy algorithm’s behavior

The following tables show the results obtained by simu-
lating the earthquakes in the current stations of the seismic
alert system (SAS), in the stations proposed by the genetic
algorithm and finally in the stations proposed by the greedy
algorithm.

In the simulation performed with the entire sample space,
the current SAS configuration gives the following results
shown in table 1.

Table 1: Evaluation for SAS configuration
All earthquakes Earthquakes>5.0 ◦ Earthquake

Maximum Average Maximum Average 1985

80 34 80 65.23 57

These results will be taken as a starting point to com-
pare the results provided by the genetic and greedy search
algorithms.

After the simulation for all earthquakes recorded of any
magnitude, the maximum time value achieved by the best
configuration was 99 seconds and an average time of 31.32
seconds. These results are shown in tables 2, 3 and 4.

In a comparison against the results obtained by SAS, we
can observe that the maximum time is 19 seconds over the
maximum time registered by SAS, but in the average time,

945



Table 2: Evaluation of the training phase using the
100% of the total sample space (2539 records) for all
earthquakes

Crossover Mutation Maximum Average
rate rate warning time warning time

90%

1% 98 31,51

3% 88 31,7

5% 88 31,78

10% 98 32,18

70%

1% 97 31,87

3% 98 31,53

5% 98 31,66

10% 99 31,47

50%

1% 96 30,92

3% 98 31,04

5% 98 31,09

10% 96 31,38

Table 3: Evaluation of the training phase using the
50% of the total sample space (1269 records) for all
earthquakes

Crossover Mutation Maximum Average
rate rate warning time warning time

90%

1% 98 31,72

3% 96 31,96

5% 98 31,34

10% 97 31,4

70%

1% 88 31,53

3% 95 31,73

5% 99 31,43

10% 97 31,55

50%

1% 99 31,08

3% 86 30,66

5% 95 31,39

10% 96 30,28

SAS configuration is better than the stations proposed. Al-
though these results could be significant, they consider the
earthquakes with a magnitude less than 5.0 ◦ Richter, which
are not of interest on this research, since SAS does not issue
a warning when earthquakes of that magnitude occur.

In tables 5, 6 and 7 we show the results for a simulation
with the earthquakes greater than 5.0 ◦ Richter.

From these tables we can observe that the maximum and
the average times for all experiments in each configuration
are similar to each other. Furthermore, it is observed that
with a rate of 70% for crossover and a rate of 5% or 10%
for mutation, it was achieved a maximum value of 99 sec-
onds to alert the population. This behavior remains con-
stant even using a small number of samples during training
phase. Considering all of this, the best results are achieved
using the 50% of the samples, a crossover rate of 70% and
a mutation rate of 5%. These results are interesting for
this research, because the seismic alert system must issue
a warning alarm when an earthquake over 5.0 ◦ Richter has

Table 4: Evaluation of the training phase using the
10% of the total sample space (253 records) for all
earthquakes

Crossover Mutation Maximum Average
rate rate warning time warning time

90%

1% 94 31,08

3% 87 31,34

5% 98 31,46

10% 99 31,15

70%

1% 95 30,68

3% 91 31,34

5% 96 30,87

10% 99 31,48

50%

1% 93 30,57

3% 88 31,24

5% 94 30,62

10% 97 31,36

Table 5: Evaluation of the training phase using the
100% of the total sample space (2539 records) for
earthquakes greater than 5 richter

Crossover Mutation Maximum Average
rate rate warning time warning time

90%

1% 98 67,83

3% 88 68,76

5% 88 67,19

10% 98 68,4

70%

1% 97 68,88

3% 98 68,88

5% 98 69,24

10% 99 68,15

50%

1% 96 70,2

3% 98 67,6

5% 98 68,75

10% 96 67,94

occurred. The warning time is 19 seconds over the current
SAS configuration, in other words, 23% more effective.

The last set of experiments performed to evaluate the ac-
curacy of the genetic algorithm includes the simulation of the
earthquake occurred in Mexico City, which caused a major
disaster in 1985. These results are shown in tables 8, 9 and
10.

Once again, we observed that the genetic algorithm pro-
vides a better time. Here the maximum time value achieved
was 90 seconds. These are 33 seconds and 57% more effec-
tive than current SAS. In addition, we can see that as in all
cases before, the settings for the best results of the genetic
algorithm are a crossover rate of 70%, and in general any
mutation rate is good.

Finally, we perform a comparison against the greedy algo-
rithm. Basically, this algorithm produces individuals with
random values, but some of the stations could be located in
a not feasible region to build them, as in the ocean. To get a
more equitable way for comparison, we considered only those
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Table 6: Evaluation of the training phase using the
50% of the total sample space (1269 records) for
earthquakes greater than 5 richter

Crossover Mutation Maximum Average
rate rate warning time warning time

90%

1% 98 67,97

3% 96 67,79

5% 98 68,31

10% 97 67,17

70%

1% 88 67,67

3% 95 68,49

5% 99 68,94

10% 97 67,77

50%

1% 99 67,93

3% 86 67,71

5% 95 66,8

10% 96 68,82

Table 7: Evaluation of the training phase using the
10% of the total sample space (253 records) for
earthquakes greater than 5 richter

Crossover Mutation Maximum Average
rate rate warning time warning time

90%

1% 94 66,53

3% 87 66,82

5% 98 67,54

10% 99 67,64

70%

1% 95 66,94

3% 91 67,86

5% 96 67,1

10% 99 67,11

50%

1% 93 67,38

3% 88 65,98

5% 94 67,27

10% 97 67,78

stations that were within the State of Guerrero to evaluate
the effectiveness of this algorithm. Moreover, we test with
the entire sample space of earthquakes, 100 individuals and
200 iterations. These are the same parameters used in the
genetic algorithm.

The table 11 show the results obtained with the greedy
algorithm.

Certainly, the results seem to be good, since they are bet-
ter than the current SAS. However, it is important to men-
tion that in all tests, any configuration produced all stations
in a feasible region.

As we mention in 5.2, the behavior of the greedy algorithm
is no homogenous, this means that most of the earthquakes
detected were concentrated in only one station while other
stations detect few or no earthquakes.

A final result summary is shown in table 12.
This results indicates that in an earthquake greater than

5.0 ◦ Richter or in an earthquake like that which occurred in
1985 (7.0 ◦ Richter), a configuration proposed by the genetic

Table 8: Evaluation of the training phase using the
100% of the total sample space (2539 records) for
the earthquake of 1985

Crossover Mutation Average
rate rate warning time

90%

1% 88

3% 83

5% 84

10% 90

70%

1% 90

3% 89

5% 90

10% 87

50%

1% 84

3% 84

5% 89

10% 90

Table 9: Evaluation of the training phase using the
50% of the total sample space (1269 records) for the
earthquake of 1985

Crossover Mutation Average
rate rate warning time

90%

1% 89

3% 89

5% 84

10% 90

70%

1% 85

3% 90

5% 89

10% 90

50%

1% 89

3% 85

5% 90

10% 85

algorithm could alert the population with more time before
the seismic wave reaches México City.

To conclude the experimental results’ section, figure 7
shows the distribution of the best proposed stations to alert
with the maximum time if an earthquake of 7 ◦ Richter
would occur. Then, table 13 shows the settings of the genetic
algorithm for this result.

6. CONCLUSIONS AND FURTHER WORK
We can say that under the conditions described above, the

genetic algorithm provided a better solution for the location
of the seismic stations. Through several experiments, we
observed that the time to alert the population of Mexico
City was over 50% higher than the current configuration of
SAS.

Although this work was focused on maximizing the num-
ber of epicenters located in a coverage area of the stations,
we observed that the genetic algorithms could be consid-
ered as a useful tool in planning and building seismic sensor
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Table 10: Evaluation of the training phase using the
10% of the total sample space (253 records) for the
earthquake of 1985

Crossover Mutation Average
rate rate warning time

90%

1% 89

3% 84

5% 84

10% 84

70%

1% 90

3% 83

5% 89

10% 83

50%

1% 86

3% 83

5% 89

10% 84

Table 11: Evaluation for greedy search algorithm
All earthquakes Earthquakes>5.0 ◦ Earthquake

Maximum Average Maximum Average 1985

90 27,83 90 64,9 76,05

Table 12: Final result summary in terms of the
warning time

Best All earthquakes Earthquakes>5.0 ◦ Earthquake

Config. Max. Avg. Max. Avg. 1985

SAS 80 34 80 65.23 57

G. A. 99 31,43 99 68,94 89

Greedy 90 27,83 90 64,9 76,05

Figure 7: The best configuration proposed by the
genetic algorithm

Table 13: Genetic algorithm’s settings for the best
configuration
% of sample for training Crossover rate Mutation rate

100% 100% 5%

station networks. This approach could be applied in other
states of Mexico or other countries.

Since configuring the locations of seismic-sense stations is
a basically numerical problem, some state-of-the-art numer-

ical optimizers, like Differential Evolution (DE) or Covari-
ance Matrix Adaptation Evolution Strategy (CMA-ES) will
be applied and compared against the conventional genetic
algorithm. Finally, we will choose the best strategy to solve
the problem in question.

Further work might focus on locating the seismic stations
considering as the objective function to maximize warning
times instead of the number of epicenters around of a station
and verify if it gives better results.

In addition, other characteristics like the variation and
reflections of waves over strata in earth could be considered
during the simulation process. And other georeferenced data
like soil properties could be analyzed to show more real and
maybe better results.
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