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ABSTRACT
We present a multiobjective hybrid technique for automatic
orthogonal graph drawing. The new methodology combines
the classical approach to automatic orthogonal graph draw-
ings, the topology-shape-metric approach, and a multiobjec-
tive genetic algorithm based on the NSGA-II method. In
the topology-shape-metric method, a fixed planar embed-
ding is obtained in the planarization step and submitted to
the orthogonalization and compaction steps, in this order.
In the hybrid approach, a greater number of planar embed-
dings is explored by varying the order of edges insertion that
forms the planar embedding in the planarization step. The
problem is then formulated as a multiobjective permutation-
based combinatorial optimization problem, considering the
minimization of the number of crossings, the number of
bends and the area of the drawing. Solutions on the es-
timated Pareto front represent different drawings, that can
be stored and selected by the user in real-time. We illustrate
a possible multicriteria decision making based on fuzzy de-
cision. The results show that the hybrid methodology using
NSGA-II is able to find good and diverse solutions, when
compared to the traditional topology-shape-metric method.
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1. INTRODUCTION
Automatic graph drawing [6, 20, 17] is an important area

of research concerning the study and development of auto-
matic techniques for drawing graphs in different contexts.
These automatic methods aim at providing a better way
of visually representing data, information and relationships,
considering the specific needs of each application domain.

The topology-shape-metric methodology [2, 20] is a pop-
ular approach to automatic orthogonal graph drawing and
consists of three main steps: planarization, where the edges
sequence is defined around each vertex in a way that the
number of crossings could be minimized; orthogonalization,
where the bends of the edges are determined given the edges
sequence; and compaction, where the coordinates of each el-
ement (vertices and bends) and the edges length are defined
with the goal of satisfying a given aesthetic criterion, such
as minimizing the total drawing area or minimizing the total
sum of the edges length.

However, problems related to graph drawings are gen-
erally very complex search problems. Patrignani discusses
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the complexity of the orthogonal compaction problem [18],
showing that the search for high quality drawings from the
point of view of readability and visibility is frequently asso-
ciated to NP-hard problems. For this reason, such problems
are solved through heuristics or metaheuristics, which do
not always guarantee the best results, but make the prob-
lem tractable in practice. Minimizing the number of bends
in all possible planar graph embeddings is also an NP-Hard
problem [7, 18]. Garey and Johnson [13] show that min-
imizing the number of crossings in a planar graph is also
NP-complete.
When applying the topology-shape-metric, the final draw-

ings are obtained by sequential steps, and solutions on each
step affect the solutions on subsequent ones. This in turn
directly affects the legibility and the visibility of the final
drawing. In addition to the requirement of respecting the
step sequence, the existing algorithms to solve the automatic
graph drawing problem following the topology-shape-metric
approach are based on a fixed planar embedding obtained in
the first step, the planarization step [20]. However, a planar
graph can have an exponential number of planar embeddings
[7], each one impacting the next two steps in the process in
a different way.
In this paper we propose the use of a multiobjective ge-

netic algorithm, namely the NSGA-II, for automatic orthog-
onal graph drawing based on the topology-shape-metric. We
formulate the problem of searching for improved planar em-
beddings as a permutation-based combinatorial optimiza-
tion problem. We employ the multiobjective genetic algo-
rithm to solve this permutation-based problem, working on a
population of individuals that represent permutations. Each
permutation represents a different order of edges insertion
for the planarization algorithm, which may represent a dif-
ferent planar embedding. In this way the multiobjective ge-
netic algorithm is then able to evaluate properly the quality
of different permutations by considering different aesthetic
criteria.
The main contribution of our methodology is the use of

a multiobjective genetic algorithm for selecting a greater
number of planar embeddings that lead to an optimized fi-
nal drawing, taking into consideration preferences over the
Pareto front. In many practical applications in graph draw-
ing the generation of an optimized drawing takes time and
much computational effort. Using the multiobjective ap-
proach, one can search for a distributed set of trade-off
drawings for the graph (represented by vertices and edges
previously stored in a data set) and make it available to the
user. Since the preferences over aesthetic criteria are sub-
jective, and usually not known a priori, the user can then
select and evaluate drawings over the Pareto front a posteri-
ori in real-time, without the need of generating an optimized
graph again. That is one advantage of using a multiobjective
approach for automatic graph drawing. In our results, we
apply multicriteria decision making in a fuzzy environment
to find a harmonious1 solution in the final Pareto solution
set, considering the three aesthetic objectives (they will be
described in section 2). Nonetheless, the user can modify the
importance of each objective in the fuzzy decision making,
selecting another result in the Pareto set.
A mono-objective approach using the genetic algorithm

1Harmonious with respect to the levels of satisfaction of all
goals.

and the weighted sum of the objectives, presented in a pre-
vious work [16], has the following drawbacks:

• Perhaps the main difficulty in using the weighted sum
of the objectives is related to the selection of the weights,
which may be a cumbersome task.

• Moreover, if the user is not satisfied with the final re-
sult, (s)he needs to change the weights and run the
optimization process again, which might require con-
siderable time depending on the graph size. There-
fore, changing preferences over the visualization of the
graph in real time would be difficult to manage.

For this reason it was necessary to develop a methodology
that simultaneously finds some trade-off solutions, leaving
the decision to the user, in a posteriori way. Our works dif-
fer from previous ones in the literature firstly by focusing on
orthogonal graphs on a grid, since previous work on genetic
algorithms for graph drawing has been directed to hierar-
chical graphs or non-orthogonal graphs (see for instance [1,
15]), and secondly by proposing a new approach for this
problem based on the topology-shape-metric approach and
soft computing techniques. The problem of searching for
an improved planar embedding is formulated as an integer
permutation-based combinatorial problem, and solved ap-
plying the multiobjective genetic algorithm using suitable
operators for permutation representations [8], as well as the
multicriteria decision making in a fuzzy environment [19]
based on the Bellman-Zadeh approach [3]. The results illus-
trate the benefit of the proposed hybrid approach for au-
tomatic graph drawing. The experiments show that our
approach can indeed find improved final drawings, better
than those achieved by the typical methods based on the
topology-shape-metric approach.

2. BACKGROUND
The topology-shape-metric approach was first introduced

by [2] and it was widely discussed and improved in [20]. The
topology-shape-metric considers only orthogonal drawings on
a grid (drawings whose edges are drawn with only horizontal
and vertical lines and orthogonal bends). The final drawing
is obtained with three sequential steps: planarization, or-
thogonalization and compaction. Each of these steps is re-
sponsible for handling one or more aesthetic criteria, which
are ultimately responsible for the final drawing quality. This
quality is related to the degree of clarity and visibility in the
drawing.

The planarization step determines the drawing topology.
In this step, the goal is to reduce the number of edge cross-
ings as much as possible. The number of crossings in a graph
is generally considered the main cause for the difficulty in
understanding the graph. Planarity testing and planar em-
beddings construction have been extensively studied, with
direct applications in a variety of areas including circuit lay-
out, graphics, and computer aided design.

Tollis et al. [20] present algorithms that are widely used
today as techniques for planarity tests of the planar graph
embeddings. These algorithms are based on incrementally
building a planar graph embedding. In this case, a drawing
or an intermediate representation is constructed by adding
vertices and edges of a graph G. In the insertion of each
edge in a subgraph or planarization G′ of G, a planarity
test is done to check if its insertion maintains the planarity
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of G′. If the edge insertion creates an intersection with an-
other edge of G′, it is classified as a non-planar edge. Finally
the non-planar edges are added one by one in order to mini-
mize the crossings. This is done through the construction of
the dual of the subgraph G′, where the shortest path (with
fewer edges) in the dual graph G′ from the faces incident
to the vertices is found. The edge and the primal graph are
drawn through this path and a dummy vertex is added at the
point where the crossing occurs. This procedure is known
as the planarization operation. Notice that this procedure
represents a heuristic method for incremental planarization
and for determining the sequence of edge insertion. Its al-
gorithm, shown in [20], is reproduced here:

Algorithm Planarize

Input: graph G;
Output: planarization G′ of G;

1. Compute a maximal planar subgraph S of the input
graph G, and partition the edges into “planar” and
“non-planar”, as follows:

(a) Start with subgraph G′ consisting only of the ver-
tices of G, but no edges;

(b) For each edge e of G, if the graph obtained by
adding e to G′ is planar, then add e to G′ and
classify e as “planar”, else reject e and classify it
as “nonplanar”.

2. Construct a planar embedding of the planar subgraph
G′, and the dual graph of S.

3. Add to G′ the nonplanar edges, one at a time, in order
to minimize the number of crossings. This is done as
follows for a nonplanar edge (u, v):

(a) Find a shortest (least number of edges) path in
the dual graph of the current embedding G′ from
the faces incident to u to the faces incident to v;

(b) Add the nonplanar edge and update G′ and its
dual.

The orthogonalization step, according to the topology ob-
tained in the previous step, is performed in order to shape
the drawing, through an orthogonal representation H. The
emphasis at this stage is to minimize the number of bends of
the drawing, because human eyes can follow a straight line
more easily than a zigzag line through the drawing. The
minimization of bends in the drawing simplifies the graph
in terms of its visibility. This problem is formulated as a
minimum cost flow problem in a network [20]. The result of
this step is called an orthogonal representation of the graph
and it is taken to the next step.

The compaction step receives an orthogonal representa-
tion H and determines the final coordinates of the vertices
and bends in the drawing [20]. In this step, the goal is to
minimize the drawing area or the total sum of the edges
length.

Figure 1: Graph G1 and three different planar embeddings
of G1: E1, E2 and E3.

3. METHODOLOGY

3.1 Multiobjective approach
As discussed in the previous section, the planarization

step requires the order of the edges as input. Although the
heuristic in the Algorithm Planarize is designed to reduce
the number of crossings, the order in which the edges are
inserted affects the final embedding produced by the algo-
rithm, thus having an impact on the results obtained by the
subsequent steps. For this reason, we formulate the prob-
lem of optimizing the overall graph drawing as an integer
permutation-based optimization problem. A permutation
represents the sequence of edges insertion, which is the in-
put of the planarization algorithm. In this way, different
permutations might result in different planar embeddings.
Figure 1 illustrates how different permutations can lead to
different planar embeddings.

The three objectives of the problem are (i) minimizing the
number of crossings, which is computed given the planar em-
bedding produced in the planarization step; (ii) minimizing
the number of bends, which is computed given the orthogo-
nal representation H; and (iii) minimizing the total sum of
the edges length, which is computed after the compaction
step is performed. Notice that the evaluation of the three
objectives for a given permutation requires the execution of
the algorithms of the topology-shape-metric approach.

In order to solve the problem, we employ a multiobjec-
tive genetic algorithm working on a genotype consisting in
integer permutations. NSGA-II is a multiobjective genetic
algorithm [5] which employs an elitist non-dominated sort-
ing strategy. It works with the parent population Pt to gen-
erate the offspring population Qt as in conventional GAs.
However, instead of finding the non-dominated front of Qt

only, the two populations are combined together to form
Rt = Pt ∪Qt of size 2N , and then a non-dominated sorting
is used to classify the entire population Rt. This strategy
allows a global dominance check among the offspring and
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parent solutions. Each solution is separated by levels of
dominance, now referred by Pareto fronts (Fi). A fitness
value is assigned to each solution according to the front it
belongs. For solutions within the same front, a diversity
measure called crowding distance is used. It takes into ac-
count how close the individuals are from their neighbors in
the front. A higher value of crowding distance will result in
better diversity in the population.
The population Rt, now with size 2N , has to be accommo-

dated into a population Pt+1 of size N . Each Pareto front
is inserted while the size of Pt+1 ∪ Fi is less than N . For
the last front to be inserted, the individuals are arranged in
descending order of the crowding distance values, and only
the best ones are used to fill the population Pt+1.
Parents are selected from the population Pt using binary

tournament selection. The selected parents produce off-
spring through the application of suitable crossover and mu-
tation operators, generating the populationQt. More details
about the NSGA-II as well as the crowding distance proce-
dure can be found in [4, 5].

3.2 Genetic Operators
In this work we formulate the problem of finding an opti-

mal planar embedding for the graph as a permutation based
combinatorial optimization problem. The problem is then
solved with the multiobjective genetic algorithm (NSGA-
II), using suitable crossover and mutation operators. Our
implementation employed the followings operators:

• binary tournament selection: In this selection pro-
cess, two individuals are selected at random from the
population and the fittest one is selected for reproduc-
tion.

• partially mapped crossover operator (PMX):
Was firstly proposed by Goldberg and Lingle [14] as
a recombination operator for the TSP problem and
has become one of the most widely used operators
for adjacency-type problems. Each offspring inherits a
substring from one parent and the remaining elements
are inherited from the other parent.

• order crossover operator (OX): It was designed
for order-based permutation problems. Two crossover
points are randomly selected and the segment between
them is copied to the offspring from the first parent.
Starting from the second crossover point in the sec-
ond parent, copy the elements to the offspring in the
order they appear in the second parent, avoiding rep-
etition. The second offspring is created in the same
way, reversing the roles of the parents.

• scramble mutation: This operator works by ran-
domly selecting a subset of the individual and reorga-
nizing the position of the alleles randomly.

• swap mutation: This operator works by randomly
picking two positions (genes) in the string and swap-
ping their allele values.

• insert mutation: This operator works by randomly
picking two alleles and inserting one right after the
other.

• invert mutation: This operator works by randomly
selecting two positions in the string and reversing the

order in which the values appear between those posi-
tions.

For more details about the operators see for instance [8].

3.3 Algorithm Overview
The algorithm developed for this approach is described

below:

Algorithm TSM-NSGA-II

Input: graph G;
Output: an optimized planar drawing;

1. Generation of the initial population:
N = number of individuals;

(a) Generate at random the ordering of edge insertion
for G (represented by an integer permutation);

2. Computation of the objectives:
i = 0;
while ( i < N ) do

(a) Submit solution i to the planarization step to ob-
tain a planar embedding Γi and the number of
crossings fX(si);

(b) Submit the planar embedding Γi to the orthogo-
nalization step to obtain the orthogonal represen-
tation H, and the number of bends fB(si);

(c) Submit the orthogonal representation H to the
compaction step to obtain the final drawing and
the total sum of the edges length fL(si);

(d) i = i + 1;

3. Sort individuals according to the front they belong (F1

to Fn), with F1 containing the non-dominated individ-
uals;

4. Calculate the crowding distance and fitness values for
each individual in the population;

5. Apply the genetic operators for generating the off-
spring population. Each crossover operator (PMX or
OX) for producing each offspring is selected with equal
probability. The mutation operator to be used (scram-
ble, swap, insert, and invert) for each offspring is also
selected at random with equal chance;

6. Perfom elitist survival selection with Pt ∪Qt to obtain
Pt+1;

7. Go to step 2 until the stop criterion is met;

In the next subsection we describe the fuzzy decision-
making method, which can be applied to the final estimated
Pareto set returned by the algorithm. This method can be
used to select solutions that have greater harmony regarding
the satisfaction levels of each objective.
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3.4 Fuzzy decision-making
An important point in multicriteria decision making is

the quality of the solution itself. It is considered high if
the satisfaction levels of the objectives are equal or close
to each other, giving rise to the so-called harmonious solu-
tions, see [11, 12]. Some lack of clarity in the concept of
an “optimal solution” usually arises when solving multicrite-
ria problems. When applying the Bellman-Zadeh approach
to decision making in a fuzzy environment [3] to solve mul-
ticriteria problems, this concept is defined with reasonable
validity: the maximum degree of satisfaction for all goals
serves as a criterion of optimality.
When using fuzzy decision making, each objective func-

tion fi(x) can be replaced by a fuzzy objective function or
a fuzzy set {x, µfi(x)}, where fi is one of the aesthetic cri-
teria considered. The degree of satisfaction of all objectives
is given by:

µD(x) =

m
∧

i=1

µfi(x) = min
i=1,2,...,m

µfi(x) (1)

Its use allows us to obtain a solution among the set of
alternatives providing the maximum membership degree to
the fuzzy set D:

maxµD(x) = max
x∈L

min
i=1,...,m

µfi(x) (2)

reducing the decision making problem to the problem of find-
ing

x
∗ = argmax min

i=1,...,m
µfi(x) (3)

In order to construct the membership functions µfi(x),
i = 1, 2, . . . ,m, reflecting the degree of minimization of the
objective [19, 9, 10], we can employ the membership func-
tions

µfi(x) =





max
x∈L

fi(x)− fi(x)

max
x∈L

fi(x)−min
x∈L

fi(x)





λi

(4)

In (4), λi, i = 1, . . . ,m are importance factors for the
corresponding objective functions.

4. RESULTS
The parameters used in our multiobjective genetic algo-

rithm implementation are summarized here (crossover and
mutation probabilities were set after some experiments):

• Number of independent executions of the multiobjec-
tive genetic algorithm is 10.

• As stop criterion, the genetic algorithm is executed
until the best solution found is not improved for the
last M generations. The value for M is arbitrarily
chosen as a proportion of the number of vertices in
the instance being solved. After some experiments, we
have selected M = 10 for V ≤ 100 and M = 20 for
100 < V ≤ 500, where V is the number of vertices in
the graph.

• Crossover probability of 0.8 and individual mutation
probability of 0.1.

Figure 2: Computing time for the multiobjective genetic
algorithm.

• The population size is 30.

First, we present results obtained with the classical ap-
proach that is the most popular technique used nowadays
to solve orthogonal graph drawing problems. After that,
we show the results for the classical approach by randomly
varying the order of edge insertion in the planarization step
and finally we show the results obtained with the hybrid ap-
proach using a multiobjective genetic algorithm (NSGA-II)
and fuzzy decision making. These results are shown in the
same table for comparison.

Table 1 shows the results obtained with the classical ap-
proach, i.e., the topology-shape-metric (TSM) approach us-
ing the planarization heuristic suggested in [20] and de-
scribed in section 2. It shows also the results obtained
for the classical approach by randomly varying the order of
edge insertion in the planarization step and also the results
for the NSGA-II. In this table, V is the number of vertices
in the graph, fX is the number of crossings obtained, fB is
the number of bends, fL is the total sum of the edges length.

In order to make a meaningful comparison, both the NSGA-
II and the random search have used the same number of
evaluations. Since the NSGA-II returns a set of trade-off
solutions, we employed the fuzzy decision making method
to select a more harmonious solution in the set, which is the
one used for comparison. It is important to emphasize that
the methodology of multicriteria decision making in fuzzy
environment returns the solution that shows balance in the
satisfaction level of all the objective functions, reflecting the
concept of harmonious solutions. This does not necessarily
reflects the aesthetic degree of preferences of the user. Ta-
ble 1 shows that the NSGA-II provides much better results
on average than using the classical method. Moreover, The
algorithm is able to find a trade-off set of good solutions in
one single execution.

Figure 2 shows on a logarithmic scale the computing time
in seconds for the genetic algorithm according to the number
of vertices. As we can see, the time spent for producing an
optimized graph increases greatly with the size of the graph.
This characteristic precludes any selection of preferences by
the user in real time. One execution of the multiobjective
approach is able to find a diverse set of trade-off alternatives,
that can be visualized and chosen by the user in real time.

Finally, we illustrate some graph drawings obtained with
the NSGA-II. Figures 3 and 4 show results for (a) the clas-
sical approach and (b) the NSGA-II using fuzzy decision
making for the cases with 50 and 100 vertices respectively.
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Table 1: Results obtained by the Classical Approach (Topology-Shape-Metric) and the NSGA-II with fuzzy
decision making.

Test cases Classical Approach Random order NSGAII with FDM

V Stats fX fB fL fX fB fL fX fB fL
10 Best 0 3 23 0 3 23 0 3 22

Average 0 3 23 0 3 24 0 3 23
StdDev – – – 0.00 0.00 0.00 0.00 0.00 0.42

20 Best 1 2 55 2 1 51 1 1 45

Average 1 2 55 1 2 55 1 2 47
StdDev – – – 0.47 0.40 0.93 0.00 0.53 1.07

30 Best 1 5 93 1 5 91 1 5 83

Average 1 5 93 1 5 93 1 5 87
StdDev – – – 0.40 0.47 2.68 0.00 0.00 2.22

40 Best 6 6 164 8 12 149 5 5 130

Average 6 6 164 8 11 154 5 5 145
StdDev – – – 0.76 1.59 2.75 0.84 0.63 4.70

50 Best 24 19 352 17 19 350 13 11 206

Average 24 19 352 19 17 359 14 11 213
StdDev – – – 2.43 2.80 4.73 1.34 1.73 7.71

100 Best 119 49 528 82 44 408 72 39 324

Average 119 49 528 83 45 410 73 38 307
StdDev – – – 6.92 1.57 26.03 3.64 1.92 12.69

150 Best 137 59 632 119 51 436 77 30 399

Average 137 59 632 110 50 489 87 39 411
StdDev – – – 7.01 2.11 30.75 6.55 5.12 17.44

180 Best 194 75 781 129 65 632 111 52 473

Average 194 75 781 130 65 632 116 54 497
StdDev – – – 2.79 2.86 1.59 10.29 5.31 35.06

200 Best 509 172 854 382 138 893 353 130 699

Average 509 172 854 423 155 768 357 132 700
StdDev – – – 41.75 21.98 135.93 15.83 2.73 54.34

250 Best 618 197 1144 495 159 1175 414 145 791

Average 618 197 1144 497 170 1158 388 143 1049
StdDev – – – 2.87 9.92 13.68 44.19 9.58 134.55

500 Best 608 173 2748 658 192 2148 317 102 1351

Average 608 173 2748 609 201 2259 321 110 1359
StdDev – – – 84.59 15.83 190.65 3.71 7.86 7.06

(a) (b)

Figure 3: Final drawings for the graph with V = 50: (a) drawing obtained with the classical approach, (b) drawing obtained
with the multiobjective approach.
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(a) (b)

Figure 4: Final drawings for the graph with V = 100: (a) drawing obtained with the classical approach, (b) drawing obtained
with the multiobjective approach.

(a) (b)

Figure 5: Final drawings for the graph with V = 100: (a) drawing obtained with higher preference for the number of crossings
(fx = 61, fB = 39 and fL = 313) (b) drawing obtained with higher preference for the number of bends (fx = 73, fB = 33 and
fL = 283).

Figure 5 (a and b) shows two different results consider-
ing different degrees of preferences in fuzzy decision making
approach on the Pareto solutions set, using equation (4).
In each case, we increased the degree of preference for one
of the objectives, generating the different results shown in
these figures.
These results illustrate the benefits of the multiobjective

approach, since it is possible to use the whole Pareto solu-
tion set as alternatives for graph visualization. For that, it
is enough to use different preferences in the fuzzy decision
making approach according to the user needs. The solution

set can be stored, becoming available in real time. As we
can see, the NSGA-II algorithm was indeed capable of find-
ing improved graph drawings with respect to the aesthetic
criteria considered and it is able to provide a set of solutions
allowing the users to select visualization preferences in real
time.

5. CONCLUSIONS
This paper presented results related to the application of

the NSGA-II and multicriteria decision making in a fuzzy
environment in automatic orthogonal graph drawing. This
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hybrid methodology for automatic graph drawing is based on
the topology-shape-metric methodology and multiobjective
genetic algorithms. We formulated the problem of searching
for improved planar embeddings to the next two steps in the
process as a permutation-based combinatorial optimization
problem, which is then solved using the multiobjective ge-
netic algorithm. The computation of the goals uses the clas-
sical algorithms for the orthogonalization and compactions
steps, leading to the values of the objectives, namely, the
number of crossings, the number of bends and the total sum
of the edges length.
We applied the fuzzy decision making approach to choose

the most harmonious individual in the final estimate of the
Pareto front for each graph instance. The multiobjective
genetic algorithm and fuzzy decision making approaches are
able to select individuals which provide more harmonious
solutions (in relation to the solutions obtained when ap-
plying the traditional topology-shape-metric approach) from
the point of view of the aesthetic criteria that are usually
adopted at the three steps of automatic graph drawing.
The results illustrated the benefit of the proposed ap-

proach, especially for graphs with more than a few hundreds
of vertices and edges. In these cases, the order of edge inser-
tion in the planarization algorithm becomes even more rel-
evant, and the multiobjective genetic algorithm (NSGA-II)
is able to search for a trade-off set of solutions, evaluating
the final quality of the drawing and therefore the impact
of each step on the next one in the topology-shape-metric.
Moreover, it is possible to say that a greater harmony of
aesthetic criteria is indeed found in the final result. This is
shown by the experimental results given in the paper.
It is also important to emphasize that in this approach,

the users will have a range of results in the Pareto front and
that enables them to make their choices according to their
preferences. Therefore, it is not necessary to run the whole
process again to obtain new results such as in the weighted
sum approach.
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