
Idealized Dynamic Population Sizing for Uniformly Scaled
Problems

Fernando G. Lobo
DEEI-FCT and CENSE

Universidade do Algarve
Campus de Gambelas

8005-139 Faro, Portugal
fernando.lobo@gmail.com

ABSTRACT
This paper explores an idealized dynamic population siz-
ing strategy for solving additive decomposable problems of
uniform scale. The method is designed on top of the foun-
dations of existing population sizing theory for this class of
problems, and is carefully compared with an optimal fixed
population sized genetic algorithm. The resulting strategy
should be close to a lower bound in terms of what can be
achieved, performance-wise, by self-adjusting population siz-
ing algorithms for this class of problems.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search

General Terms
Algorithms, Performance, Theory

Keywords
Genetic algorithms, Parameter control, Population sizing.

1. INTRODUCTION
Properly sizing the population of a genetic algorithm (GA)

is not an easy task because different problems have different
population size requirements. Population sizing theory of
GAs tells us that for a given problem, there is a minimum
population size below which the GA is not expected to work
well [8, 9]. The cited works relate important factors that
have a direct influence on what should be an adequate pop-
ulation size, and although it resulted in guidelines for setting
the population size, they are not immediately applicable to
an arbitrary problem because some of those factors (such
as signal to noise ratios, building block size, and so on) as
well as the conditions under which the model applies (ad-
ditive decomposable functions of equal or near-equal scale)
are rarely met in practice.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’11, July 12–16, 2011, Dublin, Ireland.
Copyright 2011 ACM 978-1-4503-0557-0/11/07 ...$10.00.

Because of that, and also because various researchers be-
lieve that no set of static parameter values seems appropri-
ate for an evolutionary algorithm run [5], various methods
have been proposed in the literature to adapt or automate
the population size, without requiring the user to specify its
value beforehand. Two major categories of methods have
been proposed: single and multiple population based ap-
proaches. The first category consists of methods that evolve
a single population whose size changes from generation to
generation according to some criteria [1, 2, 4, 15, 7, 17, 3].
The second category consists of methods that evolve multi-
ple populations of different sizes, but where the size of each
population is kept fixed, as in a traditional GA [10, 16]. A
review of some of the work in this area is available in [11].

In some sense, the methods in the second category do not
really adapt the population size through the run. What
those methods try to do is to find a minimum sufficiently
large population that yields a reasonable solution quality
for the problem at hand. These approaches can be seen as
methods that search for a good fixed-sized population. The
first category of methods is different in the sense that there is
only one population whose size changes through the run. We
refer to the single population-based approaches as dynamic
population sizing to reflect the notion that the population
size changes during the execution of a run.

Assessing the benefits of dynamic population sizing is dif-
ficult for a variety of reasons. First of all, there are several
dynamic population sizing methods proposed in the litera-
ture, each with its own strengths and limitations. Second,
the benefits that can be obtained for a particular class of
problems may not be the same as the benefits for another
class of problems. Inspired by the work on population siz-
ing theory [8, 9], we try to make progress by looking at
an idealized dynamic population sizing method for additive
decomposable problems of uniform scale. The reason for
choosing this class of problems is because it is the only class
of problems for which theoretical population sizing models
exist, and therefore, a fair comparison can be made between
a dynamic population sizing method and a traditional GA
with a population size set according to the theory.

The rest of the paper is organized as follows. We start in
Section 2 by reviewing relevant population sizing theory in
genetic algorithms, paying close attention to the supply and
decision models, and their integration in the gambler’s ruin
model. Section 3 builds on the theoretical work to design an
idealized strategy for adjusting the population size through a
GA run. Section 4 presents experimental results on additive

917

decomposable problems of uniform scale performed with the
idealized algorithm, and a comparison of it with a GA using
an optimal fixed-sized population. The paper ends with a
summary and conclusions.

2. POPULATION SIZING THEORY
There are only a few theoretical studies that relate the

effect that the population size has in terms of GA perfor-
mance and solution quality [8, 9]. Since GAs are complex
to analyze, most of those studies make some simplifying as-
sumptions: (1) work with selecto-recombinative GAs (no use
of mutation), (2) use fixed-length and binary-coded strings,
(3) use fixed-size and non-overlapping populations, and (4)
solve additively decomposable functions of equal scale. Al-
though these assumptions are made for computational and
analytical tractability, most of them can be relaxed with
proper adjustments.

These theoretical models assume that the problem to be
solved is additively decomposable in a number of m sub-
functions. Each subfunction maps to k decision variables
and corresponds to a partition. Under this definition, it is
possible to have 2k distinct configurations in a partition,
one of which is superior to the others and belongs to the
global optimal solution. This superior solution is commonly
referred to as a building block (BB), and the problem can
be solved to optimality by combining the m building blocks,
one from each partition, in a single individual. The mod-
els also assume that BBs are neither created nor destroyed
by the variation operators; the only source of BBs is in the
initial population. The task of the GA is then to propagate
the BBs through selection, and combine them in a single
solution using the crossover operator.

Under these assumptions, it has been shown that GAs can
efficiently solve this class of problems provided that the vari-
ation operators are not too disruptive, and that two crucial
aspects are satisfied: (1) there is an adequate supply of BBs
in the initial generation, and (2) the selection operator is
able to correctly distinguish between a BB and its competi-
tors.

2.1 Supply Models
When using selecto-recombinative GAs (no mutation), the

only source of diversity is the supply of BBs in the initial gen-
eration. A simple supply model considers the number of BBs
present in the initial random population (generated under
a uniform distribution), where the probability to generate a
single BB of size k is 1/2k, for binary encodings. Therefore,
the initial supply of BBs on a partition can be estimated as
x0 = n/2k, where n is the population size. From this simple
relation we observe that the population required to supply
BBs grows exponentially with the BB size k. This suggests
that problems with short BBs require smaller populations
than the ones with longer BBs. It also suggests that k has
to be much smaller than the whole problem size, otherwise
the problem becomes intractable.

2.2 Decision Models
The second aspect where population size plays an impor-

tant role is in the decision-making between a BB and its
competitors. An example is helpful to understand this is-
sue. Let us consider a competition between two individuals,
where for a given partition of interest, one individual con-
tains a BB and the other individual contains the BB’s tough-

Figure 1: In this example, 1111 is a building block
and 0000 is its toughest competitor in the second
partition. Although the building block is better
than its competitor, there is no guarantee that an
individual containing 1111 is better than an indi-
vidual containing 0000, because the contents in the
remaining partitions act as noise for the correct de-
cision.

est competitor (i.e, the second best configuration of bits on
that partition). The situation is depicted in Figure 1 with
the BB being 1111 and the competitor being 0000.

During selection, the GA always prefers better individu-
als. But at the partition level, it does not always choose the
best configuration. This occurs because the remaining m−1
partitions also contribute to the fitness of the individuals in
competition, and act as noise in the decision making process
in the particular partition.

Nonetheless, individuals containing BBs have a selective
advantage over those that do not. By focusing on a single
partition alone, Goldberg et al. [8] calculated the probabil-
ity that an individual containing a BB has a greater fitness
than an individual that contains the BB’s competitor. That
probability turns out to be

p = Φ

dp
2σ2

M

!
, (1)

where Φ is the cumulative distribution function for the stan-
dard normal distribution, d if the fitness difference between
the BB and its toughest competitor, and σ2

M is the mean
fitness variance of the individuals that contain the BB and
the individuals that contain the BB’s toughest competitor.

By assuming that the fitness function is the sum ofm inde-
pendent subfunctions, Goldberg et al. note that the overall
variance of the function can be calculated as the sum of the
variances of each independent subfunction. By recognizing
that the partition of interest does not contribute to the vari-
ance, the overall value for σ2

M is simply (m−1)σ2
bb, with σ2

bb

being the subfunction variance. The probability of deciding
well between a BB and its closer competitor, on a single
trial, can then be written as

p = Φ

dp

2(m− 1) σbb

!
. (2)

Based on this result, Goldberg et al. [8] were able to de-
rive a population sizing equation which gave conservative
estimates for the convergence quality of the GA on additive
decomposable problems with uniformly scaled subfunctions.
The resulting equation gave the required population size (in
order to correctly solve each partition with a tolerated error
probability α) in terms of the BB size k, the total number of

918

Figure 2: The gambler’s ruin problem. At each time
step, the particle x either moves one unit to the
right, with probability p, or one unit to the left,
with probability 1− p.

partitions m, and the fitness difference d between a BB and
its toughest competitor. A few years later, Harik et al. [9]
proposed another model that incorporates the initial BB
supply as well as cumulative effects of decision making over
an entire GA run. Their model is based on the well-known
gambler’s ruin problem and is discussed in more detail in
the next subsection.

2.3 The Gambler’s Ruin Model
Harik et al. [9] modeled the behavior of the GA as one

dimensional random walks. Their work puts together the
previous models of building block supply and decision mak-
ing into a single integrated model, and resulted in a more
accurate prediction for the convergence quality of the GA.

Given the assumption that the partitions are independent,
the authors were able to focus on the convergence of a single
partition alone. In order to do so, they made an analogy
between a bounded one-dimensional random walk and the
action of selection in GAs.

Consider a population of size n. For a given partition,
the GA succeeds when it has n copies of the BB in that
partition (meaning the GA has fully converged to the correct
BB in that partition), and fails when it has 0 copies of the
BB (meaning that the GA lost the BB and is not able to
recover it). In the initial generation, the number of BBs is
given by the supply model, n/2k. Then, throughout the GA
run, the number of BBs can increase or decrease depending
on whether the selection operator is able to make correct
decisions between a BB and its competitors. Eventually,
the GA either succeeds or fails.

The number of BBs can be represented by the position,
x, of a particle in a one-dimensional random walk with two
absorbing barriers at x = 0 (BB lost) and x = n (BB fully
propagated). The absorbing barriers are due to the fact that
the model ignores the effects of BB creation and destruction
by the variation operators. Since the decision errors done
by selection are inevitable, the population size n should be
large enough to be able to tolerate some of these errors.

In order to predict the BB success or failure,
Harik et al. abandoned the notion of generations in a GA
and considered that selection makes a sequence of decisions,
one at a time, between a BB and a competitor, until the BB
is either lost or fully propagated in the partition of interest.
Under this view, the outcome of a single competition is to
win or loose a single copy of the BB, and the probability
of success can be calculated using the solution to the gam-
bler’s ruin problem [6]. This problem is a special case of a
bounded one-dimensional random walk, where at each time
step, the particle x either moves one unit to the right (with
probability p) or moves one unit to the left (with probability

q = 1−p). Figure 2 illustrates the problem. The solution to
gambler’s ruin problem is given by Equation 3. It gives the
probability of success as a function of the starting position
of the particle, x = x0, and the probability p of making a
step in the right direction.

Psuccess =
1−

“
q
p

”x0

1−
“

q
p

”n (3)

It is illustrative to observe the effect of n in the gambler’s
ruin model. As an example, let p = 0.51, n = 10, and
x0 = n/2 = 5. Plugging these values in Equation 3 gives
Psuccess ≈ 0.5498. If we instead let n = 1000 and x0 =
n/2 = 500, the probability of success becomes Psuccess ≈
0.9999. By raising n (and x0 in the same proportion), the
probability of success increases, which is in agreement with
the notion that larger populations have a better chance of
obtaining high quality solutions in a selecto-recombinative
GA.

The analogy between the gambler’s ruin problem and the
convergence behavior of a GA should be clear now. The
probability p of making a decision in the right direction is
simply the probability of deciding well, given by Equation 2,
and the starting position x0 = n/2k corresponds to the ini-
tial supply of BBs in a randomly initialized population.

By equating the probability of success to 1−α (where α is
the failure rate, the allowed probability that the GA looses
the BB) in Equation 3, and solving for n, Harik et al. were
able to find the population size required to correctly solve
a partition, given the specified failure rate α. The resulting
equation is

n = −2k−1 ln(α)
σbb

p
π(m− 1)

d
, (4)

where the variables k, d, m, and σbb are as discusses in the
previous subsections. Under the assumption that a problem
consists of m independent subfunctions of uniform scale, a
GA with a population sized according to Equation 4 is ex-
pected to correctly solve an average of m(1 − α) subfunc-
tions. Experimental results from the original paper show
that the equation gives a reliable estimate for population
sizing on decomposable problems with uniformly-scaled and
near-uniformly-scaled building blocks.

3. DESIGNING AN IDEALIZED DYNAMIC
POPULATION SIZING ALGORITHM

The gambler’s ruin model gives an accurate estimate for
the minimum population size required to solve additive de-
composable problems of uniform scale with a desired mini-
mum accuracy (resp. maximum error). The resulting pop-
ulation size can then be used by the GA. We note however
that the resulting GA has a static population size, albeit a
properly sized one, and as some researchers have suggested,
a static parameter value, no matter what the value is, is un-
likely to be the very best choice. We note that this argument
is debatable as any reasonable adaptive algorithm is also un-
likely to be optimal since in order to properly adapt, the al-
gorithm has to make an effort to learn a correct adaptation
strategy, and it is well known that any learning algorithm
has a cost.

Philosophical arguments aside, we proceed with a funda-
mental question: Is there a dynamic population sizing strat-

919

egy for additive decomposable problems of uniform scale,
that is able to reach the same solution quality as a GA with
an optimal fixed population size, but do so using fewer fit-
ness function evaluations? If yes, what are the speedups that
can be achieved with such a strategy? These are the ques-
tion that we explore in the rest of this paper. The reason for
choosing this class of problems is because the existing pop-
ulation sizing theory is immediately applicable, and as we
shall see, the theory is helpful in designing an idealized dy-
namic population strategy. A word of caution should be said
though. The resulting strategy assumes knowledge about
the problem, just like the existing population sizing the-
ory also assumes knowledge of the problem, and therefore,
it is not applicable to an arbitrary problem. Nonetheless,
studying idealized dynamic population sizing for this class
of problems is an important topic as it can give insights into
the limits that can be achieved in terms of performance.

An ideal dynamic population size algorithm for this class
of problems should pay close attention to the theory of pop-
ulation sizing. The algorithm should choose, at any given
point in time, its best guess for the adequate population size.
One way of doing this is by paying a close attention to the
factors than influence BB propagation. Our previous dis-
cussion on supply and decision models, and their combined
integration in the gambler’s ruin model, shed some light into
the variables that can be controlled in order to achieve an
idealized strategy. The variables of interest are the building
block supply and the probability of deciding well between a
BB and its closer competitor. These variables are calculated
once and remain static in the gambler’s ruin model. But on
a real GA run, they change.

3.1 Better decisions with less variance
The gambler’s ruin model assumes a constant probability

p of deciding correctly between a BB and its tougher com-
petitor. In a real GA run, this probability is not constant
for two reasons. First, the BB does not always compete
with its closer competitor, even though after a few genera-
tions, most of the competitions will involve the two of them,
and therefore this reason can be safely ignored. Second,
and more important, the fitness variance of the population
changes through time. It is typically large at the beginning
of the run, and decreases as the GA converges. This means
that the probability of deciding well between a BB and its
competitor should be higher later in the run, and that trans-
lates into not needing such a large population size as in the
beginning of the search. An example should clarify this is-
sue. Consider a problem with partitions of size k = 1, and a
competition between a BB and its competitor at a particular
partition of interest,

1*****
0*****

The correct decision between a member of 1***** and a
member of 0***** is, as discussed in section 2.2, blurred by
the contents of the non-fixed positions. Earlier in the run,
the contents of those non-fixed positions are more or less uni-
formly distributed, which means that when we compare two
strings bit by bit, roughly half of the positions should contain
a different bit value. As the search progresses, the contents
of these non-fixed positions start themselves to converge and
become further and further away from being uniformly dis-
tributed. As an extreme case, when all the non-fixed po-

sitions fully converge, the correct decision between the BB
and its competitor (in the first partition of our example) can
be made with absolute certainty.

In the gambler’s ruin model, as well as in the earlier popu-
lation sizing model [8], the probability of deciding well is con-
sidered to be fixed during the entire run, and is calculated as-
suming the contents of the non-fixed positions are uniformly
randomly distributed (i.e., the overall variance coming from
the m − 1 partitions is considered to be (m − 1)σ2

bb). This
is a reasonable assumption to make in the model because
it needs to give a conservative estimate for the population
size. The fact that the variance does change in a real GA run
should however be explored when designing dynamic popu-
lation sizing strategies, and indeed it has been done in the
past [15, 17].

A simple way to have a dynamic population sizing strategy
is to adjust the probability p of deciding well between a
BB and its competitor in the gambler’s ruin model. To do
so, we can calculate p from Equation 1 rather than from
Equation 2, and use for σ2

M the population fitness variance.
This way, the gambler’s ruin model can be used anew in
each generation with a different probability p. Once p is
calculated, the population size for the next generation can
be estimated as

n =
2k ln(α)

ln
“

1−p
p

” , (5)

Equation 5 was also obtained by Harik et al. [9] as an
intermediate step to derive Equation 4. This thought ex-
periment suggests that such a dynamic strategy should be
able to solve the same class of additive decomposable prob-
lems given the same tolerated α failure rate. After all, it is
still obeying the conditions of the model. The result should
be a less conservative estimate for BB success because the
population is adjusted at each generation to the minimum
size required in order to make good decisions between a BB
and its competitors. It remains to see if it does so with less
fitness function evaluations than a GA that has its popula-
tions size statically set according to Equation 4.

3.2 Changes in building block supply
The strategy that was outlined for adapting the popula-

tion size can still be made more tight. Our discussion so far
suggests that we use a different value for p in Equation 5 by
monitoring the fitness variance of the population through
time. The BB supply however is still considered to be static
and fixed to n/2k. But in an actual run, the BB supply
also changes from generation to generation. If we consider
an idealized situation where the algorithm can monitor the
number of BBs in each partition at any given generation,
then we could use that information to use a different value
for x0 as the search progresses. The problem is that as the
search progresses, the partitions cannot be considered in-
dependent with respect to the BB supply (i.e., it does not
make sense to take the average number of BBs per partition
as an overall value for the supply). In reality, we have m
random walks taking place, one for each partition, and in
each partition the particle denoting the current number of
BBs can be at a different position. The strategy that we
follow, is to choose for the building block supply the maxi-
mum between n/2k and the number of BBs present in the
α-percentile worst partition in terms of number of BBs. By
using the α-percentile we are in some sense telling the GA

920

that we want to have a population size large enough to cor-
rectly solve that partition, but do not mind failing to solve
partitions whose supply of BBs is worse than that. Also, the
reason for not letting the supply go below n/2k is because
if the BB supply gets too low, the resulting population size
may become prohibitively large, and we might as well loose
the BB. As we shall see, this heuristic seems to be a reason-
able choice, and still gives a conservative estimate for the
solution quality of the GA. The next section presents some
experiments to validate these ideas.

4. EXPERIMENTS

4.1 Test functions
We performed a set of experiments on two additive decom-

posable problems of uniform scale: the onemax function and
the concatenated trap function with 4 bits per trap. These
two functions were also used in [9]. In onemax the fitness is
given by the number of ones in a binary string X:

fonemax(X) =

`−1X
i=0

xi. (6)

For the concatenated trap function, the fitness is given by
the sum of the fitness contributions of m subfunctions, each
a trap function defined over 4 variables.

fm−trap4(X) =

m−1X
i=0

ftrap4(x4i, x4i+1, x4i+2, x4i+3). (7)

The fitness contribution of each trap function is obtained
by first calculating the number of ones, u, contained in the
substring of 4 variables. Then the fitness is given by

ftrap4(u) =

4, if u = 4
3− u, otherwise

(8)

With onemax we conduct experiments with string lengths
100, 200, 300, 400. With the concatenated trap functions,
we do experiments with m = 20, 40, 60, 80 subfunctions. In
onemax the partitions are of size k = 1, and in the concate-
nated trap function the partitions are of size k = 4.

4.2 GA setup
We use a generational GA with full replacement, binary

tournament selection without replacement, and no muta-
tion, precisely as described in the experiments done in [9].
For the crossover operator, however, we simply shuffle the
population partition by partition. This is the equivalent
of sampling a new population based on the observed fre-
quencies of the various partition configurations, as done in
Estimation of Distribution Algorithms with known factor-
izations [12]. We opt to use this kind of operator in order to
stay closer to the assumptions of the gambler’s ruin model
(i.e, that the partitions are completely decorrelated). This
sampling procedure is the equivalent of performing a kind
of uniform crossover at the partition level, either exchanging
or not exchanging a chunk of k linked bits, but doing so an
infinite number of times per generation.

We also take care in not evaluating the same solution more
than once in an entire run. We achieve this by using an
archive of visited solutions. We first check if it is in the
archive. If yes, we simply retrieve its value. Otherwise, we
evaluate it and keep it in the archive along with its fitness

value for future use. This is a sensible strategy to do in real
GA application because fitness evaluation can be very time
consuming, although that is not the case in our artificial test
functions. The reason for using the archive in our experi-
ments is for not giving any sort of disadvantage to the static
population sized GA, since later in the run, when most of
the population has converged more or less to the same so-
lutions, a GA with a larger population is more likely to be
re-evaluating the same solution over and over.

The only difference in the GAs is in their population siz-
ing strategy. Three GAs are used. One has a static pop-
ulation size set according to Harik et al.’s gambler’s ruin
model (Equation 4), the other two use a dynamic popu-
lation sizing strategy as explained in sections 3.1 and 3.2,
respectively. For the initial population, the GAs with dy-
namic population size also start with the population size
dictated by Equation 4. After estimating the population
size for the next generation, the new population is created
from the current one by applying the GA operators until the
desired population size is reached. The estimated popula-
tion size is always rounded up to the next even integer. A
minimum population size of 4 individuals is enforced at all
times. A failure rate α = 0.05 is used in all experiments,
meaning that all GAs are expected to correctly solve 95% of
the partitions (or subfunctions).

For each problem instance, and for each algorithm, we
perform 100 independent runs. Each run ends when all BB
partitions converge, i.e., for every partition, either the BB
is fully propagated or lost entirely. At the end of each run,
we record the number of fitness function evaluations and
the solution quality in terms of proportion of subfunctions
correctly solved.

4.3 Results

4.3.1 Onemax experiments
Figure 3 presents the results obtained on the onemax func-

tion for different problem sizes. On the left, the number of
fitness function evaluations taken by each algorithm is plot-
ted. On the right, the solution quality obtained is plotted.
(On all plots, the key “dynamic varfit” refers to the GA that
adapts the probability p of deciding well according to the fit-
ness variance of the population as discussed in section 3.1,
and the key “dynamic varfit & supply” refers to the GA that
adapts both the probability p as well as the building block
supply x0, as discussed in section 3.2.)

The static population sized GA is the slowest of the three
but it is able to reach a slightly better solution quality.
There is no significant difference between the two dynamic
approaches, both in terms of fitness evaluations and accu-
racy of the solution. Another important observation is that
both dynamic algorithms are able to reach the desired min-
imum accuracy of 1 − α = 0.95. (Notice that the y-axis in
Figure 3-(b) ranges from 0.95 to 1.) This is expected because
the dynamic strategies were designed taking into account the
gambler’s ruin model with a specified α probability.

Based on these results, one could say that the dynamic
strategies are better than the fixed-sized GA set according to
the population sizing theory. Such a comparison however is
not fair because the static sized GA is able to reach a better
solution quality than the others. This occurs because the
gambler’s ruin model still gives a conservative estimate for
the minimum population size required to solve the problem.

921

(a) fitness evaluations (b) solution quality

Figure 3: Fitness function evaluations and solution quality obtained by the various algorithms on the onemax
problem.

(a) speedup ratio (b) population size through time

Figure 4: The left plot shows the speedup ratio of the dynamic population sizing strategy over the optimal
fixed-sized population given by the bisection method to reach the same solution quality, for various sizes
of the onemax problem. The right plot illustrates the evolution of the population size on a single run of a
400-bit onemax problem.

In order to make a fair comparison we need to find the
minimum fixed-sized population that is able to reach the
same solution quality reached by the dynamic population
sized strategies. We do so for the case of the algorithm that
adapts according to both the variance and supply. In order
to find the minimum population size required to reach the
desired solution quality, the bisection method [14, 13] over
the population size is performed. The results are averaged
over 20 independent bisection runs. In each bisection run,
the minimum population size needed to reach the target
solution, as well as the number of fitness function evaluations
taken to do so, are averaged over 50 independent runs.

The results for the number of fitness function evaluations
needed by the GA with a static population given by the bi-
section method were collected and plotted in Figure 4-(a)
in terms of speedup ratios. The comparison between the
idealized dynamic population sizing strategy and the “opti-

mal” static population sized GA can now be made on more
fair grounds since we are comparing the number of fitness
evaluations needed by both algorithms to reach a similar
solution quality. It turns out that the dynamic strategy is
better than the fixed strategy with an approximate speedup
of 15%.

The plot in Figure 4-(b) shows the evolution of the popula-
tion size on a sample 400-bit onemax run (one of the 100 in-
dependent runs performed), along with the fixed population
size given by the gambler’s ruin model, and the population
size given by the bisection method that is able to reliably
reach the same solution quality as the dynamic strategy.

4.3.2 Concatenated trap experiments
Figures 5 and 6 are the equivalent of Figures 3 and 4,

for the experiments performed with the concatenated trap
functions.

922

(a) fitness evaluations (b) solution quality

Figure 5: Fitness function evaluations and solution quality obtained by the various algorithms on the con-
catenated trap4 function.

(a) speedup ratio (b) population size through time

Figure 6: The left plot shows the speedup ratio of the dynamic population sizing strategy over the optimal
fixed-sized population given by the bisection method to reach the same solution quality, for various sizes of
the concatenated trap4 function. The right plot illustrates the evolution of the population size on a single
run of a concatenated trap4 function with 80 subfunctions (320 bits).

It can be observed that the behavior of the two dynamic
population sizing algorithms differ a little bit from each
other, as opposed to what happened with the onemax func-
tion. In this case, the method that adapts according to the
fitness variance and to the BB supply, seems to be better.
Notice again that all the algorithms solve the problem with
the desired minimum accuracy of 95%. Indeed, they are all
able to solve with an accuracy above 99%. Again, we per-
formed the bisection method in order to make a fair com-
parison between the dynamic strategy (varfit & supply) and
a GA with an optimal fixed-sized population. The speedup
factors are now in the range of 23-35%, a little larger than
the ones obtained with the onemax experiments.

The observed difference between the two adaptive strate-
gies, as well as the increase in speedup relative to the onemax
experiments, can be explained by the fact that dynamically
adjusting the supply, x0, in the case of the trap experiments

is more beneficial. Remember that in the non-dynamic case,
the supply x0 = n/2k is kept fixed. For the onemax exper-
iments, k = 1, and so the supply is half way between the
absorbing barriers of the random walk model. In the trap4
experiments however, the supply (n/16) is much closer to
the failure barrier. Once the GA starts going in the right
direction, the initial supply of n/16 becomes a very conser-
vative estimate, and an algorithm that is able to adjust its
value is likely to obtain more benefits from it, as we indeed
observe.

5. SUMMARY AND CONCLUSIONS
This paper addressed the topic of dynamic population siz-

ing in genetic algorithms. By paying close attention to the
existing theory of population sizing for the class of additive
decomposable problems of uniform scale, we were able to

923

design an idealized dynamic population sizing strategy for
this class of problems.

Several researchers have alluded to the benefits of parame-
ter control in evolutionary algorithms and to the limitations
of EAs that use a static set of parameter values. Although
there is some evidence regarding the benefits of parameter
control, little concrete evidence has been reported in terms of
the population size parameter for classes of problems where
good fixed populations sizes are known to give reliable re-
sults in terms of solution quality. Moreover, most of the ex-
isting literature on self-adjusting population sizing, report
results from algorithms that are not all able to reach the
same solution quality on the given test function set, which
makes the comparison difficult to assess. This paper ap-
proaches the problem from a different angle. An idealized
dynamic population sizing strategy is designed for reaching
a given solution quality. Then we search for an optimally
fixed population size GA that is able to reach the same so-
lution quality as the one reached by the idealized dynamic
strategy, making the comparison more straightforward.

The results presented in this paper do give evidence that
there can be benefits in dynamically adjusting the popula-
tion size, at least for the class of problems tested. More
important, since the dynamic method was designed based
on well grounded population sizing fundamentals, derived
from the theory of GAs for additive decomposable prob-
lems, we should expect the resulting strategy to be rel-
atively close to a lower bound in terms of what can be
achieved, performance-wise, by a self-adjusting population
sizing method for this class of problems.

Finally, the idealized strategy presented in the paper is
not intended to be a dynamic population sizing algorithm
to be used in practice. It was designed and presented only
as an idealized strategy in order to give insights in terms
of what can be achieved by population (re)sizing methods.
The strategy is of course not applicable in practice because
it relies on several assumptions that do not usually hold for
real-world problems, as well as on parameters that are either
unknown or hard to estimate.

Acknowledgments
This work was sponsored by the Portuguese Foundation
for Science and Technology under grant PTDC-EIA-67776-
2006.

6. REFERENCES
[1] J. Arabas, Z. Michalewicz, and J. Mulawka. GAVaPS

– a genetic algorithm with varying population size. In
Proc. of the First IEEE Conf. on Evolutionary
Computation, pages 73–78, Piscataway, NJ, 1994.
IEEE Press.

[2] T. Bäck, A. E. Eiben, and N. A. L. van der Vaart. An
empirical study on GAs without parameters. In
Parallel Problem Solving from Nature, PPSN VI,
LNCS 1917, pages 315–324. Springer, 2000.

[3] J. E. Cook and D. R. Tauritz. An exploration into
dynamic population sizing. In Proceedings of the
Genetic and Evolutionary Computation Conference
GECCO-2010, pages 807–814. ACM, 2010.

[4] A. E. Eiben, E. Marchiori, and V. A. Valko.
Evolutionary algorithms with on-the-fly population
size adjustment. In X. Yao et al., editors, Parallel
Problem Solving from Nature PPSN VIII, LNCS 3242,
pages 41–50. Springer, 2004.

[5] A. E. Eiben, Z. Michalewicz, M. Schoenauer, and J. E.
Smith. Parameter control in evolutionary algorithms.
In F. G. Lobo, C. F. Lima, and Z. Michalewicz,
editors, Parameter Setting in Evolutionary Algorithms,
pages 19–46. Springer, 2007.

[6] W. Feller. An introduction to probability theory and its
applications, volume 1. John Wiley and Sons, New
York, NY, 2nd edition, 1966.

[7] C. Fernandes and A. Rosa. A study on non-random
mating and varying population size in genetic
algorithms using a royal road function. In Proceedings
of the 2001 Congress on Evolutionary Computation
CEC2001, pages 60–66. IEEE Press, 2001.

[8] D. E. Goldberg, K. Deb, and J. H. Clark. Genetic
algorithms, noise, and the sizing of populations.
Complex Systems, 6:333–362, 1992.

[9] G. Harik, E. Cantú-Paz, D. E. Goldberg, and B. L.
Miller. The gambler’s ruin problem, genetic
algorithms, and the sizing of populations.
Evolutionary Computation, 7(3):231–253, 1999.

[10] G. R. Harik and F. G. Lobo. A parameter-less genetic
algorithm. In W. Banzhaf et al., editors, Proceedings
of the Genetic and Evolutionary Computation
Conference GECCO-99, pages 258–265, San Francisco,
CA, 1999. Morgan Kaufmann.

[11] F. G. Lobo and C. F. Lima. Adaptive population
sizing schemes in genetic algorithms. In F. G. Lobo,
C. F. Lima, and Z. Michalewicz, editors, Parameter
Setting in Evolutionary Algorithms, pages 185–204.
Springer, 2007.

[12] H. Mühlenbein and T. Mahning. FDA - A scalable
evolutionary algorithm for the optimization of
additively decomposed functions. Evolutionary
Computation, 7(4):353–376, 1999.

[13] M. Pelikan. Hierarchical Bayesian Optimization
Algorithm: Toward a New Generation of Evolutionary
Algorithms. Springer, 2005.

[14] K. Sastry. Evaluation-relaxation schemes for genetic
and evolutionary algorithms. Master’s thesis,
University of Illinois at Urbana-Champaign, Urbana,
IL, 2001.

[15] R. E. Smith and E. Smuda. Adaptively resizing
populations: Algorithm, analysis, and first results.
Complex Systems, 9:47–72, 1995.

[16] E. Smorodkina and D. R. Tauritz. Greedy population
sizing for evolutionary algorithms. In Proceedings of
the IEEE Congress on Evolutionary Computation,
CEC 2007, pages 2181–2187. IEEE, 2007.

[17] T.-L. Yu, K. Sastry, and D. E. Goldberg. Online
population size adjusting using noise and
substructural measurements. In Proceedings of the
IEEE International Conference on Evolutionary
Computation, pages 2491–2498, 2005.

924

