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ABSTRACT

Genetic algorithm is one of the well-known population based
meta-heuristics. The reasonable performance of the algo-
rithm on a wide variety of problems as well as its simplicity
made this algorithm a first choice in lots of cases. How-
ever, the algorithm has some weaknesses such as the exis-
tence of some parameters that need to be carefully set before
the run. The capability of the parameters to change the
balance between exploration and exploitation make them
crucial. Exploration and exploitation are the bases of ev-
ery evolutionary algorithm. Conducting a balance between
these elements is crucial for the success of any evolution-
ary algorithm. In this research a GA is proposed on which
the crossover and mutation rates are removed. A probabil-
ity vector holds the probability of the alleles for every locus
within the individual. The probability is with regards to the
contribution of the allele on either increasing or decreasing
the fitness of the chromosome. The probability of an al-
lele will increase if the fitness of the chromosome increases
by a change or vise versa. The experiments conducted on
a wide range of multi-modal and epistatic problems show
good performance of the proposed method in comparison to
other algorithms in literature.

Categories and Subject Descriptors

G.2.1 [DISCRETE MATHEMATICS]: Combinatorics—
Combinatorial algorithms; G.1.6 [NUMERICAL ANAL-

YSIS ]: Optimization— Global optimization

General Terms

Algorithms, Design, Experimentation, Performance, Theory
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Genetic Algorithms, Parameter Control, Exploration, Ex-
ploitation, Crossover Rate, Mutation Rate
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1. INTRODUCTION
Evolutionary algorithm (EA) is a sub-group of search meta-

heuristics that generally improves the quality of a set of
candidate solutions iteratively using variation and selection
operators[9, 20, 32]. Parameters play an important role in
EA. In particular, variation operators, parent selection, and
survivor selection are reported as the more crucial compo-
nents of EA [28]. Michalewicz [27] refers to population di-
versity and selective pressure as two important factors in the
evolutionary process of a genetic search. He asserts that it is
important to maintain a balance between these two issues.
Values of parameters could be used to control this balance
as they have effect on both diversity and selection pressure
of the population. It could be concluded that it is the right
balance between the exploration and exploitation that re-
ally matter for a genetic algorithm and not the parameters
per se. However, in traditional EAs this balance could be
conducted using the existing parameters.

This paper focuses on Genetic Algorithm (GA). John Hol-
land introduced GA in early seventies [19]. In GA, generally
a set of parents will be selected from a population of solu-
tions. Through variation operators, normally crossover and
mutation, a set of offspring will be created. The set of off-
spring will replace a set of old individuals in the population.

The motivation for the research in parameter control stems
from the fact that it has been shown that there is no univer-
sal optimal parameter set for GAs [17], in other words, GAs
need to be tuned for each problem independently. Even if a
set of parameter values are optimal in the beginning of the
run, it does not necessarily means that those values remain
optimal during the whole run. In other words, it is essential
for the algorithm to be instantiated with different parameter
values during different stages of the run. Another motiva-
tion is based on the goal of designing black-box optimization
algorithms where the reduction of the number of parameters
is favored [16].

The literature on parameter control could be divided into
two different approaches as follows. The first approach is
known as parameter assignment, on which values for the
parameters will be provided using different methodologies.
Whereas, in the second approach, which will be referred to
as parameter-less, removal of the parameters is of interest.

From a black box point of view, it does not matter if an
algorithm has the automated parameters or does not have
any parameters. What matters is that there should be no
need for tuning any parameter.

A parameter-less GA is proposed where crossover and mu-
tation rates are removed. However, customized versions of
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crossover and mutation operators still exist. An improve-
ment in fitness of a given chromosome would increase the
probability of occurrence of the alleles on the loci that has
been changed and vice versa.
The rest of this paper is organized as follows. First we

briefly look into the background and related works in sec-
tion 2. Then we introduce the proposed method in section
3. How the experiment has been conducted is mentioned in
section 4. Experimental results will be discussed in section
5. Last section, i.e. section 6, provides the conclusion.

2. BACKGROUND
In this section parameter control methods shall be intro-

duced. These could be classified as parameter assignment
approaches and parameter-less approaches. In parameter
assignment approaches the parameters are actually within
the algorithm and different methodologies are used for deter-
mining their values. Whereas in parameter-less approaches
the parameters of the algorithms will be removed and thus
the algorithm has no more parameters to be assigned.

2.1 Parameter assignment approaches
Although this approach could be categorized into more

detailed sub-approaches (for example following the catego-
rization introduced in [9]), here we reviewed a few of them
regardless of their sub-approach.
In a series of parameter control methods referred to as

meta-algorithm, two algorithms will be utilized. The first
algorithm (meta-EA) will be used to tune the parameters of
the second algorithm (EA) that solves the problem [9]. This
way, the meta-algorithms tune the parameters of a given
problem. The meta-EA evaluate different combinations of
the parameters based on their suitability for the given prob-
lem [7]. In a method proposed in [12], a two-level GA is
utilized. In the meta-level, a set of parameters will evolve.
In the other level, referred to as basic-level, the real problem
will operate on the best set of parameter values found by the
meta-level. REVAC is another work proposed in [7] where
the parameters of a given EA will be refined iteratively over
the possible parameter vectors. This method utilizes Esti-
mation of Distribution Algorithm (EDA) [29] for finding the
best parameter set for a given EA. EDA is type of algo-
rithm that is mainly designed for maximizing the entropy in
continuous domains [29].
Deterministic parameter control methods refer to all of the

methods that change the parameters values based on some
deterministic rules [10]. As an example, in Deterministic
GA [30], the mutation rate (pm) will change deterministi-
cally during the course of run.
Lobo [23] in his PhD thesis investigates a parameter as-

signment method referred to as parameter-less GA. The pa-
rameters were adaptively set either automatically (popula-
tion size) or rationally (selection rate and crossover rate) by
the algorithm itself based on theoretical foundations. An
extension of Lobo’s work [22] integrates local search with
the previous work. They have shown that using local search
for exploitation of the search space is beneficial.
An adaptive GA based on fuzzy logic controller was in-

troduced in [25]. Static rule, inference engine and feedback
are used in the proposed methodology. Another work based
on fuzzy logic was proposed in [5]. An intelligent fuzzy con-
troller changes the GA’s parameters through monitoring the
GA’s status. Frequency of best individuals within the pop-

ulation, number of duplicate individuals, and number of ex-
pected optimal values show the status of the GA during the
run. Subsequently, fuzzy rules will be fired according to the
status of the GA, which would in turn change the values of
the parameters.

Adaptive genetic algorithm (AGA) [36] adaptively controls
both mutation and crossover rates. The adapted rates get
adjusted for every individual based on its fitness and cur-
rent state of the population convergence. The crossover and
mutation rates are defined as,

pc =

{

k1(fmax − f ′)/(fmax − f̄) if f ′ ≥ f̄
k3 otherwise

and

pm =

{

k2(fmax − f)/(fmax − f̄) if f ≥ f̄
k4 otherwise

where k1, k2, k3, k4 ≤ 1.0 are constants, f is fitness of the
individual, fmax is best existing fitness, f ′ is the largest
fitness of the parents that are selected for crossover, and f̄
is the average fitness of the population.

A self-adaptive parameter control method was proposed
in [34]. Mutation and crossover rates in this method have
been controlled using a self-adaptive method. Each indi-
vidual has a mutation rate in itself and the global mutation
rate will be calculated based on the individual mutation rate
and the global value. In another work based on a proba-
bilistic rule-based adaptive methodology [18], the mutation
and crossover rates get adapted during the run. Different
subpopulation use different parameter rates in this method.
The rates of the parameters will be based on the rates of the
parameters on the best performing sub-population.

Eiben [8] introduced Hybrid Self-adaptive GA (HSGA).
In the proposed method an extra gene is added to the end
of normal chromosome, representing the size of tournament.
The crossover operator applied on the whole chromosome,
including the added gene. However, the mutation operator
has been restricted to the normal chromosome and a special
mutation has been designed for the extended part. The au-
thor tried to bias the adaptation towards a predefined heuris-
tic, where the less fit individuals get less selection pressure
while fitter individuals get higher selection pressure.

In a self-adaptive method (SAGA) [3], the mutation rate is
adapted. Every individual is extended with an extra bit (µ)
holding the mutation rate. Mutating this extended bit will
be done using,

µ́ =

(

1 +
1− µ

µ
exp(−γ ·N(0, 1))

)

−1

.

Where γ is a constant value, and N(0, 1) is a normal dis-
tributed number with mean 0.0 and standard deviation 1.

2.2 Parameter-less approaches
This approach, covers all of those methods where even one

parameter is reduced from the algorithm. Ideally, all of the
parameters should be removed in order to be able to refer
to an algorithm as parameter-less. It is worthy noting that
there are approaches that remove some of the parameters
from the algorithms while introduce some other new ones.

Generally, in parameter-less GAs, the population and cross-
over operators are replaced with probabilistic model repre-
sentation and generation models [4, 14, 24, 26, 31]. GA with
variable population size (GAVaPS) [1] could be categorized
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as a parameter-less method. In this method, the population
size is eliminated from the algorithm with the introduction
of age and maximum life time to each individual. Age of
the individuals will be increased by one in each generation
and the individuals that reached the maximum life time will
be removed from the population. The Adaptive Population
Size GA (APGA) is another variation of GAVaPS [2]. Here,
a steady-state GA is used but the age of the best individuals
will remain unchanged.
Compact GA (cGA) was proposed as a variation of GA

where population is represented as a probability distribution
over the set of solutions [15]. It processes each gene indepen-
dently while it tries to create the same distribution like the
previous population. However, cGA considers population
size as a parameter.
In another work presented in [38] two mutation probabil-

ities, p0m, p1m, are defined for each locus. The appropriate
mutation rate will be applied for each locus based on the al-
lele . In each generation, the mutation probability for each
locus will be updated based on correlated statistic of the
population with respect to the relative success of individual
with specific allele and allele distribution of the locus. A
convergence mechanism is also utilized in this methodology
by which a set of randomly selected individuals get comple-
mented when the population converged to a certain degree.
The results have shown that the methodology has improved
GA’s performance.
SSRGA [37] is a canonical GA on which crossover oper-

ator is removed from the algorithm. In this method both
exploration and exploitation is carried out through a cus-
tomized mutation operator. The main steps of this method
is defined as follows:

• partitioning the population into a set of suitable sub-
populations.

• Computing site-specific rate vector for each of the par-
titions.

• Mutate each subpopulation using the corresponding
site-specific vector.

The partitioning supposed to divide the population based
on basins of attraction. The authors asserts that this site
specific rates will be more accurate especially in the cases
where the problem is multi-modal. This algorithm contin-
ues by computing a probability for all the loci of an indi-
vidual. For a given subpopulation the probability of value
a, a ∈ [0, 1] for each loci will be calculated proportional to a
function of the individual fitness,

pij(a) = pmin + (Pmax − pmin)

∑

xǫsi
F (x)δ(xj = a)

∑

xǫsi
F (x)

,

where x is individual, xj is the allele at jth locus, δ(c) re-
turns 1 if condition c is satisfied or otherwise 0 will be re-
turned, and F (x) = e5f(x). In the last step, the respective
mutation operator for each partition will be applied to each
subpopulation.

3. PROPOSED METHOD
As mentioned earlier, the main idea is to credit the alleles

which caused fitness improvement. In other words, for every

loci, the allele which played more role in improving the fit-
ness will be more probable to occur. For a given individual,

I = {i1, i2, . . . , il−1, il}, i ∈ {0, 1}

with length l , there will be a probability vector (Z),

Z = {z1, z2, . . . , zl−1, zl}, z ∈ [0, 1]

where zi is the occurrence probability value in loci ii. Unlike
the conventional GA, here there will be no rates for recom-
bination and mutation. Mutation operator simply create an
individual based on the probability vector. Mutating the
individuals based on the probability vector would result in
exploitation of the search space. This is because the proba-
bility vector is biased towards creation of the solutions met
so far. Whereas, crossover operator works in two-fold by
exploring and exploiting the the search space.

As mentioned earlier, Z vector contains the occurrence
probability of alleles on each locus of the chromosome based
on the previous solutions. Creation of individuals according
to Z would result in chromosomes in the adjacency of each
other. In other words, reproduction of chromosomes in this
manner would exploit the search space.

The more the recreation of new solutions be with regards
to Z vector, the more the search space will get exploited.
Therefore, exploration of the search space could be achieved,
by a lesser regards to Z vector. The crossover operator
(see Algorithm 1) explore the search space in two differ-
ent ways. Firstly, in reproduction of off-springs exploration
occurs implicitly (lines 12-16 in Algorithm 1). The genes
will be exchanged according to Z vector. This will results
in an offspring highly according to Z vector while the other
offspring is not in accordance with the Z vector. The sec-
ond way of exploration, lines 4-10 in Algorithm 1, happens
explicitly as part of crossover. In the designed crossover
operator, the values for a random sequence of the locus,
Ii...Ij , j > i, i > 0, j < l, will be chosen randomly with a
random distance with Zi for each locus.

Algorithm 1 Pseudo code for crossover operator

1: {inputs to the function are two parent chromosomes
namely Chrom1, Chrom2.}

2: TmpZ ← Z
3: if Rnd() < 0.5 then

4: { RndInt(x) returns a random integer value between
0 and x}

5: start← RndInt( l
2
− 2)

6: end← start+RndInt(l − start)
7: for i = start to end do

8: { Rnd() returns a random number between [0,1)}
9: TmpZ[i] = |Rnd()− Z[i]|
10: end for

11: end if

12: for i = 0 to l do
13: if Rnd() < TmpZ[i] .AND. Chrom1[i]! = Chrom2[i]

then

14: Chrom1[i] = 1
15: Chrom2[i] = 0
16: τ ++
17: end if

18: end for

Recombination and mutation operators changes the alle-
les on different loci of chromosomes. Any change in a given
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chromosome will have an effect on the fitness of the chromo-
some. Depending on the number of changes (τ) that have
been done on a given chromosome, the Z vector will get up-
dated. A credit of ǫ

τ
will be given to each corresponding

loci on Z. The credit could either reduce or increase zi with
regards to the type of change in allele and also the change
in fitness as shown in Table 1.

Table 1: Probability vector updates is based on the

change in fitness prior and after the changes on in-

dividual. Depending on the fitness the probability

vector will get positive or negative credit.

from to
Fitness credit

Gene A Gene B
0 1 improved +
0 1 worsen -
1 0 Improved -
1 0 worsen +

As an example, assume individual I = {1, 1, 0, 0, 1, 0, 0, 1}
with fitness value 4. Let assume this individual changed
to I = {1, 1, 1, 1, 0, 0, 0, 1} with the new fitness 5. Here the
fitness improved after the changes. As three loci are changed
then three loci in the probability vector get updated, each
with 1

3
, assuming ǫ = 1. Therefore, if we assume before the

update Z = {0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5}. Then after
the changes Z = {0.5, 0.5, 0.83, 0.83, 0.83, 0.5, 0.5, 0.5}.

4. EXPERIMENT SETUP
The performance of the proposed method assessed over

multimodal and epistatic problems. However, all of the
benchmarks are under the domain of maximum satisfiabil-
ity (MAX-SAT) problems.
MAX-SAT is a generalized version of satisfiability (SAT)

decision problem that belongs to the family of NP-hard op-
timization problems.
A SAT problem is consisted of,

• A set of m variables.

• A set of literals, where a literal is a variable or its
negation.

• A set of n distinct clauses, each of them combined just
using logical OR(∨).

The problem in SAT is to find if there exists any assignment
for the variables that satisfies the following formula which is
in Conjunctive Normal From (CNF),

C1 ∧ C2 ∧ . . . ∧ Cn.

However, in MAX-SAT the problem is to find an assignment
which maximizes the number of satisfied clauses [6, 11, 13].
The binary nature of MAX-SAT problem makes it very

compatible with GA. However, unlike the nature of the prob-
lem, selection of an efficient fitness function for the problem
is crucial. A simple fitness function which translate 0 and 1
values to True and False respectively would be inefficient.
Such a function is not capable of evaluating of the interme-
diate solutions as it would assign 0 to almost all of the points
in the search space.
A better fitness function is suggested in [35] on which a

fitness could be assigned to individual subexpressions in the

original expression. The combination of fitness values then
would result in a final fitness for the expression.

Another similar fitness function is proposed by Smith [33]
where 0 represents a false and 1 represents true fitness of
every subexpression ei of an expression e will be calculated
as follows:

f(ē) = 1− f(e),

f(e1 ∨ e2 ∨ . . . ∨ en) = Max(f(e1), f(e2), . . . , f(en)),

f(e1 ∧ e2 ∧ . . . ∧ en) = Ave(f(e1), f(e2), . . . , f(en)),

where Ave returns the average value of its parameters, and
Max returns the parameter with maximum value.

Two classes of benchmarks are used in the comparisons,
including multi-modal boolean satisfiability and epistatic
problems. These problems will be introduced in the fol-
lowing subsections. Degree of multi-modality in a problems
could be defined as a measure of difficulty of the problem.
In these problems, the number of false peaks grows with the
number of modality. In the other side, the degree of epistasis
of a problem expresses the relationship between the genes in
a chromosome. Dependency of a large number of alleles at
other loci is a sign of high epistasis in a system [35]. The
degree of epistasis has direct relation with difficulty level of
the problem.

The compared algorithms are canonical GA with a ran-
domly chosen constant mutation rate, SSRGA [37], a self-
adaptive (SAGA) [3] and an adaptive (AGA) [36] parameter
control methods.

4.1 Multi-modal problems
The multi-modal problems used for the course of experi-

ment are created using a mechanism proposed by Spears [35].
A unimodal problem of length 30 could be created as fol-

lows,

1Peak ≡ (x1 ∧ x2 ∧ . . . ∧ x30).

Using the above unimodal problem, a bimodal problem
will be,

2Peak ≡ 1Peak ∨ (x1 ∧ x̄1 ∧ x̄2 ∧ . . . ∧ x̄30).

As it could be inferred from the definition of bimodal prob-
lem, the extended sub-expression could not get fully satisfied
because of the existence of x1∧x̄1. However, here the second
expression could get a value very near to the value of global
optima, which is 1. This second peak is usually referred
to as “false peak”. Obviously the probability of finding the
global optima will decrease with the growth of the number of
false peaks. For the course of this experiments, multi-modal
problems up to 5 peaks have been used. The higher degrees
of multi modality used in the experiments are defined as,

3Peak ≡ 2Peak ∨ (x1 ∧ x̄1 ∧ x̄2 ∧ . . . ∧ x̄15 ∧ x16 ∧ . . . ∧ x30)

4Peak ≡ 3Peak ∨ (x1 ∧ x̄1 ∧ x2 ∧ . . . ∧ x15 ∧ x̄16 ∧ . . . ∧ x̄30)

5Peak ≡ 3Peak∨ (x1 ∧ x̄1 ∧x2 ∧ x̄3 ∧x4 ∧ x̄5 . . .∧ x̄29 ∧x30)

4.2 Epistatic problems
Spears [35] has also introduced a method for the creation

of epistatic problems using boolean expressions. His pro-
posed method has the capability for increasing the level of
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Figure 1: An example of a Hamiltonian circuit with

five nodes. The edges are connected following the

proposed method by Spears for creating epistasis

problems.

epistasis, thus making different epistasis problems with dif-
ferent levels of difficulty. The Spears method is based on
conversion of the Hamiltonian Circuit (HC) problems into
the SAT expressions. In a directed HC problem, the aim is
to find if a given graph has a hamiltonian cycle. By defini-
tions, a hamiltonian cycle is a cycle in a graph that meet all
of the vertex exactly once. The definition of HC constraint
the nodes of feasible solutions to have only one input edge
and one output edge. Having this constraint, any tour that
does not satisfies this constraint cannot be a solution [21].
Using conjunction of terms that indicate the valid edge com-
binations for each node, the equivalent satisfiability boolean
expression for this constraint could be constructed.
Figure 1 depicts a hamiltonian circuit that uses Spears

method for creation of epistatic problems. Spears defined
a graph G = (V,E) with N nodes where nodes are labeled
using sequential integers from 1 to N . The connection of
the nodes by the edges will be as follows.

• The first node has output edges to all other nodes ex-
cept the last one.

• All of the next N − 2 nodes have edges to all other
nodes with the higher label.

• The last node has a direct edge back to the first node.

As such, the only valid Hamiltonian tour is the tour that the
nodes are labeled in the increasing order, and the last node
finishes the cycle. By increasing N , the level of epistasis and
thus the difficulty of the problem increases [21].
As for an example, the boolean expression for Figure 1

with regards to the Spears method will be as follow:

12 ∧ 23 ∧ 34 ∧ 45 ∧ 51∧
(12 ∧ 1̄3 ∧ 1̄4) ∨ (1̄2 ∧ 13 ∧ 1̄4) ∨ (1̄2 ∧ 1̄3 ∧ 14)∧
(23 ∧ 2̄4 ∧ 2̄5) ∨ (2̄3 ∧ 24 ∧ 2̄5) ∨ (2̄3 ∧ 2̄4 ∧ 25)∧

(34 ∧ 3̄5) ∨ (3̄4 ∧ 35)∧
(23 ∧ 1̄3) ∨ (2̄3 ∧ 13)∧

(14 ∧ 2̄4 ∧ 3̄4) ∨ (1̄4 ∧ 24 ∧ 3̄4) ∨ (1̄4 ∧ 2̄4 ∧ 34)∧
(25 ∧ 3̄5 ∧ 4̄5) ∨ (2̄5 ∧ 35 ∧ 4̄5) ∨ (2̄5 ∧ 3̄5 ∧ 45)

The hamiltonian circuit in Figure 1 has 5 nodes, with 15

, i.e. N(N−1)
2

, edges and 21 clauses. Following this, the

resultant boolean expression should be converted into CNF
format and thus be used as MAX-SAT problem.

A simple GA is used for the course of the experiments
where its attributes are shown in Table 2.

Table 2: Simple GA’s attributes

Population model steady state
Parent selection Tournament selection
Survival selection delete oldest
Selection pressure 8
Population size 50
Max. no. of generations 500 (epistatic), 100(multimodal)

The algorithms performance is measured over 50 indepen-
dent runs for each of the problems. The average (avg.) and
standard deviation (stdev.) of the best results are derived for
all of the experiments. Highest average is highlighted with
bold font while the lowest standard deviation is underlined
for each case.

5. RESULTS AND DISCUSSION
The results of the conducted experiments on multi-modal

problems are listed in Table 3. Table 4 shows the results of
epistatic problem.

In case of the multi-modal problems, the performance of
the proposed method in all of the cases shown to be better
with the compared methods. However, in terms of the ro-
bustness, the proposed method is comparable to the other
methods.Only in one case, p = 1, the proposed method has
a better standard deviation in comparison to the other com-
pared methods.

As for the epistasis problems, the performance is better
than all the compared algorithms, with exception when N =
6. The standard deviations have been better in three cases
and comparable in the other cases.

In order to visualize the performance behavior of the pro-
posed method, we have derived the differences between the
proposed method’s results and results of all other methods.
Figure 2 and Figure 3 visualizes the differences for multi-
modal and epistatic problems respectively.

According to Figure 3, the performance of the proposed
method is better in the mid-range valued epistasis degrees.
The differences narrows as the level of epistasis increases.
However, in all of the cases the performance of the proposed
method is shown to be better.

In the multi-modal case (see Figure 2), the performance of
the algorithm is better in all of the cases. The gap between
the proposed method and the compared methods seems to
be constant in all of the cases. SSGA [37] has the smallest
gap with the proposed method.

We have done some experiments by running mutations
and crossover alone. The results have shown to be not as
good as those that are reported when both of them are in
use.

Considering different probability vectors for different parts
of the search space could be studied in future works. The
idea seems to be very prominent specially in the case of
multi-modal problems where there are several peaks within
the search space.
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Table 3: Comparison of the proposed method with benchmark methods on literature on multi-modal MAX-

SAT problem with different levels of multi-modality.

Modality p = 1 p = 2 p = 3 p = 4 p = 5
Proposed avg. 0.999 0.976 0.970 0.964 0.961

Method stdev. 0.007 0.023 0.025 0.029 0.026

SSRGA
avg. 0.952 0.945 0.931 0.940 0.923
stdev. 0.020 0.022 0.025 0.025 0.028

AGA
avg. 0.874 0.870 0.866 0.868 0.876
stdev. 0.022 0.029 0.026 0.022 0.025

SAGA
avg. 0.827 0.842 0.840 0.853 0.846
stdev. 0.029 0.029 0.022 0.027 0.024

CGA
avg. 0.834 0.843 0.848 0.850 0.842
stdev. 0.029 0.029 0.022 0.027 0.024

Table 4: Comparison of the proposed method with benchmark methods of literature on epistatic problem

with different levels of epistasis.

Degree of epistasis N=6 N=11 N=16 N=21 N=26 N=31 N=36 N=41
Proposed Method avg. 0.991 0.990 0.994 0.967 0.909 0.869 0.842 0.827

stdev. 0.019 0.004 0.001 0.005 0.007 0.007 0.006 0.006
SSRGA avg. 1 0.968 0.931 0.893 0.866 0.848 0.833 0.823

stdev. 0 0.004 0.006 0.006 0.005 0.007 0.004 0.005
AGA avg. 1 0.96 0.922 0.888 0.865 0.847 0.836 0.826

stdev. 0 0.007 0.008 0.007 0.006 0.005 0.004 0.004
SAGA avg. 0.980 0.943 0.904 0.873 0.853 0.837 0.827 0.817

stdev. 0.019 0.007 0.01 0.006 0.007 0.005 0.004 0.004
CGA avg. 0.989 0.948 0.906 0.876 0.856 0.840 0.827 0.819

stdev. 0.017 0.011 0.009 0.007 0.008 0.005 0.005 0.004
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Figure 2: Difference of the results of the proposed

method with compared methods over multi-modal

problems.
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Figure 3: Difference of the results of the proposed

method with compared methods over epistasis prob-

lems.

6. CONCLUSIONS
A new GA proposed on which the mixing and mutating

of the individuals was done with regard to a probability for
each loci. A probability vector holds the probability of oc-
currence for each allele on each loci. The probability on each
loci changes with regards to the effect of that loci on the per-
formance of a given individual. The probability of an allele
is related to the changes in fitness.Experiments conducted
on a wide range of MAX-SAT problems with different levels
of multi-modality and epistatsis have shown that the per-
formance of the proposed algorithm is comparable to other
adaptive and self-adaptive methods. The proposed method
is found to be superior over the compared algorithms.
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