
On the Log-Normal Self-Adaptation of the Mutation Rate in
Binary Search Spaces

[Genetic Algorithms]

Johannes Kruisselbrink
Natural Computing Group
LIACS, Leiden University
Niels Bohrweg 1, Leiden

The Netherlands
jkruisse@liacs.nl

Rui Li
Natural Computing Group
LIACS, Leiden University
Niels Bohrweg 1, Leiden

The Netherlands
ruili@liacs.nl

Edgar Reehuis∗
Natural Computing Group
LIACS, Leiden University
Niels Bohrweg 1, Leiden

The Netherlands
ereehuis@liacs.nl

Jeroen Eggermont
Division of Image Processing

Department of Radiology
C2S, LUMC

Albinusdreef 2, Leiden
The Netherlands

j.eggermont@lumc.nl

Thomas Bäck
Natural Computing Group
LIACS, Leiden University
Niels Bohrweg 1, Leiden

The Netherlands
baeck@liacs.nl

ABSTRACT
This paper discusses the adoption of self-adaptation for Evo-
lutionary Algorithms operating in binary spaces using a di-
rect encoding of the mutation rate. In particular, it focuses
on the log-normal update rule for adapting the mutation
rate, incorporated in a (µ, λ)-strategy. Although it is well
known that this update rule requires a lower boundary of
the mutation rate to prevent it from collapsing to zero, the
naive approach of enforcing a fixed lower boundary has un-
desirable side-effects. This paper studies the dynamics of
the fixed lower boundary approach in depth and proposes
a simple alternative for dealing with the lower boundary is-
sue.

Categories and Subject Descriptors
I.2.8 [Computing Methodologies]: ARTIFICIAL INTEL-
LIGENCE—Problem Solving, Control Methods, and Search

General Terms
Algorithms, Experimentation

Keywords
Genetic algorithms, adaptation/self-adaptation, empirical
study

∗Honda Research Institute Europe GmbH, OF/M, Germany

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’11, July 12–16, 2011, Dublin, Ireland.
Copyright 2011 ACM 978-1-4503-0557-0/11/07 ...$10.00.

1. INTRODUCTION
Evolutionary Algorithms (EAs) working on binary search

spaces commonly feature a probabilistic bit-flip scheme as
mutation operator, where each bit is mutated with a cer-
tain probability pm. Given an individual of the form ~a =
(x1, . . . , xn) ∈ {0, 1}n, the mutation operator is

x′i =

{
1− xi with probability pm

xi otherwise
. (1)

Choosing an appropriate mutation rate is known to have an
important impact on the performance of an EA, but can be
a tedious matter. This is because the optimal mutation rate
is not constant over the course of the optimization and also
varies between different problems being optimized. To avoid
inappropriate settings of the mutation rate, which can lead
to poor performance of an EA, the tuning of such control
strategy parameters could also be done online and in an au-
tomated fashion. One way of doing so is to leave the tuning
of such parameters to the process of evolution itself by em-
bedding them into an individual’s genome. This approach
is known as self-adaptation and has shown to be beneficial
for various EA variants [13].

Several approaches have been suggested to apply the con-
cept of self-adaptation in binary spaces (amongst others,
[2, 14, 5, 6, 17, 16, 15]). Although these studies report
on self-adapting algorithms outperforming fixed mutation
rate schemes, as of today the concept does not have a sta-
ble foothold in the Genetic Algorithms (GAs) community.
Possible reasons for this are that including self-adaptation
is more complicated compared to fixed mutation rate ap-
proaches, the gain is often marginal, and the resulting dy-
namics is not fully understood. This paper will focus on the
latter, aiming to contribute to the understanding of the dy-
namics resulting from the incorporation of self-adaptation.

This paper studies the self-adaptation scheme as proposed
in [14, 5, 6]. In this scheme, individuals are encoded as ~a =

893

(x1, . . . , xn, pm) ∈ {0, 1}n×]0, 1[tuples, where x1, . . . , xn are
the object variables of the individual and pm is the mutation
rate, included as an endogenous, directly encoded strategy
parameter (cf. in indirect encoding, as proposed in [1] and
used in [16], pm is represented by a bitstring). The operator
used for mutating the individuals is

p′m =
1

1 + 1−pm
pm
· exp (γ · N (0, 1))

, (2)

x′i =

{
1− xi with probability p′m
xi otherwise

, (3)

that is, bit-flip mutation is applied to each bit with the mu-
tated probability p′m. This scheme resembles the mutation
scheme used in Evolution Strategies (ESs) (i.e., the single
stepsize case [4]), but applies a log-normal update rule to
pm, see (2), keeping pm in the interval]0, 1[. For γ an em-
pirically determined value of 0.22 is used [14].

Typical behavior of this self-adaptation scheme, as ob-
served by, amongst others, Smith [16], is that when apply-
ing it in this pure form, the population is likely to converge
to suboptimal solutions, caused by the mutation rates that
prematurely collapse to very small values and thereby effec-
tively yielding no mutation. An important fix included in
[5, 6] is to restrict the value of pm to the interval [1

n
, 1
2
], i.e.,

p′m = min

{
1

2
,max

{
1

n
,

1

1 + 1−pm
pm
· exp (γ · N (0, 1))

}}
.

(4)
We investigate the effect of using this fix, which, as will be
shown, can lead to unintended algorithmic behavior. More-
over, an alternative fix for dealing with the collapsing mu-
tation rates is presented and compared with the other mu-
tation schemes on multiple benchmark functions.

The remainder of this work is structured as follows: Section
2 presents the general algorithmic setup that is considered in
this paper. Section 3 illustrates typical behavior induced by
applying the self-adaptation schemes of (2) and (4). Section
4 studies the log-normal update rule and the effect of the fix
of (4) in more depth. Section 5 presents an alternative to
the fix of (4). Section 6 compares this new fix to the other
mutation schemes on the Counting Ones and Leading Ones
problems. Section 7 discusses implicit elitism that occurs
using a mutation operator based on (1). Section 8 presents
additional experiments on NK landscape problem instances.
Section 9 closes with a discussion and outlook.

2. ALGORITHMIC SETUP
In this study we consider a (µ, λ)-strategy that uses only

mutation. Hence, there is no recombination and there is no
elitism. This is because we are purely interested in the iso-
lated behavior of self-adaptation of the mutation rate. Au-
thors acknowledge that within GAs, generally the crossover
operator takes in a prominent place.

Algorithm 1 shows the general evolution loop that is con-
sidered in this study. It comprises a simple evolution cycle
where in each generation, λ offspring are generated from
the parent, and of those offspring, the best is selected as the
parent for the next generation. As default mutation rate
update methods, we use the following three schemes from
literature:

Algorithm 1 General (µ, λ)-Strategy

t← 0
P (0) ← generate µ individuals ~a1, . . . ,~aµ, randomly
while not terminate do

for i = 1 to λ do
~a′i ← copy a randomly selected parent from P (t)

~a′i ← mutate(~a′i)
fi ← evaluate(~a′i)

end for
P (t+1) ← {~a′1:λ, . . . ,~a′µ:λ}, select µ best from λ total
t← t+ 1

end while

• Fixed: Mutation with a fixed rate of pm = 1
n

;

• SA1: Self-adaptive mutation, were p′m is generated by
applying (2);

• SA2: Self-adaptive mutation with restricted bounds
on p′m, according to (4).

3. TYPICAL BEHAVIOR
We start the empirical study with a brief review of the be-

havior that is observed in using the three mutation schemes
from literature with a (1, 10)-strategy on the classical Count-
ing Ones problem [3] (also known as ONEMAX problem),
which is defined as maximizing

fCO(~x) =

n∑
i=1

xi. (5)

For this problem, comprehensive information on the optimal
mutation rate setting throughout the course of evolution is
available [3].

Running each scheme only once, using the parameter set-
tings listed in Table 1, yields the typical behavior plotted
in Figure 1. With a (1, 10)-strategy on the Counting Ones
problem, it can be seen that there is not much gained by ap-
plying self-adaptation. Although the self-adaptive schemes
are marginally faster in the early stages of the evolutionary
process, both stagnate prematurely and cannot find the op-
timum precisely. Using SA1 indeed shows the mutation rate
collapsing to very small values, in line with earlier findings
of, e.g., [16]. However, when using SA2, the algorithm shows
drops in fitness when getting close to the optimum. Analyz-
ing the mutation rate plot, pm can be seen to start hovering
at a certain level above 1

n
. This paper specifically focuses

on the hovering behavior. Given the observations, one can
surmise the hovering effect to be an undesirable artifact of
the enforced lower bound of pm,min = 1

n
.

Fixed SA1 SA2
n 1,000 1,000 1,000
evaluation budget 50,000 50,000 50,000
pm,init

1
n

0.2 0.2
γ N/A 0.22 0.22
pm,min N/A N/A 1/n
pm,max N/A N/A 1/2

Table 1: Experimental setup.

894

Figure 1: Fitness development (top) and the mu-
tation rate development (bottom) for a single run
per scheme, using a (1,10)-strategy on the Count-
ing Ones problem.

4. THE MUTATION RATE UPDATE RULE
In this section we take a closer look at the log-normal

update rule for the mutation rate pm, given in (2). The
main question is: What is the magnitude of the difference
in the mutation rate before and after adaptation (i.e., the
difference between pm and p′m) as it approaches the lower
boundary of 1

n
? This variance may provide insight in the

magnitude of the hovering effect.

According to [14, 6], the update rule induces p′m to be drawn
from a logistic normal distribution with pdf

pdfp′m(x) =
1√

2πγx(1− x)
exp

−
(

ln x
1−x − ln pm

1−pm

)2
2γ2

 .

(6)
One of the properties of the update rule is that the effective
change of pm after repeatedly updating it should be zero,
which is enforced by construction, making the median of
this distribution equal to pm.

In order to gain insight into the behavior of E[pm], we set
up the following experiment:

• Taking n = 1000 and γ = 0.22, we generate 106 mu-
tated values p′m for each pm ∈ { 1

n
, . . . , n−1

n
} using (2),

i.e., each p′m value is the outcome of directly mutating
one out of the n− 1 pm values;

• The median and mean of p′m minus pm, and variance of
p′m are computed for each pm value; these are displayed
in Figure 2.

What can be observed is that the mutation operator work-
ing on pm indeed has a median equal to zero. The mean,
however, has a clear bias, which varies with the value of pm.
Interestingly, the bias has the shape of a sine function. The
variance of the distribution has a typical shape as well, being
relatively high at pm = 0.5 and approaching zero for pm → 0
and pm → 1. When zooming in on the variance, we find a
value of Var[p′m|pm = 1

1000
] ≈ 5.2055 · 10−8, corresponding

to a standard deviation of 2.2765 · 10−4.
Repeating the same experiment, but now incorporating

the strict lower bound of 1
n

on pm using (4) and zooming in

on the values pm ∈ { 10
104

, . . . , 50
104
} yields the same picture

for the median, that is, it is not affected by the lower bound
(see Figure 3). The mean on the other hand is affected,
meaning that the expected value of p′m will be greater than
pm, and that this effect will be stronger near pm = 1

n
.

5. A SIMPLE ALTERNATIVE
Although the SA2 method seems to work well, the inabil-

ity of the mutation rate to stabilize at 1
n

can be regarded
as an undesirable artifact. In fact, this is solely due to the
boundaries being set to [1

n
, 1
2
]. In an attempt to remove the

hovering behavior, we propose an alternative for enforcing
the lower boundary and change the mutation scheme into

p′m =
1

1 + 1−pm
pm
· exp (γ · N (0, 1))

, (7)

x′i =

{
1− x with probability p′m + pm,min

x otherwise
, (8)

with pm,min = 1
n

. Hence, we preserve the original mutation
scheme as used in SA1, but the actual mutation now takes
place with an offset of pm,min. The envisioned effect of this
change is that allowing pm to become infinitely small will
enable the actual mutation rate to get infinitely close to
pm = 1

n
, and stabilize in the final stages of the evolution.

We will refer to this alternative scheme as SA3.

6. EXPERIMENTS ON THE COUNTING
ONES AND LEADING ONES PROBLEM

We perform an experimental study comparing the alter-
native self-adaptation mechanism SA3 to Fixed, SA1, and
SA2. For SA3 we use the same settings as for SA2 (see Table
1). Next to the Counting Ones problem, the Leading Ones
problem is considered, recently studied in a similar context
in [7], and given by the maximization of

fLO(~x) =

n∑
i=1

i∏
j=1

xj . (9)

The four mutation schemes are applied in two variants of the
general (µ, λ)-strategy (see Algorithm 1): (1, 10) and (5, 35).

6.1 Results for the (1,10)-Strategy
Figure 4 shows the results of 30 runs of each method incor-

porated in a (1, 10)-strategy. Note that the plots are com-
puted as the median of 30 runs, hence, single run dynamics
are smoothed out. It can be observed that applying SA3

895

Figure 2: Analysis of the distribution of the mu-
tation rate update rule. The median and mean of
p′
m − pm and variance of p′

m are given for pm ∈
{ 1

1000
, . . . , 999

1000
}, using 106 samples per pm value.

leads to self-adaptive mutation rate behavior that is much
more stable than when using its counterparts SA1 and SA2.
On the Counting Ones problem it reaches the optimum and
remains there, obtaining a pm value very close to zero that
yields mutations with a rate close to 1/n. On the Leading
Ones, one can observe that SA3 also has a positive effect
on the stability of the fitness development in the EA, as the
higher mutation rate of the SA2 scheme gives rise to sudden
drastic drops in fitness.

Another interesting observation is that the SA1 approach
behaves differently on the Leading Ones problem than on
the Counting Ones problem. It seems that the mutation
rate remains at a higher rate throughout the course of evo-
lution. From this, one may conclude that the principle of
self-adaptation does work here, but is greatly biased towards
selecting smaller values of pm, because this decreases the
chance of deteriorating an individual’s fitness. That is, not
mutating leads to a higher survival probability than mutat-
ing. SA2 tends to go to zero as well, but the artificial bound

Figure 3: Analysis on the distribution of the muta-
tion rate update rule with a strict lower bound of

1
1000

on p′
m . The mean of p′

m − pm and variance

of p′
m are given for pm ∈ { 10

104 , . . . ,
50
104 }, using 106

samples per pm value.

induces a hovering effect. In SA3, the attraction to zero has
the effective mutation rate converging to the lower boundary
of pm,min = 1/n.

6.2 Results for the (5,35)-Strategy
Repeating the same experiments, but now using a (5, 35)-

strategy yields interesting differences to the (1, 10) results,
see Figure 5. Increasing the population is beneficial for the
SA2 and SA3 methods; especially SA2 shows drastic im-
provement. On the Counting Ones problem, the hovering
effect still occurs but at a reduced rate, and the algorithm
actually manages to converge to the global optimum. On the
Leading Ones problem, SA2 gains in stability and now even
outperforms SA3. With Leading Ones being a harder prob-
lem for which pure hill-climbing is not feasible, SA2 appears
to benefit from the hovering effect through higher effective
mutation rates, leading to more explorative behavior.

7. IMPLICIT ELITISM
Intuitively reasoning, we can state that in using larger

population sizes there is an increased level of implicit elitism.
Given a mutation rate pm, the expected number of offspring
that are not changed by mutation (i.e., the offspring for
which no bit is flipped) can be calculated by

E[number of offspring not changed by mutation]

=

λ∑
i=1

i ·

(
λ

i

)
· ((1− pm)n)i · (1− (1− pm)n)λ−i ,(10)

= λ(1− pm)n. (11)

896

Figure 4: Results of 30 runs with a (1,10)-strategy using the different mutation schemes. Top row: Counting
Ones, bottom row: Leading Ones. Left column: median of the fitness of the best individual in the current
population, right column: median of the mutation rate of the best individual in the current population.

Figure 5: Results of 30 runs with a (5,35)-strategy using the different mutation schemes. Top row: Counting
Ones, bottom row: Leading Ones. Left column: median of the fitness of the best individual in the current
population, right column: median of the mutation rate of the best individual in the current population.

897

From this, it can be seen that increasing the number of off-
spring will lead to a higher probability of generating an off-
spring individual equal to one of the parents after mutation,
simply because of the fact that the actual mutation has not
taken place. Moreover, this number scales proportionally to
the population size and, interestingly, if we take pm = 1/n
we observe that

lim
n→∞

λ

(
1− 1

n

)n
=
λ

e
. (12)

That is, the fraction of individuals in the population that
will not be affected by mutation is 1/e for a mutation rate
of pm = 1/n.

Note that a similar analysis regarding this implicit elitism
effect was made in [8], referring to it as a “hidden plus strat-
egy”.

8. EXPERIMENTS ON NK LANDSCAPES
Besides the experiments on the Counting Ones and Lead-

ing Ones problems, we consider NK landscape (NKL) prob-
lem instances [10, 9]. Next to verifying the results obtained
on the two classical benchmarks, authors aim to extend cur-
rent research to the more general class of discrete nominal
problems in future work. NKLs form a good starting point,
as these can be extended from the traditional binary case
to (optionally mixed variable) instances involving nominal
discrete, continuous, and/or integer variables [11].

NK landscapes were introduced by Kauffman [10] and de-
vised to explore the way that epistasis (i.e., the interplay be-
tween genes) controls the ‘ruggedness’ of an adaptive land-
scape. NKLs are particularly useful for analyzing the dy-
namics of evolutionary search and thus often used as test
problem generators for GAs. By design, NKLs have two fa-
vorable traits: First, the ruggedness and the degree of inter-
action between variables of NKL is easily controlled by two
tunable parameters, the number of genes N and the number
of epistatic links of each gene to other genes K. Second, for
given values of N and K, a large number of NK landscapes
can be created at random.

Traditional NKLs define a family of pseudo-boolean fit-
ness functions F : {0, 1}N → R+ that are generated by a
stochastic algorithm. An NKL has two basic components:
a structure for gene interaction (using an epistasis matrix
E), and a way this structure is used to generate a fitness
function for the possible genotypes. The gene interaction
structure is created as follows: the genotype’s fitness is the
average of N fitness components Fi, with i ∈ {1, . . . , N}.
Each gene’s fitness component Fi is determined by its own
allele xi, and also by K alleles at K (0 ≤ K ≤ N − 1)
epistatic genes distinct from i. The fitness function (which
is to be minimized) reads

fNKL(~x) =
1

N

N∑
i=1

Fi(xi;xi1 , . . . , xiK), ~x ∈ {0, 1}N , (13)

where {i1, . . . , iK} ⊂ {1, . . . , N} − {i}. There are two ways
for choosing K other genes: adjacent neighborhoods, where
the K genes nearest to position i on the vector are chosen;
and random neighborhoods, where these positions are cho-
sen randomly on the vector. In this work we use random
neighborhoods.

The computation of Fi : {0, 1}K → [0, 1), i ∈ {1, . . . , N}
is based on a fitness matrix F . For any i and for each of the
2K+1 bit combinations, a random number is drawn indepen-
dently from a uniform distribution over [0, 1). Accordingly,
for the generation of one (binary) NKL the setup algorithm
has to generate 2K+1N independent random numbers. The
setup algorithm also creates an epistasis matrix E which for
each gene i contains references to its K epistatic genes. Ta-
ble 2 illustrates the fitness matrix and epistasis matrix of a
NKL. A more detailed description of its implementation can
be found in [9].

After having generated the epistasis and fitness matrices,
for any input vector ~x ∈ {0, 1}N we can compute the fitness
in O(KN) computational complexity via

fNKL(~x) =
1

N

N∑
i=1

Fi[2
0xi+ 21xEi[1] + · · ·+ 2KxEi[K]]. (14)

Note that the generation of F has an exponential computa-
tional complexity and space complexity in K, while being
linear in N . The computational complexity for computing
function values is linear in K and N for this implementation.

For the experiments, we generate standard (i.e., binary)
NKLs with K = 2 and K = 5, converting from minimiza-
tion to maximization by using the straightforward trans-
formation f̃NKL(~x) = −fNKL(~x). Each generated problem
instance consists of N = 100 boolean variables.

E1[1] · · · · · · · · · E1[K]

· · · · · · Ei[j] · · · · · ·

EN [1] · · · · · · · · · EN [K]

F1[0] · · · · · · · · · F1[2K+1 − 1]

· · · · · · Fi[j] · · · · · ·

FN [0] · · · · · · · · · FN [2K+1 − 1]

Table 2: Epistasis matrix E (left) and fitness matrix
F (right).

8.1 Results for the (1,10)-Strategy
Figure 6 shows the results of 30 runs of each method us-

ing a (1, 10)-strategy, on different NK landscape problem in-
stances. The most striking result is that here, all SA schemes
are, in the first 100 generations, outperformed by the fixed
mutation rate scheme. Apparently, for NK landscapes prob-
lems, using SA in combination with a relatively high ini-
tial mutation rate does not work too well. On the other
hand, all SA schemes catch up with the fixed mutation rate
scheme after approximately 100 generations. Furthermore,
it can be observed that the SA3 scheme for self-adaptation
shows much more stable mutation rate behavior than SA1
and SA2, and manages to attain better fitness on both in-
stances.

8.2 Results for the (5,35)-Strategy
Figure 7 shows the results of 30 runs of each method using

a (5, 35)-strategy. Like with the (1, 10)-strategy, the SA3
scheme shows stable behavior on both problem instances.
Here again we can observe a very good performance of the
fixed mutation rate scheme in the early stages of the opti-
mization. However, besides that, regarding performance all
schemes perform quite similar. Like in the Counting Ones
and Leading Ones experiments, presumably due to implicit
elitistm, the larger population size improves the fitness de-
velopment of the SA2 scheme.

898

Figure 6: Results of the experiments on different NK landscapes with different mutation schemes, including
SA3, using a (1,10)-strategy. All results are calculated over 30 runs. Top row: K = 2, bottom row: K = 5.
Left column: median of the fitness of the best individual in the current population, right column: median of
the mutation rate of the best individual in the current population.

Figure 7: Results of the experiments on different NK landscapes with different mutation schemes, including
SA3, using a (5,35)-strategy. All results are calculated over 30 runs. Top row: K = 2, bottom row: K = 5.
Left column: median of the fitness of the best individual in the current population, right column: median of
the mutation rate of the best individual in the current population.

899

9. DISCUSSION AND CONCLUSION
We have shown that the boundary fix commonly applied

to self-adaptation in EAs operating on binary search spaces,
given in (4) and in this paper denoted SA2, has some unfore-
seen side effects that especially emerge in non-elitist schemes
with relatively small population sizes. A simple alternative
to the boundary fix was proposed, presented in Section 5
and denoted by SA3, that yields more stable behavior with
respect to fitness development, and also a mutation rate de-
velopment that is more in line with what would be expected
from self-adaptation. It is shown that for smaller population
sizes, this alternative boundary handling method can out-
perform the boundary fix. However, when using larger pop-
ulation sizes, the boundary fix wins from the simple alter-
native. This is probably due to an increased implicit elitism
effect when using larger population sizes, which allows the
EA to benefit from the higher mutation rate that is charac-
teristic to SA2, leading to better explorative behavior.

For future research two questions are of particular interest:
First, it is interesting to see what effect the incorporation
of a crossover mechanism has on the behavior of the self-
adaptation mechanisms discussed in this paper. Secondly,
authors envision to apply the investigated self-adaptation
mechanisms in discrete nominal search spaces. Next to study-
ing the behavior on isolated discrete nominal problems, fu-
ture work involving Mixed-Integer Evolution Strategies [12],
which apply a discrete nominal self-adaptation scheme based
on SA2, seems an interesting course of action. In [11], tradi-
tional binary NK landscapes were extended to a more gen-
eral case in which the fitness value can be computed over
different parameter types, namely continuous, integer, and
discrete nominal.

Acknowledgments
J. Kruisselbrink acknowledges financial support of the Nether-
lands Organization for Scientific Research (NWO); dossier
no. 612.066.618.

10. REFERENCES
[1] T. Bäck. Self-adaptation in genetic algorithms. In

Proceedings of the First European Conference on
Artificial Life, pages 263–271. MIT Press, 1992.

[2] T. Bäck. The Interaction of Mutation Rate, Selection,
and Self-Adaptation Within a Genetic Algorithm. In
R. Männer and B. Manderick, editors, 2nd
International Conference on Parallel Problem Solving
from Nature - PPSN II, pages 87–96. Elsevier, 1992.

[3] T. Bäck. Optimal Mutation Rates in Genetic Search.
In S. Forrest, editor, Fifth International Conference on
Genetic Algorithms - ICGA 5, pages 2–8. Morgan
Kaufmann, 1993.

[4] T. Bäck. Evolutionary Algorithms in Theory and
Practice: Evolution Strategies, Evolutionary
Programming, Genetic Algorithms. Oxford University
Press, Oxford, UK, 1996.

[5] T. Bäck and M. Schütz. Evolution Strategies for
Mixed-Integer Optimization of Optical Multilayer
Systems. In J. McDonnell et al., editor, Evolutionary
Programming IV - Fourth Annual Conference on
Evolutionary Programming - EP’95, pages 33–51. MIT
Press, 1995.

[6] T. Bäck and M. Schütz. Intelligent Mutation Rate
Control in Canonical Genetic Algorithms. In Z. Ras
and M. Michalewicz, editors, 9th International
Symposium on Foundations of Intelligent Systems -
ISMIS’96, volume 1079 of LNCS, pages 158–167.
Springer, 1996.

[7] S. Böttcher, B. Doerr, and F. Neumann. Optimal
Fixed and Adaptive Mutation Rates for the
LeadingOnes Problem. In R. Schaefer et. al., editor,
11th International Conference on Parallel Problem
Solving from Nature - PPSN XI, volume 6238 of
LNCS, pages 1–10. Springer, 2010.

[8] R. Breukelaar and T. Bäck. Self-adaptive Mutation
Rates in Genetic Algorithm for Inverse Design of
Cellular Automata. In Proceedings of the 10th annual
conference on Genetic and evolutionary computation,
GECCO ’08, pages 1101–1102, New York, NY, USA,
2008. ACM.

[9] A. Eiben and J. Smith. Introduction to Evolutionary
Computing. Springer, 2003.

[10] S. Kauffman. The Origins of Order: Self-Organization
and Selection in Evolution. Oxford University Press,
USA, 1993.

[11] R. Li, M. Emmerich, J. Eggermont, E. Bovenkamp,
T. Bäck, J. Dijkstra, and J. Reiber. Mixed-Integer NK
Landscapes. In T. Runarsson et. al., editor, 9th
International Conference on Parallel Problem Solving
from Nature - PPSN IX, volume 4193 of LNCS, pages
42–51. Springer, 2006.

[12] R. Li, M.T.M. Emmerich, J. Eggermont, E.G.P.
Bovenkamp, T. Bäck, J. Dijkstra, and J. Reiber.
Optimizing a Medical Image Analysis System Using
Mixed-Integer Evolution Strategy. In Stefano
Cagnoni, editor, Evolutionary Image Analysis and
Signal Processing, volume 213 of SCI, pages 91–112.
Springer, 2009.

[13] S. Meyer-Nieberg and H.-G. Beyer. Self-adaptation in
evolutionary algorithms. In Parameter Setting in
Evolutionary Algorithms, pages 47–75. 2007.

[14] J. Obalek. Rekombinationsoperatoren für
Evolutionsstrategien. Diploma thesis, University of
Dortmund, Department of Computer Science, 1994.

[15] M. Serpell and J. Smith. Self-Adaptation of Mutation
Operator and Probability for Permutation
Representations in Genetic Algorithms. Evolutionary
Computation, 18(3):491–514, 2010.

[16] J. Smith. Parameter Perturbation Mechanisms in
Binary Coded GAs with Self-Adaptive Mutation. In
K. De Jong, R. Poli, and J. Rowe, editors,
Foundations of Genetic Algorithms 7, pages 329–346.
Morgan Kaufmann, 2003.

[17] D. Thierens. Adaptive Mutation Rate Control
Schemes in Genetic Algorithms. In 2002 IEEE
Congress on Evolutionary Computation, CEC 2002,
pages 980–985. IEEE Press, 2002.

900

