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ABSTRACT
Independence from the coordinate system is one source of
efficiency and robustness for the Covariance Matrix Adapta-
tion Evolution Strategy (CMA-ES). The recently proposed
Adaptive Encoding (AE) procedure generalizes CMA-ES adap-
tive mechanism, and can be used together with any opti-
mization algorithm. Adaptive Encoding gradually builds a
transformation of the coordinate system such that the new
coordinates are as decorrelated as possible with respect to
the objective function. But any optimization algorithm can
then be used together with Adaptive Encoding, and this
paper proposes to use one of the simplest of all, that uses
a dichotomy procedure on each coordinate in turn. The
resulting algorithm, termed Adaptive Coordinate Descent
(ACiD), is analyzed on the Sphere function, and experi-
mentally validated on BBOB testbench where it is shown
to outperform the standard (1 + 1)-CMA-ES, and is found
comparable to other state-of-the-art CMA-ES variants.

Categories and Subject Descriptors
I.2.8 [Computing Methodologies]: Artificial Intelligence
Problem Solving, Control Methods, and Search

General Terms
Algorithms

Keywords
Continuous Optimization, Adaptive Encoding, Line Search,
Adaptive Coordinate Descent, Covariance Matrix Adapta-
tion

1. INTRODUCTION
Separable continuous optimization problems are problems

in which the objective function can be optimized coordinate-
wise. Finding the global optimum of a separable function in
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IRd amounts to perform d simple line searches along each
of the d coordinates. Unfortunately, interesting problems
are usually not separable. Nevertheless, many optimization
methods implicitly assume some form of separability of the
objective function, or at least are much more efficient on sep-
arable functions as they explicitly use the coordinate system
in their search. A well-known exception is the Covariance
Matrix Adaptation Evolution Strategy (CMA-ES) [7], that
performs a rotation-invariant search, and is thus indepen-
dent of any coordinate system. The basic idea of CMA-ES
is to evolve, besides a population of solutions to the opti-
mization problem at hand, a “Covariance Matrix” that can
be viewed as a coordinate transform: in case of a quadratic
objective function, CMA-ES Covariance Matrix has been
empirically demonstrated to gradually converge to the in-
verse Hessian matrix of the objective function. In the coor-
dinate system defined by this inverse Hessian, the quadratic
objective function has become separable, and the optimiza-
tion problem, trivial. Of course, CMA-ES covariance matrix
is only, in the quadratic case, an approximation of the in-
verse Hessian. And interesting problems are not quadratic
indeed (and if they were, they would be easy to solve di-
rectly). Nevertheless, twice continuously differentiable ob-
jective functions can be viewed as close-to-quadratic around
their optima (local or global), and adapting the coordinate
system with respect to the “cumulative path” of the search
makes it easier and faster to find the optimum.

The basic principles of this adaptive coordinate transfor-
mation have been generalized to general search strategies,
under the name of Adaptive Encoding in [4], and experi-
mented with Cauchy mutations in a stochastic search frame-
work. The resulting optimization method is hence heavily
coordinate-dependent, and its results deteriorate when the
degree of non-separability of the objective function increases.
However, this limitation of Cauchy mutation almost vanishes
with Adaptive Encoding, demonstrating the usefulness of a
well-designed adaptive coordinate system.

Putting things together, a natural idea is then to cou-
ple some simple optimization method, i.e., some successive
coordinate-wise line searches, with Adaptive Encoding: co-
ordinate line-searches only work well for separable functions,
but Adaptive Encoding should gradually lead the search to-
ward a transformed coordinate system where the objective
function resembles more a separable function than in the
original system, paving the road for the coordinate line-
search. Though the resulting algorithm has little to do with
Evolutionary Computation, it heavily relies on Adaptive En-
coding, the backbone of CMA-ES algorithms.
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The paper is organized the following way: Section 2 first
introduces the algorithmic background, namely Adaptive
Encoding and some Coordinate Descent Method, before de-
tailing their coupling into the Adaptive Coordinate Descent
algorithm. Section 3 presents the experiments that validate
Adaptive Coordinate Descent first on the Sphere function,
the well-known separable test function, establishing perfor-
mance bounds for the proposed approach. Extensive ex-
periments on the BBOB testbench [5] are then presented
and discussed. Finally, Section 4 concludes the paper and
sketches directions for further researches.

2. ALGORITHMS

2.1 Adaptive Encoding
Though historically introduced as a derandomization of

self-adaptive Evolution Strategies (ES) [7], CMA-ES was
only recently revisited as a hybrid between some ES with
adaptive step-size and some Adaptive Encoding (AE) proce-
dure [4]. AE can be applied to any continuous domain search
algorithm, in order to make it independent from any given
coordinate system. As a result, some search algorithm that
performed rather poorly on non-separable functions can be
tremendously boosted (e.g., by a factor up to 3 orders of
magnitude for Evolution Strategy with Cauchy distribution
[4]).
An iteration of CMA-ES, decomposed into Adaptive En-

coding and Evolution Strategy with step-size adaptation, is
described in Algorithm 1. In standard Evolution Strategy,
λ offspring are sampled (line 1) from a normal distribution
with step-size σ and mean m, where m is the centroid of
best µ individuals of the previous iteration. The λ offspring
are evaluated (line 2 with B = I the identity matrix). De-
pending on the choice of the step-size adaptation rule, the
step-size is then adapted, either by some rule similar to the
one-fifth rule [13, 11] (line 4), or using the Cumulative Step-
size Adaptation [6] (line 6).

Algorithm 1 CMA-ES = Adaptive Encoding + ES

1: xi ← m+ σNi(0, I), for i = 1 . . . λ
2: fi ← f(Bxi), for i = 1 . . . λ
3: if Evolution Strategy (ES) with 1/5th success rule then

4: σ ← σexp
∝( success rate

expected success rate
−1)

5: if Cumulative Step-Size Adaptation ES (CSA-ES) then

6: σ ← σexp
∝(

‖evolution path‖
‖expected evolution path‖

−1)

7: B←AdaptiveEncoding(Bx1, . . . ,Bxµ)

CMA-ES differs from standard ES on lines 2 and 7, that
describe the use of the Adaptive Encoding procedure. CMA-
ES maintains a coordinate system transformation matrix B,
and though it evaluates the individuals in the original coor-
dinate system of IRd (line 2), it generates the offspring, using
some isotropic normal distribution, in some transformed co-
ordinate system (line 1). The d× d matrix B is the matrix
of the transformation. In Algorithm 1, offspring xi are rep-
resented in this transformed coordinate system, and Bxi are
their images in the original coordinate system. Matrix B is
iteratively adapted by the AE procedure using information
from the most successful µ offspring (line 7).
The CMA update rule for B, denoted as AECMA, derived

from the original Covariance Adaptation rule of the (µ, λ)-

CMA-ES [7], is detailed in Algorithm 2. The covariance ma-
trix update is similar to some Principal Component Analysis
(PCA) of the successful search steps. The goal of PCA is
to find an orthogonal transformation to convert the set of
possibly correlated variables into a set of uncorrelated vari-
ables, called principal components, that are the eigenvec-
tors of the covariance matrix of the data. However, while
PCA is usually used to reduce the dimensionality of the data
by taking into account only the main principal components
(corresponding to the largest eigenvalues), CMA retains all
principal components. These components are determined
at each iteration by the eigendecomposition of the current
covariance matrix C (line 15 of Algorithm 2). The transfor-
mation matrix B is the square-root of the covariance matrix
C (line 16). An illustration of Principal Components Anal-
ysis is shown in Fig. 1.(a), where the principal components
are depicted as the dotted lines, such that the largest vari-
ance by any projection of the data comes to lie on the first
principal component, the second largest variance on the sec-
ond, and so on. The idea of such a transformation is to make
the objective function in the transformed space as similar as
possible to the Sphere function, which is known to be simple
for analysis and optimization.

Algorithm 2 Adaptive Encoding

1: Input: x1, . . . , xµ

2: if Initialize then

3: wi ←
1
µ
; cp ←

1√
d
; c1 ←

0.5
d

; cµ ←
0.5
d

4: p← 0
5: C← I ; B← I

6: m←
∑µ

i=1 xiwi

7: return.
8: m− ← m
9: m←

∑µ

i=1 xiwi

10: z0 ←
√
d

‖B−1(m−m−)‖
(m−m−)

11: zi ←
√
d

‖B−1(xi−m−)‖
(xi −m−)

12: p← (1− cp)p+
√

cp(2− cp)z0
13: Cµ ←

∑µ

i=1 wiziz
T
i

14: C← (1− c1 − cµ)C+ c1pp
T + cµCµ

15: B◦DDB◦ ← eigendecomposition(C)
16: B← B◦D

17: Output: B

Fig. 1.(b) illustrates an Adaptive Encoding Update itera-
tion, where only the µ (green/bold) best among λ generated
offspring are used to compute a partial covariance matrix
Cµ (line 13), which replaces a fraction cµ of the current co-
variance matrix C (line 14). Additionally, the path of the
mean of distribution (evolution path p) is recorded in order
to increase the variance of favorable directions (line 12, and
bold arrow in Fig. 1.(b)). A fraction c1 of the current co-
variance matrix C is also replaced by the rank-one matrix
of eigen direction p (line 14). However, the update in line
14 might become instable if cµ + c1 > 1. Hence the param-
eter setting (line 3) needs to be chosen specifically for the
algorithm at hand.

It has been shown in [4] that the AECMA-update applied
to Evolution Strategy with Cauchy distribution improves
the performance on non-separable functions by a factor of
roughly one thousand. These results and the fact that the
Sphere-like transformed space is usually simpler to analyse
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a) Principal Component Analysis

b) Adaptive Encoding Update
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Figure 1: AECMA-like Adaptive Encoding Update (b) mostly based on Principal Component Analysis (a) is used to extend
some Coordinate Descent method (c) to the optimization of non-separable problems (d). See text for details.

than the original one, make it reasonable to explicitly exploit
this property in search.

2.2 Coordinate Descent by Dichotomy
Coordinate Descent (CD) is probably one of the oldest

multidimensional optimization method. It became espe-
cially popular in numerical linear algebra under the name
of Gauss-Seidel method for solving systems of linear equa-
tions. In Evolutionary Computation community, when used
for optimization, this method is called Coordinate Strategy
[14]. CD is based on the idea that an n-dimensional opti-
mization problem can be decomposed into n one-dimensional
sub-problems. Each variable is updated in turn, while all
other variables remain fixed, by solving a one-dimension
optimization sub-problem using any suitable one-dimension
optimization algorithm. Note that CD can be viewed as a
special case of Block Coordinate Descent, that partitions the
coordinates into N blocks: f is iteratively optimized with
respect to one of the coordinate block while other coordi-
nates are fixed [15]. Obviously, it is reasonable to use CD
when dealing with unimodal separable problems.

2.2.1 Adaptive Dichotomy
One of the simplest one-dimension optimization algorithm

to use is a dichotomy method (inspired by the bisection
method to find a zero of a given function). Let us consider
an interval [a, b] where the optimum is known to lie, and as-
sume that the value of the objective function f is known at
the center m = a+b

2
of the interval. Evaluate the two points

X1 = m− (b−a)
4

and X2 = m+ (b−a)
4

, centers of the left and
right parts of [a, b]. If f is unimodal, only three cases are
possible: X1 is better than m and X2, X2 is better than m
and X1, or both X1 and X2 are worse than m (if X1 and X2

are both better than m, then the problem is multimodal).
If X1 is better than m and X2, then the optimum lies

in the interval [a,m): replace b with m and m with X1.
Similarly, if X2 is better than m and X1, replace a with
m and m with X2. Finally, if X1 and X2 are worse than
m, then the optimum lies in the interval (X1, X2): replace a
with X1 and b with X2. In all 3 cases, we end up with a new

interval [a, b] which contains the optimum, whose length is
half that of the original [a, b], and for which we know the
value of f at its center.

When dealing with multi-dimensional problems, dichotomy
steps can be achieved on each coordinate successively: Fig-
ure 1.(c) illustrates the 2D-case and displays an example of
one dichotomy step in each direction.

Another point of view on the dichotomy method is to con-
sider it as a derandomized (1 + 2) − ES algorithm with
step-size adaptation: Assuming the current step-size is σ
and current solution is m, the basic step of the dichotomy
method described above generates 2 offspring X1 and X2 in
a deterministic way. The best of m, X1, and X2 becomes
the next parent, and σ is divided by 2. In the case of one-
dimensional unimodal problems, if the initial interval con-
tains the global optimum, this algorithm will find it. Simi-
larly, in the case of multi-dimensional unimodal problems, if
the initial rectangle contains the global optimum, the algo-
rithm will find it, either by running the dichotomy method
on each coordinate up to a given precision, or by alternating
one step of the dichotomy method in each direction in turn.
Fig. 2.(a) shows the result of such an optimization of the
Sphere function f(x) = ‖x‖2 starting from the initial point
X0 = (−3.1,−4.1). Dichotomy proceeds for 20 iterations
for the first coordinate and then for 20 iterations for the
second coordinate, reaching the target function value 10−10

after 80 evaluations. Exactly the same result is obtained by
cyclically repeating this procedure over each coordinate in
turn, as shown on Fig. 2.(b). The second variant, however,
seems to be more robust if the problem is not perfectly sep-
arable, exploring a larger region of the search space rather
than rapidly reducing one dimension to a single value.

However, if the optimum lies outside the initial interval,
or if the interval is somehow transformed after a rotation of
the coordinate system (e.g., due to Adaptive Encoding, see
Section 2.3), it might be necessary to allow more exploration
in case of successful sampling (one offspring was better than
the parent m). Such dichotomy method with step-size (in-
terval) adaptation will be called Adaptive Dichotomy (AD),
and works as follows: Generate two offspring X1 and X2 as
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(a) CD ksucc=0.5, 80 evaluations. (b) CD ksucc=0.5, 80 evaluations. (c) CD ksucc=1.0, 117 evaluations.

(d) CD ksucc=2.0, 149 evaluations. (e) CD ksucc=2.0, 22231 evaluations. (f) ACiD ksucc=1.2, 325 evaluations.

Figure 2: Coordinate Descent (CD) (a-e) and Adaptive Coordinate Descent (ACiD) (f) on Sphere (a-d) and Rosenbrock
(e,f) functions. The initial point X 0=(-3.1,-4,1) and the target point X target with f(X target) < 10−10. While the CD
with the dichotomy (a,b) performs best on the Sphere function cyclically dividing by two the step size for the corresponding
coordinate (depicted as the line), the increasing of the step size by factor ksucc in the case of successful sampling leads to a
better but still slow convergence on non-separable Rosenbrock function (e). The adaptation of the coordinate system allows
significantly speed up the search (f).

above. If at least one of these two offspring is better than
its parent m, then σ ← σksucc, otherwise σ ← σkunsucc.
In the case of standard dichotomy, ksucc = kunsucc = 0.5,
which is suitable for the unimodal separable problems, when
initial interval contains the optimum. However, whereas
kunsucc = 0.5 seems a good choice for all situations, and
will be used throughout the end of this paper, ksucc > 0.5 is
mandatory in most cases (e.g., even on the Sphere function,
the algorithm will not converge if the initial domain does
not contain the optimum). Fig.2.(c) and (d) illustrate runs
where the optimum does not lie in the initial rectangle. How-
ever, with ksucc = 1.0 and ksucc = 2.0 respectively, the Coor-
dinate Descent with Adaptive Dichotomy converges, though
at the price of additional functions evaluations.
A more formal description of CD with Adaptive Dichotomy
will be given in Section 2.3 (Algorithm 3).

2.2.2 Convergence Rates
Before turning to Adaptive Encoding and non-separable

functions, let us analyze the convergence rate of CD with
Adaptive Dichotomy on the Sphere function, and compare
it that of standard Evolution Strategies, whose behavior is
well studied in this context.
Linear convergence to the optimal point X ∗ takes place if

there is a constant c 6= 0, such that

1

Tk

ln
‖X k −X ∗‖

‖X 0 −X ∗‖
→ c, (1)

where X 0 is the initial point and X k the best point found
after k iterations for a cost of Tk fitness function evaluations.

The empirical convergence rate on the Sphere function of
the proposed CD with ksucc = 0.5, 1.0 and 2.0, as well as
that of two variants of (1+1)-Evolution Strategy, as esti-
mated from the median of 101 independent runs, is shown
in Fig. 3. The algorithm denoted as (1+1)-ES corresponds
to the (1+1)-Evolution Strategy with the initial step-size
σ0 = 1.8, while the search interval is [−3; 3]d. The (1+1)-
ES opt algorithm is the Evolution Strategy with the scale-
invariant step-size: the optimal step-size for ES on Sphere
function is proved to be σ = 1.2

d
‖X −X∗‖, i.e., proportional

to the distance to the optimum.
It is clear that the convergence rate of the CD with (stan-

dard) dichotomy (ksucc = 0.5) is linear with dimension d,
and is equal to − ln (2)/2d = −0.3465/d. The rates for CD
with Adaptive Dichotomy, with ksucc = 1.0 and ksucc = 2.0
are 1.5 and 2.0 times slower, respectively, than with ksucc =
0.5.

The recently proposed technique ofmirrored sampling and
sequential selection for Evolution Strategy [2], can also be
used with the CD method proposed here, because the sam-
pled points are symmetric by definition. We hence propose
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Figure 3: Left: Evolution of distance to the optimum versus number of function evaluations for the (1+1)-ES, (1+1)-ES opt,
CD ksucc=0.5, CD ksucc=1.0, CD ksucc=2.0 and CD ksucc=2.0 ms on f(x) = ‖x‖2 in dimension 10. Right: Convergence rate
c (the lower the better) multiplied by the dimension d for different algorithms depending on the dimension d. The convergence
rates have been estimated for the median of 101 runs.

a modified version of the CD with Adaptive Dichotomy al-
gorithm, called CD ksucc=2.0 ms , in which the second off-
spring is not evaluated if the first one is better than the
parent. This does reduce the number of fitness function
evaluations, though marginally, as can be seen on Fig. 3
(line with label “ms”).
It is important to note that the optimal convergence rate

of (1+1)-ES opt is not achievable in practice, because the
optimal step-size is unknown for a given black-box func-
tion. In the case of CD, parameter ksucc, which controls the
exploration rate, can be used to implicitly tune the target
convergence rate.
A final remark on one-dimensional algorithms: Obviously,

any other one-dimensional optimization method could be
used instead of the Dichotomy method. The Golden Section
method (also called Fibonacci method) is known to have

a better convergence rate c = − ln ( 1+
√

5
2

)/d = −0.4812/d.
However, the Golden Section generates new points with re-
spect to two evaluated points on a line. Therefore, after a
change of coordinate (due to Adaptive Encoding, see next
Section) will require to recompute the fitness of these rotated
point whereas dichotomy only requires the fitness value of
the center of the current domain, that is preserved by the
change of coordinate.

2.3 Adaptive Coordinate Descent
The Adaptive Encoding procedure (Section 2.1) iteratively

learns the coordinate systems in which the objective func-
tion is “as close to separable as possible”. The Coordinate
Descent method (Section 2.2) takes advantage of the sep-
arability of the problem at hand, iteratively optimizing d
independent one-dimensional problems. Combining both
approaches leads to propose Adaptive Coordinate Descent
(ACiD), which benefits from these two ideas, interleaving
CD and AE, learning the same coordinate transform than
the original CMA-ES inspired AE, and performing CD steps
in the transformed space.
Fig. 1.(d) illustrates how AE acts on the iterations of

one-dimensional search steps of Fig. 1.(c). The advantages

of ACiD over CD become obvious on non-separable func-
tions. Fig.2.(e) and (f) show sample runs of CD and ACiD
respectiveley, on Rosenbrock function in 2-D: ACiD (with
ksucc = 2.0) quickly adapts an appropriate coordinate sys-
tem and finds the optimum 70 times faster than CD.

Algorithm 3 ACiD

1: m← xmin
i:d + IUi:d(x

max
i:d − xmin

i:d )
2: fbest ← evaluate(m)
3: σi:d ← (xmax

i:d − xmin
i:d )/4

4: B← I

5: ix ← 0
6: while NOT Stopping Criterion do

7: ix ← ix + 1 mod. d // Cycling over [1, d]
8: x′

1:d ← 0
9: x′

ix ← −σix ; x1 ← m+Bx′ ; f1 ← evaluate(x1)
10: x′

ix ← +σix ; x2 ← m+Bx′ ; f2 ← evaluate(x2)
11: succ← 0
12: if f1 < fbest then

13: fbest ← f1 ; m← x1 ; succ← 1
14: if f2 < fbest then

15: fbest ← f2 ; m← x2 ; succ← 1
16: if succ = 1 then

17: σix ← ksucc · σix

18: else

19: σix ← kunsucc · σix

20: xa
(2ix−1) ← x1 ; fa

(2ix−1) ← f1
21: xa

2ix ← x2 ; fa
2ix ← f2

22: if ix = d then

23: xa ←
{

xa
<fa

i
:i|1 ≤ i ≤ 2d

}

24: B← AdaptiveEncoding(xa
1 , . . . , x

a
µ)

Algorithm 3 describes the proposed ACiD algorithm. Note
that it also describes the non-adaptive CD method by taking
B = I and removing the call to AdaptiveEncoding (line 24).
Algorithm starts by randomly initializing the current parent
m uniformly in the given rectangle domain Πi[x

min
i , xmax

i ],
and evaluating it. Initial step-sizes σi are set to 1

4
of the

889



Figure 4: Left: The performance of ACiD in 10-D: BBOB-SP1 (average number of function evaluations to reach target value
10−8 divided by success rate) versus step-size multiplier ksucc. Right: BBOB-like results for noiseless functions in 20-D:
Empirical Cumulative Distribution Function (ECDF), for ACiD (continuous lines) and (1+1)-CMA-ES (dashed lines), of the
running time (number of function evaluations), normalized by dimension d, needed to reach target precision fopt + 10k (for
k = +1,−1,−4,−8). The vertical black line indicates the maximum number of function evaluations. Light yellow (or gray in
b&w) lines in the background show similar ECDFs for target value 10−8 of all algorithms benchmarked during BBOB 2009.

corresponding interval length. ix is the index of the cur-
rent coordinate, going from 1 to d cyclically (line 7)1. The
two offspring x1 and x2 are generated from m with offset
±σix on coordinate ix (lines 8-10). If one of them has bet-
ter fitness value than m (minimization assumed here), m
and fbest are updated accordingly (line 13 or 15). The ix
step-size σix is then updated multiplicatively depending on
the success indicator (line 17 or 19). The coordinates and
fitness of both offspring are then stored (lines 20 and 21).
At the end of the coordinate loop (i.e., when ix = d, line
23), the Adaptive Encoding procedure is called to update
the transformation matrix B, using information from the
µ best offspring encountered during the d coordinate steps
(line 24).
The proposed algorithm is deterministic, therefore the re-

sult solution for the noiseless functions only depends on the
starting point – and the permutation of variables if any.

3. EXPERIMENTAL VALIDATION
Adaptive Coordinate Descent has been benchmarked on

the noiseless Black-Box Optimization Benchmarking (BBOB)
testbed [5]. Thanks to the publically available results of
many algorithms on the same testbench, and to automatic
comparison procedures provided by this framework, ACiD
results will be compared to those of the state-of-the-art al-
gorithms: BIPOP-CMA-ES, IPOP-CMA-ES, IPOP-aCMA-
ES, (1+1)-CMA-ES and (1 + 2sm)-CMA-ES [1].

3.1 Experimental Settings
In order to validate ACiD with a robust version, a value of

ksucc = 2 will be used as a baseline (while kunsucc = 0.5 as
usual). Indeed, while other values for ksucc ∈ [0.5, 2.0] may
lead to faster convergence, they also sometimes result in pre-
mature convergence on some problems, even on the Sphere

1Random cycles were also tried, but no significant impact
on performance was ever observed, so only the cyclic variant
is shown here for the sake of simplicity.

function, as demonstrated by preliminary experiments. Also
note that the basic rates for the covariance matrix update
are set to the simple values c1 = 0.5

d
and cµ = 0.5

d
rather than

the default ones [4]. However, several other experiments not
presented here due to space limitations, demonstrated that
slightly different variants of ACiD could improve over the
baseline. Hence, a total of 4 variants will be tested in the
following: the baseline described above is denoted ACiD;
ACiD-k succ1.5 is the same variant, but with ksucc = 1.5;
ACiD-ms uses the value ksucc = 2, but implements mir-
rored sampling and sequential selection (Section 2.2.2); fi-
nally, ACiD-a cmu0.8 uses cµ = 0.5

d0.8
rather than the default

value, as some extensive experiments varying all parameters
have shown that cµ is a sensitive parameter indeed, and the
value of 0.5

d0.8
can bring up to 20% improvement on some

problems.
Because ACiD can be considered as (1 + 2) − ES algo-

rithm, a restart procedure is necessary to improve the per-
formance on multi-modal functions. Similarly to the other
(1 + 1)−ES that ACiD will be compared to within BBOB
testbench, the algorithm is restarted if the improvements
of the best solution is smaller than 10−25 during the last
10 + b20d1.5c function evaluations. The maximum number
of function evaluations is 104d, and the initial interval is
[−3, 3]d. All results are statistics over 15 independent runs.

The performances of all algorithms will be measured using
the expected running time (ERT), i.e., the expected num-
ber of function evaluation to reach a target precision for
the first time [5]. The ERT computes to ERT (ftarget) =
RTs + 1−ps

ps
RTus, where the running times RTs and RTus

denote the average number of function evaluations for suc-
cessful and unsuccessful trials respectively, and ps denotes
the fraction of successful trials – a run being successful if it
does reach the target precision.

The MatLab source code of ACiD is available online at
http://sites.google.com/site/acdgecco/.
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Figure 5: Empirical cumulative distribution of the bootstrapped distribution of ERT vs dimension for 50 targets in 10[−8..2]

for all functions and subgroups in 10-D (Left) and 40-D (Right). The best ever line corresponds to the best result obtained
by at least one algorithm from BBOB 2009 for each of the targets.

3.2 Results and Discussion
The first experiment is concerned with the sensitivity

of parameter ksucc. Fig.4.(Left) shows the performance
of ACiD (in terms of BBOB-SP1) depending on ksucc, for
several problems in 10-D. ksucc determines how fast the step-
size will increase for a given coordinate if the last step along
that coordinate was successful. There is a strong link be-
tween ksucc and the covariance matrix learning coefficients
c1 and cµ, since they both determine the comparative impact
of the new steps.
The experiments show that ACiD does not converges for

ksucc ≤ 1 on non-separable problems, whereas on the Sphere
function, ACiD obtains nearly the same results than CD
with 0.5 ≤ ksucc < 1.0. The reason for this is easy to under-
stand on a small example: if kunsucc = 0.5 and ksucc = 1.1,
then in the case of 2 consecutive unsuccessful steps, the step-
size σ is divided by 4; so in order to come back to initial
step size, 13 consecutive successful steps are needed! The
optimal pair ksucc, kunsucc of course depends on the prob-
lem, and on the other parameters of the ACiD, too. But
ksucc = 1

kunsucc
= 2.0 seems to be both robust and simple,

at least for the given problems.
The BBOB noiseless testbed [5] contains separable, ill-

conditioned and multi-modal functions with adequate and
weak global structures, with in total 24 functions. Further-
more, standard BBOB outputs include aggregated Empir-
ical Cumulative Distribution Functions (ECDF) that give
the proportion of runs that reached a given precision for a
given computational effort.
Fig.4.(Right) thus presents the ECDFs of both ACiD and

(1+1)-CMA-ES aggregated over the 24 noiseless benchmark
problems in 20-D. A closer look at the results (details not
shown here) reveals that for 50% of the solved functions,
ACiD is about by 40% faster than (1 + 1)-CMA-ES. ACiD
converges on Attractive Sector function f6, while (1 + 1)-
CMA-ES does not. On Rosenbrock f8 and f9, Ellipsoid f2
and f10 and Discus f11, some ACiD algorithms are up to 2
times faster than (1+1)-CMA. Furthermore, with a budget

of 1000d function evaluations, ACiD performs best in 20-D
among all algorithms that entered BBOB-2009 competition.

Fig. 5 gives a more general view of similar experiments
in 10-D and 40-D – but here experiments with 50 different
target values are aggregated. Overall, the functions are not
easy to solve. Even the best CMA-ES algorithm, BIPOP-
CMA-ES, can solve less than 90% of the problems using
maximum number of function evaluations (the large crosses).
Furthermore, the elitist algorithms (ACiD, (1 + 1)-CMA-
ES, (1 + 2sm)-CMA-ES) are more likely to get stuck in a
local optimum than generational algorithms (BIPOP-CMA-
ES, IPOP-CMA-ES and IPOP-aCMA-ES), especially in the
case where the step-size decreases after each unsuccessful
step. The increase of the population size after restart in the
case of the premature convergence is the main tool, which
leads to a superior performance of the generational CMA-
ES algorithms over the single-population algorithms on the
multi-modal problems. Indeed, only 10 out of 24 problems
are unimodal and this 42% threshold can clearly be seen
on the figure. However, the good news is that all ACiD
algorithms have at least comparable performance with (1 +
1)-CMA-ES and (1 + 2sm)-CMA-ES: they outperform one
another depending on the problem, but the differences are
not significant.

The superiority of the ACiD as an absolutely deterministic
algorithm was not obvious a priori. These experiments con-
firm the hypothesis that the efficiency of CMA-ES is mostly
due to the Adaptive Encoding procedure, and that the sec-
ond component of the algorithm (Evolution Strategies, and
Gaussian mutations) can be replaced without significant (or
even any) loss of performance, at least in the case of the
single-individual algorithms. The IPOP-aCMA-ES is only
algorithm among the ones presented in this paper that uses
all λ offspring in its covariance matrix update. While the
best µ points are used to increase the variance along the
successful directions, the worst λ − µ = µ points are used
with negative sign to exclude irrelevant directions of search.
It is clear that such kind of negative update can be applied
to ACiD too. This will be the subject of further work.

891



4. CONCLUSION AND PERSPECTIVES
The very powerful Covariance Matrix Adaptation part of

the state-of-the-art CMA-ES algorithm [7] has been gen-
eralized into the so-called Adaptive Encoding (AE) [4] that
can be used in conjunction with any optimization algorithm,
gradually learning an optimal coordinate system where the
objective function at hand is (in the best case, and at least
locally) separable. Simple yet powerful algorithms can be
used to optimize separable functions, as for instance the Co-
ordinate Descent (CD), that performs up to 2 times faster
than the (1 + 1)-ES on the Sphere function. The Adap-
tive Coordinate Descent algorithm (ACiD), proposed in this
paper, uses AE coupled with adaptive CD. ACiD has been
shown to be competitive with the CMA-ES algorithms and
even up to 2 times faster than (1 + 1)-CMA-ES on several
functions of the BBOB test suite. There are, however, a
large number of issues that remain open.
Of course, the generational versions of CMA-ES outper-

form the single-individual ones like (1 + 1)-CMA-ES and
ACiD, on most multi-modal problems. But this is essen-
tially due to the restarts with increasing population size.
Some further work will be concerned with designing a gen-
erational extension of ACiD.
Partial experiments indicate that the off-line tuning of

the covariance matrix learning rates c1 and cµ can lead to
30-50% speed-up depending on the problem and dimension:
more detailed experiments must be made in this direction.
Borrowing ideas from [10], an extension of the Adaptive

Encoding procedure to the non-linear case using Kernel Prin-
cipal Component Analysis (KPCA) [12] is envisioned. Such
extension should for instance make it feasible to sample the
non-linear distribution along the parabolic shaped optimal
valley of the Rosenbrock function.
In ACiD, the evolution path somehow approximates the

gradient of the fitness function, and this information is used
in the Adaptive Encoding update. However, the line search
along the gradient could also be performed explicitly, as in
quasi-Newton methods (e.g., BFGS method [3]) and Pattern
Search methods (e.g., Hooke and Jeeves method [8]).
We anticipate successful applications of ACiD algorithm

to constrained problems. For CMA-ES in large dimensions,
resampling the infeasible points does not work, and leads
to a rapid decrease of the step-size that further limits the
exploration. Within ACiD, the resampling on a line is easy,
both in the transformed and in the original spaces.
Another possible extension of ACiD is concerned with sur-

rogate models: the computationally cheap meta-model as-
sisted one-dimensional search becomes favorable even with
some budget of 3 to 5 function evaluations, at least for uni-
modal problems. Furthermore, in order to preserve the in-
variance properties of the ACiD, comparison-based surro-
gate models can be used, as advocated in [9].
Finally, the one-dimensional search procedure used in ACiD

could be replaced by some k-dimensional search (k ≤ d). For
k = 2, the budget is 2k = 4 function evaluations to find the
best of 8 possible states (see Fig.1.(c)). By taking into ac-
count all available information, such as the projection of the
evolution path on 2-D, we could increase the chances to di-
rectly find new best points, for example in the corner. In
this case, by simply increasing both step-sizes, the result-
ing speed-up would increase to 4. We suppose that even
such simple strategies, together with sequential selection,
can make ACiD significantly faster.
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[13] M. Schumer and K. Steiglitz. Adaptive step size
random search. Automatic Control, IEEE

Transactions on, 13:270–276, 1968.

[14] H.-P. P. Schwefel. Evolution and Optimum Seeking.
John Wiley & Sons, Inc., New York, NY, USA, 1993.

[15] P. Tseng. Convergence of Block Coordinate Descent
Method for Nondifferentiable Minimization. J. Optim.

Theory Appl., 109:475–494, 2001.

892




