
Local-Meta-Model CMA-ES for Partially Separable
Functions

Zyed Bouzarkouna
IFP Energies nouvelles
92852 Rueil-Malmaison,

France
zyed.bouzarkouna@ifpen.fr

Anne Auger
INRIA Saclay-Ile-de-France
LRI, Paris-Sud University,

France
anne.auger@inria.fr

Didier Yu Ding
IFP Energies nouvelles
92852 Rueil-Malmaison,

France
didier-yu.ding@ifpen.fr

ABSTRACT
In this paper, we propose a new variant of the covariance ma-
trix adaptation evolution strategy with local meta-models
(lmm-CMA) for optimizing partially separable functions.
We propose to exploit partial separability by building at
each iteration a meta-model for each element function (or
sub-function) using a full quadratic local model. After intro-
ducing the approach we present some first experiments us-
ing element functions with dimensions 2 and 4. Our results
demonstrate that, as expected, exploiting partial separabil-
ity leads to an important speedup compared to the standard
CMA-ES. We show on the tested functions that the speedup
increases with increasing dimensions for a fixed dimension
of the element function. On the standard Rosenbrock func-
tion the maximum speedup of λ is reached in dimension 40
using element functions of dimension 2. We show also that
higher speedups can be achieved by increasing the popula-
tion size. The choice of the number of points used to build
the meta-model is also described and the computational cost
is discussed.

Categories and Subject Descriptors
G.1.6 [Optimization]: Global Optimization; I.2.8 [Problem
Solving, Control Methods, and Search]: Heuristic Meth-
ods

General Terms
Algorithms

Keywords
Optimization, Partial separability, Problem structure, Co-
variance matrix adaptation, Evolution strategy, CMA-ES,
Meta-models

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’11, July 12–16, 2011, Dublin, Ireland.
Copyright 2011 ACM 978-1-4503-0557-0/11/07 ...$10.00.

1. INTRODUCTION
Many real-world engineering problems involve the opti-

mization of expensive objective functions. An introductory
example is the optimization of the production scheme of an
oil and gas field, where the objective function implies a fluid
flow simulation which involves solving a large number of lin-
ear systems of equations and requires an evaluation time of
several minutes to several hours [3].

In this context, it is worth trying to exploit the maximum
information possible on the problem–even if it increases con-
sequently the internal cost of the optimization procedure–in
order to save some expensive function evaluations and reduce
the overall computational time of the optimization proce-
dure. A classical approach to do that is to model the objec-
tive function by a so-called metamodel or surrogate function
and save some evaluations by evaluating some solutions on
the meta-model instead of the true expensive function.

In the realm of continuous optimization, the covariance
matrix adaptation evolution strategy (CMA-ES) [11, 10],
a population based stochastic search algorithm, is recog-
nized as one of the most powerful derivative-free optimiza-
tion methods [9]. The CMA-ES exhibits many invariances, a
desirable property as it implies the generalization of results
from one function to a class of functions and confer thus
robustness and wider applicability of the method. In partic-
ular, CMA-ES is a rank-based search algorithm exploiting
the objective function only through the relative ranking of
solutions within the population. The rank-based property
implies invariance of the algorithm on the class of functions
class f = {g ◦ f, g : R → R strictly increasing} for any
f : Rn → R. Though invariances are desirable, assuming
that the search procedure one is willing to improve–which
will be for us CMA-ES–exploits optimally the maximal in-
formation on the optimization problems while keeping in-
variances implies that we need to exploit more information
on the problem to optimize than the original algorithm in
order to obtain consequent improvements. This thus leads
inevitably to breaking some invariances of the original algo-
rithm.

The CMA-ES algorithm has been combined with local
meta-models that are constructed using points from the
archive of solutions–called the training set–evaluated on the
(expensive) original objective function. The quality of the
meta-models is appraised using an approximate ranking pro-
cedure that determines if the objective function predicted
by the meta-model is good enough or more points should
be evaluated on the original function. The resulting al-
gorithm is called lmm-CMA [12]. The original acceptance

869

criterion for the meta-models proposed for lmm-CMA has
been shown to be too conservative for increasing popula-
tion sizes and modified in order to maintain a reasonable
speed-up when population sizes larger than the default one
are used [2]. In lmm-CMA, the underlying model is locally
quadratic, i.e. the objective function is modeled as a convex-
quadratic function and thus the algorithm exploits that some
functions can be locally approximated by quadratic models.
Consequently, invariance to rank-preserving transformations
is lost [2, 13] explaining on the other hand the improvements
that are observed on functions that can be locally accurately
modeled as quadratic functions.

With the motivation to preserve the invariance to mono-
tonic transformations, rank-based Support Vector Machine
were introduced as surrogate models within CMA-ES in the
ACM-ES algorithm [13]. Speedups with respect to CMA-ES
between 0.5 and 4.5 were observed on seven uni- and mul-
timodal benchmark functions, with dimension in-between 2
and 40. However, unfortunately, the improvements observed
lack yet of a reasonable explanation as the method is not
presented as exploiting further information on the objective
function than the original CMA-ES.

In this paper we investigate the optimization of the class of
partially separable functions where a function of n-variables
is partially separable if it is the sum of a number of so-called
element functions each depending on a smaller number of
variables.

Exploiting partial separability or separability is a com-
mon approach to enhance performances of optimization al-
gorithms, in particular when dealing with large scale opti-
mization. For instance a trust region algorithm for min-
imizing partially separable functions was proposed in [5].
Separability was also exploited within CMA-ES. A method
where the covariance matrix was constrained to be diagonal
has been proposed in [15].

In this paper, we propose to exploit partial separability
within the lmm-CMA by building meta-models as a sum of
meta-models depending on a smaller number of variables.
As we will discuss in the next section, we will assume that
we can exploit the function value of the element functions
and not only the function value of the overall function. This
setting is motivated by the well placement problem in which
the numerical simulations can output the production of each
single well though the objective is to maximize the produc-
tion of all the wells.

This paper is structured as follows. Section 2 defines a
general notion of partial separability. Section 3 recalls the
combination of CMA-ES with meta-models proposed in [2].
In Section 4, we propose a new variant of CMA-ES with
meta-models for partially separable functions. The perfor-
mance of this variant is evaluated in Section 5 on a number
of partially separable test functions. The choice of the num-
ber of points used to build the meta-model is also described
and the computational cost is discussed.

2. PARTIAL SEPARABILITY AND PROB-
LEM MODELING

A function f : Rn → R is partially separable if it can
be written as a sum of sub-functions, also called element
functions, each depending on a fewer number of variables.
Often the particular case where each sub-function depends
on a subset of variables of the original function is defined as

partial separability. For instance the Rosenbrock function
in Table 1 writes

f(x) =
n−1∑

i=1

h(xi, xi+1) , (1)

where x = (xi)1≤i≤n and h(xi, xi+1) = α(x2
i −xi+1)

2+(xi−
1)2 and is thus partially separable with each sub-function
depending on the subset of variables [(xi, xi+1)]i=1,...,n−1.
This particular case of partially separable function is con-
sidered for instance in [1, 5, 7]. A more general definition,
given in [14], considers that each sub-function can depend
on a number of variables that are a linear combination of a
subset of variables.

In this paper we consider a generalization of the previous
definitions allowing non-linear combinations of the subset of
variables. More precisely a function f : Rn → R is said
partially separable if there exists an integer N > 1, a set
of integers (ni)1≤i≤N with ni < n, for all i = 1, . . . , N , a
set of explicit functions (Φi : Rn → Rni)1≤i≤N and a set of
functions (fi : Rni → R)1≤i≤N , such that f can be written

as f(x) =
N∑
i=1

fi(Φ
i(x)). The sub-functions or element func-

tions (fi)1≤i≤N depend on a number ni of parameters called
element variables. The functions Φi will be called mapping
functions. Note that the setting of [14] is recovered by taking
Φi = U i where U i is a linear mapping from Rn to Rni .

For a given partially separable function, there exists “the-
oretically” an infinite number of ways to define the element
functions and mapping functions. However, one has usually
a restricted knowledge about the structure of the problem
that determines the modeling choice. We can argue that we
only know in general that the problem can be decomposed
as a sum of element functions depending on fewer variables,
and that there is thus no reason to encode non-linearity in
the variable dependencies. However, a motivating example
for our general definition is the following. We consider the
problem one has to face in petroleum engineering industry
of finding the optimal well configurations that one is willing
to drill. One has to find optimal locations of several wells to
maximize the profit of the production scheme deployed on
a considered field which is defined as the sum of the prof-
its related to each well drilled. A suitable way to model
the objective function is to suppose that the profit corre-
sponding to a given well depends only on its location and
on the distances of this well to the others. Using the dis-
tances between the wells as an element variable implies using
a nonlinear combination of the parameters of the problem
[4].

In this same well placement problem, the objective func-
tion is computed using a numerical software able to simulate
for a given set of well placements the quantity of oil, water
and gas that can be extracted from each well. Consequently
one has access to the function value of each element func-
tion. In the following we will also assume not only that the
function is partially separable but also that one has access
to the function value of each element function. As argued
above this assumption is reasonable as it models the case for
the well placement problem [4]. History matching is another
problem in petroleum engineering in which this assumption
is reasonable. In history matching problems, we want to ad-
just the reservoir model until it closely reproduces the past
behavior of the reservoir (historical production and pres-

870

sures). For this problem also, we can define the objective
function as a sum of a number of sub-functions defined for
each well and calculated when evaluating the objective func-
tion [6].

3. CMA-ESWITHLOCALMETA-MODELS
In this section we present the basics about CMA-ES [11,

10] and nlmm-CMA a variant of CMA-ES with local meta-
models [2].

3.1 CMA-ES
The CMA-ES algorithm [11, 10] is an evolution strat-

egy in which at each generation g, a population of λ points
(x(g)

i , i = 1, . . . ,λ) is sampled according to a multivariate
normal distribution:

x(g)
i = m(g) + σ(g)Ni(0,C

(g)), for i = 1, . . . ,λ , (2)

where (m(g), g ∈ N) defines the sequence of mean val-
ues of the multivariate normal distribution generated by
CMA-ES, constituting the sequence of estimate of the opti-
mum, (σ(g), g ∈ N) denotes the sequences of step-sizes, and
(C(g), g ∈ N) the sequences of covariance matrices.

The random vectors (Ni(0,C
(g)))1≤i≤λ are λ independent

multivariate normal distributions with zero mean vector and
covariance matrix C(g). Those λ individuals are ranked ac-
cording to f :

f(x(g)
1:λ) ≤ . . . ≤ f(x(g)

µ:λ) ≤ . . . ≤ f(x(g)
λ:λ) , (3)

where we use the notation x(g)
i:λ for ith best individual. The

mean m(g) is then updated by taking the weighted mean of
the best µ individuals:

m(g+1) =
µ∑

i=1

ωix
(g)
i:λ , (4)

where in general µ = λ
2 and (wi)1≤i≤µ are strictly positive

and normalized weights.
The covariance matrix of the search distribution C(g) is

updated after evaluation of the population, to the local
shape of the fitness landscape. Furthermore, the step-size
σ(g) is updated as well after evaluation of the population.
The update equations for m(g), C(g) and σ(g) are given in
Algorithm 1 taking as input the vector (x(g)

1:λ, . . . ,x
(g)
µ:λ) and

where dependency in g is omitted. We also refer to [10] for
those update equations and for the setting of default param-
eters.

3.2 Building the meta-model
To build an approximate model denoted by f̂ of the objec-

tive function f , we use a locally weighted regression. Dur-
ing the optimization, a training set is built by storing, after
every evaluation on the true objective function, points to-
gether with their objective function values. Assuming that
the training set contains a sufficient number m of elements,
let us consider an individual, denoted now by q ∈ Rn, to be
evaluated with the approximate model. We select from the
training set the k ∈ N nearest points (xj , j = 1, . . . , k) to q
using the Mahalanobis distance d with respect to the current
covariance matrix C. The distance between q and a point

z ∈ Rn is then given by d (z,q) =
√

(z− q)T C−1 (z− q).
Locally weighted regression builds an approximate model

using the (true) evaluations (yj , j = 1, . . . , k) stored in
the training set and corresponding to the k selected near-
est points to q. The use of a full quadratic meta-model is

suggested in [12]. Hence, using a vector β ∈ R
n(n+3)

2 +1, we
define f̂ for a given point z = (z1, . . . , zn) as follows

f̂(z,β)=βT(z21 ,· · ·, z2n, z1z2,· · ·, zn−1zn, z1,· · ·, zn, 1
)T . (5)

The full quadratic meta-model is built based on minimiz-
ing the following criterion w.r.t. the vector of parameters β
of the meta-model at q:

A(q) =
k∑

j=1

[(
f̂ (xj ,β)− yj

)2
K

(
d (xj ,q)

h

)]
. (6)

The kernel weighting functionK(.) is defined byK(ζ) = (1−
ζ2)21{ζ<1} where 1{ζ<1} is one if ζ < 1 and zero otherwise,
and h is the bandwidth defined by the distance of the kth

nearest neighbor data point to q. In order to build the
full quadratic meta-model, k must be greater or equal to
kmin = n(n+3)

2 +1. The setting k = n (n+ 3)+2 is suggested
in [12]. The sufficient size of the training set denoted above
by m must be then greater or equal to k.

3.3 CMA-ES with meta-models
The (n)lmm-CMA algorithm combines the CMA-ES with

local meta-models by exploiting the fact that the updates of
CMA-ES only rely on the ranking of the µ best solutions.
An iteration of lmm-CMA consists of one iteration of CMA-
ES where the evaluation step on f that usually determines
the ranking of the µ best solutions is replaced by the ap-
proximate ranking procedure that outputs an approximate
ranking of the candidate solutions and that costs maximally
λ function evaluations on f . The mean value, covariance
matrix and step-size of CMA-ES are then updated accord-
ing to Algorithm 1 using this approximate ranking.

The approximate ranking procedure works as follows. If
the training set contains enough points to build the meta-
model, for each individual proposed by CMA-ES, one meta-
model is computed according to the procedure described
in Section 3.2. The best ninit individuals according to the
meta-models are evaluated on f and then added to the train-
ing set, and for each non-evaluated individual a meta-model
is built anew. If the acceptance criterion given below is not
satisfied, we loop over the following steps 1) the nb best
(according to the meta-models) unevaluated individuals are
evaluated on f and added to the training set, 2) meta-models
are rebuilt for the unevaluated individuals and the accep-
tance criterion is checked. The loop breaks when either the
acceptance criterion is satisfied or the λ individuals are eval-
uated. The acceptance criterion defining nlmm-CMA reads:

• the best individual and the ensemble of µ best individ-
uals remain unchanged, if less than one fourth of the
population is evaluated;

• the best individual remains unchanged, if more than
one fourth of the population is evaluated.

Hence, (ninit+nb ∗nic) individuals are evaluated every gen-
eration where nic represents the number of iteration cycles
needed to satisfy the meta-model acceptance criterion. The
integer nb is chosen to be equal to max[1, (λ

10)] and ninit is
initialized to λ and adapted after every generation depend-

871

ing on nic according to:

ninit ← min(ninit + nb,λ− nb), if(nic > 2) ,
ninit ← max(nb, ninit − nb), if(nic < 2) .

(7)

The minimum number of evaluations performed for a given
generation, which corresponds to the minimum value that
ninit can reach, is then equal to nb. We refer to [2, Fig. 3]
for a detailed outline of the procedure.

4. LMM-CMA FOR PARTIALLY SEPARA-
BLE FUNCTIONS

This section introduces a new algorithm based on nlmm-
CMA and exploiting the partial separability of the objective
function. This algorithm will be called p-sep lmm-CMA.

In our proposed approach, the partial separability of the
objective function is exploited when building the meta-
models. The optimization process defined by CMA-ES is not
altered. The idea behind exploiting the problem structure
when building the meta-model, is to improve the quality of
the approximate model. Hence, the better the quality of the
model is, the easier the acceptance criteria can be satisfied,
the less evaluations are performed.

Let us consider a partially separable function f . As in
Section 2, we consider that f has N element functions
(fi)1≤i≤N . For each element function, we associate a map-

ping functionΦ i such that f(x) =
N∑
i=1

fi◦Φi(x). We suppose

that when evaluating a point x on f , we have access to the
evaluations (fi ◦ Φi(x))1≤i≤N as well.

In Section 3.2, an approximate function f̂ for a given ob-
jective function f is defined using a locally weighted regres-
sion based on the training set containing both evaluated
points and their values on f . In this section, we propose
to build a meta-model for each element function fi that we
denote by f̂i. The meta-model f̂ of f is then defined by

f̂ =
N∑

i=1

f̂i ◦ Φi . (8)

The meta-model f̂i of each element function fi is built in
a way quite similar to the meta-model f̂ of f defined in
Section 3.2. The training set is built by storing for every
evaluated point x, Φi(x) and its corresponding values on fi,
i.e. fi(Φ

i(x)). Let us consider an individual q for which
Φi(q) ∈ Rni has to be evaluated on the approximate model
of fi. Assuming that the training set contains a sufficient
number mi of elements, we select the ki ∈ N nearest points
(Φi(xj), j = 1, . . . , ki) to Φi(q) using the Mahalanobis dis-
tance di with respect to a matrix Ci, defined for a given
point z ∈ Rn as

di(Φ
i(z),Φi(q))=

√
(Φi(z)−Φi(q))TCi

−1(Φi(z)−Φi(q)) , (9)

where Ci is an ni × ni matrix adapted to the local shape of
the landscape of fi (see below).

Similarly to Section 3.2, a full quadratic meta-model

is used. Using a vector βi ∈ R
ni(ni+3)

2 +1, f̂i is defined
for a given point z ∈ Rn, for which we denote Φi(z) =
(ũ1, . . . , ũni) as

f̂i
(
Φi(z),βi

)
= βT

i z̃i
T , (10)

where z̃i =
(
ũ2
1, · · · , ũ2

ni
, ũ1ũ2, · · · , ũni−1ũni , ũ1, · · · , ũni , 1

)
.

The full quadratic meta-model is built by minimizing the
following criterion with resepct to βi:

B(q) =
ki∑
j=1

[(
f̂i

(
Φi(xj),βi

)
− fi(Φ

i(xj))
)2

×K

(
di(Φi(xj),Φ

i(q))
h

)]
.

(11)

K(.) is the kernel weighting function defined as in Sec-
tion 3.2, and h is the bandwidth defined by the distance di of
the kth

i nearest neighbor data point to q. For a given element
function, ki must be greater or equal to ki,min = ni(ni+3)

2 +1.
ki is chosen to be equal to 2 × ki,min. The choice of ki will
be discussed in Sec. 5.3. The sufficient size of the training
set denoted above by mi must be then greater or equal to
ki.

Hence, the approximate function of f which corresponds

to f̂(x) =
N∑
i=1

f̂i(Φ
i(x)) is incorporated into CMA-ES us-

ing the approximate ranking procedure as detailed in Sec-
tion 3.3.

It remains now to describe how the matrices (Ci)1≤i≤N

are obtained. They are built in an iterative manner. At each
iteration, after the approximate ranking procedure, each of
the λ candidate solutions denoted (Xm)1≤m≤λ and sampled
according to (2) has been either evaluated on f or has an as-
sociated approximate meta-models value given by (8). Thus
for each i, the vectors Φi(Xm) ∈ Rni have either been eval-
uated on fi or have an associated estimate of fi provided
by f̂i. We then consider the vectors Φi(Xm) ∈ Rni for
1 ≤ m ≤ λ and rank them according to f̃i where f̃i equals
fi if Xm was evaluated on f and f̂i otherwise. The ordered
µ best solutions according to f̃i are used as input variables
in Algorithm 1, to update the covariance matrix Ci.

In Algorithm 1, the parameters (ωi)1≤i≤µ, cσ, cc, ccov,
µcov, dσ are chosen with default values as defined in [10].
Initial values for pσ, pc and C used in Algorithm 1 are also
set to default as in [10]. Initial values for m and σ are set to
Φi(m(0)) and σ(0) where m(0) and σ(0) are the initial mean
vector and step-size of (n)lmm-CMA. The idea behind this
adaptation procedure is the same as the one of the adaptive
encoding proposed in [8]. However in adaptive encoding,
step-size update is not needed and different normalizations
for the weights depending on the step-length are introduced.
Though we believe that the adaptive encoding update is
more robust numerically, it has not been tested for this work.

5. EVALUATION OF P-SEP LMM-CMA
In this section we describe the functions used to evaluate

p-sep lmm-CMA. We show the performance of this method
compared to CMA-ES. The optimal bandwidth used to build
the meta-model is also investigated and the computational
cost of the approach is discussed.

5.1 Test functions
The p-sep lmm-CMA is evaluated on the partially sep-

arable test functions f1
Rosen, f100

Rosen, f10000
Rosen, f100

Rosen 1
2

and

fBlockElli defined in Table 1. For the block-rotated ellip-
soid, Q is a 2 × 2 rotation matrix sampled uniformly anew
for every run performed. The performance of the method is
measured using the success performance SP1 defined as the
average number of evaluations for successful runs divided

872

Table 1: Test functions. For the block-rotated ellipsoid, Q is a 2× 2 rotation matrix with each column being
a uniformly distributed unit vector.

Name Function

Rosenbrock fα
Rosen (x) =

n−1∑
i=1

(
α.

(
x2
i − xi+1

)2
+ (xi − 1)2

)

Rosenbrock
1
2 fα

Rosen 1
2
(x) =

n−1∑
i=1

(
α.

(
x2
i − xi+1

)2
+ (xi − 1)2

) 1
2

Block-rotated fα
BlockElli−2D (x, y) =

2∑
i=1

(
α

i−1
n−1 .(Q× (x, y))2

)

ellipsoid 2D

Block-rotated fα
BlockElli (x) =

n−1∑
i=1

(fα
BlockElli−2D (xi, xi+1))

ellipsoid

Table 2: Modeling of the partially separable functions tested.
Name nM N fi(u = (uj)1≤j≤nM) Φi(v = (vj)1≤j≤n)

Rosenbrock 2 (n− 1) fi(u) = α.
(
u2
1 − u2

)2
+ (u1 − 1)2 Φi(v) = (vi, vi+1)

4 n−1
3 fi(u) = α.

(
u2
1 − u2

)2
+ (u1 − 1)2 Φi(v) = (v3i−2, v3i−1,

+α.
(
u2
2 − u3

)2
+ (u2 − 1)2 v3i, v3i+1)

+α.
(
u2
3 − u4

)2
+ (u3 − 1)2

Rosenbrock
1
2 2 (n− 1) fi(u) =

(
α.

(
u2
1 − u2

)2
+ (u1 − 1)2

) 1
2

Φi(v) = (vi, vi+1)

Block-rotated ellipsoid 2 (n− 1) fi(u) = fα
BlockElli−2D (u1, u2) Φi(v) = (vi, vi+1)

1 2 3 4 5 6 7 8 9 10
10

2

10
3

10
4

γ

N
u

m
b

e
r

o
f

e
v
a

lu
a

ti
o

n
s

n = 4

n = 8

n = 10

n = 16

(a)

1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

6

7

γ

N
u

m
b

e
r

o
f

e
v
a

lu
a

ti
o

n
s
 p

e
r

g
e

n
e

ra
ti
o

n

n = 4

n = 8

n = 10

n = 16

(b)

Figure 1: (a) Average number of evaluations of the
p-sep lmm-CMA on f100

Rosen to reach fstop for varying
population sizes λ = γ×λdefault. (b) Average number
of evaluations per generation of the p-sep lmm-CMA
on f100

Rosen for varying population sizes λ = γ × λdefault.

Algorithm 1: CMA-Update(x1, . . . ,xµ)

1. given parameters (ωi)1≤i≤µ, cσ, cc, ccov, µcov, dσ.

Set µeff = 1/
µ∑

i=1
ωi

2

2. given m ∈ Rn, pσ ∈ Rn, pc ∈ Rn, σ ∈ R and
C ∈ Rn×n from last iteration

3. m− ← m

4. m ←
µ∑

i=1
ωixi

5. pσ ← (1− cσ)pσ +
√

cσ(2− cσ)µeffC
− 1

2 m−m−

σ

6. pc ← (1− cc)pc +
√

cc(2− cc)µeff
m−m−

σ

7. Cµ =
µ∑

i=1
ωi

(xi−m−)(xi−m−)
T

σ2

8. σ ← σ × exp
(

cσ
dσ

(
‖pσ‖

E‖N (0,I)‖ − 1
))

9. C ← (1−ccov)C+ ccov
µcov

pcpc
T+ccov

(
1− 1

µcov

)
×Cµ

by the ratio of successful runs, needed to reach a stopping
objective value fstop = 10−10, except for fα

Rosen 1
2
for which

fstop = 10−5. We perform 20 independent runs to mea-
sure SP1. The runs are randomly initialized in the intervals
[−5, 5] for f1

Rosen, f
100
Rosen, f

10000
Rosen and f10000

Rosen 1
2
and [−10, 10] for

fBlockElli. Each test function is modeled by defining a num-
ber N of element functions, a number nM of element vari-
ables for each element function, a set of element functions
denoted by fi : RnM → R and a set of mapping functions

Φi : Rn → RnM , such that f =
N∑
i=1

fi ◦ Φi. The modeling

of each test function is shown in Table 2. The block-rotated
ellipsoid function is defined using quadratic element func-
tions. For the other tested functions, the defined element
functions are not quadratic.

873

Table 3: Success performance SP1, i.e., the average number of function evaluations for successful runs divided
by the ratio of successful runs, standard deviations of the number of function evaluations for successful runs
and speedup performance spu, to reach fstop = 10−10 of p-sep lmm-CMA, nlmm-CMA and CMA-ES (for
f100
Rosen 1

2
, fstop = 10−5). The ratio of successful runs is denoted between brackets if it is < 1.0. The number of

element variables of each element function is denoted by nM.
Function n nM λ p-sep lmm-CMA spu nlmm-CMA spu CMA-ES
f1
Rosen 4 2 8 189 ± 13 5.1 297 ± 20 3.2 964 ± 192

8 2 10 308 ± 20 6.5 932 ± 52 2.2 2006 ± 118

10 2 10 353 ± 20 6.8 1482 ± 169 1.6 2418 ± 204

16 2 12 465 ± 20 8.6 4023 ± 310

20 2 12 548 ± 34 9.1 4978 ± 374

32 2 14 755 ± 32 10.3 7777 ± 347

40 2 15 871 ± 41 11.2 9799 ± 602

f100
Rosen 4 2 8 485 ± 47 [0.80] 4.7 647 ± 67 [0.95] 3.5 2269 ± 254 [0.85]

8 2 10 910 ± 71 [0.80] 6.5 2602 ± 264 [0.85] 2.3 5883 ± 727 [0.90]

10 2 10 1006 ± 99 [0.95] 7.6 3727 ± 300 [0.90] 2.1 7644 ± 765 [0.95]

16 2 12 1834 ± 117 [0.90] 8.6 15781 ± 1360 [0.85]

16 4 12 7162 ± 1112 [0.95] 2.2 15781 ± 1360 [0.85]

20 2 12 2533 ± 361 [0.90] 10.4 26366 ± 3249 [0.85]

32 2 14 4628 ± 144 [0.95] 13.2 60948 ± 2668 [0.90]

40 2 15 6527 ± 226 [0.95] 15.2 99346 ± 3502 [0.85]

f10000
Rosen 4 2 8 1333 ± 238 [0.95] 5.3 2637 ± 715 [0.90] 2.7 7032 ± 944 [0.90]

8 2 10 2745 ± 246 6.6 10287 ± 468 [0.85] 1.8 18216 ± 1683 [0.95]

10 2 10 5552 ± 429 [0.75] 4.5 16280 ± 843 [0.85] 1.5 25037 ± 3160 [0.95]

16 2 12 10583 ± 398 [0.80] 5.9 62903 ± 4441 [0.90]

20 2 12 14749 ± 431 [0.90] 6.3 93545 ± 6566 [0.95]

f100
Rosen 1

2
4 2 8 544 ± 48 [0.70] 4.8 909 ± 75 [0.75] 2.9 2620 ± 342 [0.95]

8 2 10 1008 ± 67 [0.80] 7.0 2549 ± 262 [0.95] 2.8 7006 ± 762

10 2 10 1299 ± 178 [0.95] 10.4 4685 ± 518 [0.90] 2.9 13517 ± 1288 [0.75]

16 2 12 3346 ± 223 [0.90] 9.9 33154 ± 3568 [0.90]

20 2 12 6797 ± 878 [0.85] 10.0 68136 ± 5363 [0.80]

32 2 14 20751 ± 2116 [0.85] 14.6 302039 ± 40915 [0.65]

f10000
BlockElli 4 2 8 226 ± 11 6.6 1500 ± 89

8 2 10 392 ± 14 8.2 3220 ± 196

10 2 10 472 ± 17 8.7 4093 ± 173

16 2 12 670 ± 37 9.8 6566 ± 284

5.2 Performance of p-sep lmm-CMA
Results on the test functions are presented in Table 3

showing the performance of p-sep lmm-CMA compared to
CMA-ES and to some tests with nlmm-CMA. For each test,
by defining the value of nM, we refer to the correspond-
ing modeling defined in Table 2. It is clear that exploiting
the partial separability within CMA-ES with meta-models
improves the performance of CMA-ES with a speedup in-
between 4.5 and 15.

For element functions with fixed nM equal to 2, p-sep
lmm-CMA offers an increasing speedup with increasing di-
mensions of the problem as shown in Fig. 2. The algorithm
p-sep lmm-CMA performs better with increasing dimensions
since it breaks the curse of dimensionality when building
the meta-model: for a problem of dimension n, building the
meta-model is equivalent to building N meta-models of di-
mension nM.

Using greater number of parameters for each separated
meta-model decreases the speedup obtained by the ap-
proach. On f100

Rosen for a dimension 16, the speedup, decreases
from 8.6 to 2.2 for corresponding values of nM respectively
equal to 2 and 4.

At each iteration at least nb function evaluations are per-

formed on the true function in order to check the accuracy of
the meta-models. The parameter nb is set to max[1, (λ

10)].
This setting is introduced in order to be able to add a signif-
icant amount of information at each iteration by enriching
the training set. It is in particular important when dealing
with large population sizes. For increasing population sizes
λ, i.e., for increasing values of µ, we need an increasing num-
ber of points evaluated at each iteration cycle to be able to
have a significant impact on the ranking of population.

Moreover, a better setting of nb would also depend on the
dimension of the problem as for increasing dimensions, i.e.,
for increasing numbers k (or ki) of points to build the meta-
model, we need an increasing number of points evaluated
at each iteration cycle to be able to change significantly the
meta-model and then the ranking of the population.

The minimum number of evaluations performed at each
iteration nb limits the speedup that can be achieved by our
approach. We show that for some test functions, we are able
to reach this maximum speedup of λ/nb. For f100

Rosen with
n = 40 and for f100

Rosen 1
2

with n = 20, we reach a speedup

equal to λ since nb is equal to 1 in these tests.
Since we reach the maximal speedup allowed by the ap-

proach on the Rosenbrock function, we asked ourselves

874

4 8 10 16 20 32 40
10

1

10
2

10
3

10
4

Dimension

S
P

1
 /

 D
im

e
n

s
io

n

CMA−ES

p−sep lmm−CMA

(a) f1
Rosen

4 8 10 16 20 32 40
10

0

10
1

10
2

10
3

10
4

Dimension

S
P

1
 /

 D
im

e
n

s
io

n

CMA−ES

Sepmm−CMA

(b) f100
Rosen

4 8 10 12 16 20
10

0

10
1

10
2

10
3

10
4

Dimension

S
P

1
 /

 D
im

e
n

s
io

n

p−sep lmm−CMA

CMA−ES

(c) f10000
Rosen

Figure 2: Success performance SP1 over the dimension of the problem on fα
Rosen, with α = 1, 102 and 104 for

dimensions in between 4 and 40. The dimension of the sub-functions nM equals 2.

1 2 3 4 50

2

4

6

8

10

12

sp
ee

du
p

n = 4

n = 8

n = 10

n = 16

n = 20

n = 32

n = 40

(a) f1
Rosen

1 2 3 4 50

5

10

15

Sp
ee

du
p

n = 4

n = 8

n = 10

n = 16

n = 20

n = 32

(b) f100
Rosen

1 2 3 4 50

2

4

6

8

Sp
ee

du
p

n = 4

n = 8

n = 10

n = 16

n = 20

(c) f10000
Rosen

1 2 3 4 50

2

4

6

8

10

12

Sp
ee

du
p

n = 4

n = 8

n = 10

n = 16

n = 20

(d) f100
Rosen 1

2

Figure 3: Average speedup with respect to CMA-
ES to reach fstop with a varying number of points
used to build the meta-model ki = β × ki,min where

ki,min = ni(ni+3)
2 + 1. Each point corresponds to 20

runs performed.

whether we can further reduce the number of overall function
evaluations needed to reach a target by increasing the pop-
ulation size λ. The default population size denoted λdefault

value equals 4+)3× ln(n)*. Fig. 1(a) shows the influence of
the population size on the performance of p-sep lmm-CMA.
We perform 20 independent runs on f100

Rosen for dimensions
n = 4, 8, 10 and 16, and nM = 2 with fstop = 10−10. The
tested population sizes are written as λ = γ×λdefault where
γ is in-between 1 and 10. Tests were performed with simi-
lar parameters: ninit initialized to λdefault and nb equal to
max[1, (λdefault

10)]. A training set containing ki elements ran-
domly sampled is loaded at the beginning of every run in or-
der to use the meta-models from the first generation, for all
the tests. Results show that λ = 4× λdefault gives the mini-
mum number of evaluations to reach fstop and improves the
performance by a factor between 1.5 and 2 over the default
population size. For γ > 4, the performance of p-sep lmm-
CMA stagnates. We observe in Fig. 1(b) that the number of
evaluations per generation increases linearly for increasing
population sizes.

5.3 Optimal bandwidth for building partially
separated meta-models

Let us consider an element function fi with a number of
element variables ni. The optimal bandwidth depends on

the number of points ki used to build the meta-model. As
shown in Section 4, ki must be greater or equal to ki,min =
ni(ni+3)

2 + 1. In this section, we investigate the influence
of the choice of ki on the performance of p-sep lmm-CMA.
We perform 20 independent runs on fα

Rosen for α = 1, 102,
104 and f100

Rosen 1
2
for different dimensions in-between 4 and

40. Results are shown in Fig. 3, where ki is written as ki =
β × ki,min for β = 1, 2, 3, 4 and 5. We find that for 14
tests over the 23 tests performed on the test functions with
different dimensions, a good estimate of the optimal β is
equal to 2. Moreover, for the other tests, choosing a value of
β equal to 2 is a reasonable choice since it offers a speedup
close to best one found, except for f100

Rosen with dimensions
10 and 16.

5.4 Computational cost
The internal cost of the optimization procedure is dom-

inated by the evaluation of the objective function and the
construction of the meta-model.

For p-sep lmm-CMA, building a meta-model consists in
finding in the training set the ki sorted nearest points to the
point to be evaluated and then solving (11). Let us consider
a training set with a size m. To find and sort the best ki
points, we begin by sorting the first ki points of the training
set using a heapsort algorithm which has a complexity of
kilogki. Then, we compare the other (m − ki) points with
the selected ki points until finding its position which adds
at worst a complexity of (m − ki) × ki. Thus, finding and
sorting the best ki points needs O(kilogki + (m − ki)ki) =
O(m×ki). According to Sec. 5.3, the optimal bandwidth ki
is equal to ni(ni+3)+2. Thus, finding and sorting the points
to evaluate the meta-model needs O(m × n2

i). Moreover,
solving (11) is dominated by a ki × ki matrix inversion and
thus has a complexity of n6

i .
Let us denote by Ne the number of evaluations on the true

objective function and by Nm the number of built meta-
models. The complexity of p-sep lmm-CMA is then equal
to: Ne +Nm n2

i (m+ n4
i).

6. CONCLUSIONS
In this paper we have investigated the exploitation of par-

tial separability of the objective function to enhance the
performances of CMA-ES coupled with local meta-models.
We have defined p-sep lmm-CMA, a new variant of CMA-
ES with meta-models for partially separable functions. In
this variant, we build separate meta-models for each element
function, instead of building one meta-model for the whole
objective function. We have shown that the speedup of p-
sep lmm-CMA with respect to CMA-ES is in-between 4.5

875

and 15 for the tested functions. For f100
Rosen with a dimension

40 and for f100
Rosen 1

2
with a dimension 20, we reach a speedup

equal to λ which corresponds to the theoretical maximum
speedup allowed by the approach. In general, the maximum
speedup that can be achieved equals λ/nb as at least nb eval-
uations on the true function are performed at each iteration.
We have shown through preliminary tests on the standard
Rosenbrock function that increasing the population size al-
lows to decrease significantly (by a factor between 1.5 and 2)
the number of evaluations to reach a given target. The opti-
mal population size on the Rosenbrock function is shown to
be equal to 4 × λdefault. Future investigations are needed to
define the optimal population size depending on the dimen-
sion of the problem and the dimension of the sub-problems,
over a wide range of test functions.

Acknowledgments
The authors would like to thank Nikolaus Hansen for nu-
merous helpful discussions. This work was partially funded
by the ANR-08-COSI-007-12 grant and by the FUI of Sys-
tem@tic Paris-Region ICT cluster through contract DGT
117 407 Complex Systems Design Lab (CSDL).

7. REFERENCES
[1] A. Bouaricha and J. Morè. Impact of partial

separability on large-scale optimization.
Computational Optimization and Applications,
7:27–40, 1997.

[2] Z. Bouzarkouna, A. Auger, and D. Ding. Investigating
the local-meta-model CMA-ES for large population
sizes. In C. Di Chio et al., editors, Applications of
Evolutionary Computation, volume 6024 of Lecture
Notes in Computer Science, pages 402–411. Springer
Berlin / Heidelberg, 2010.

[3] Z. Bouzarkouna, D. Ding, and A. Auger. Using
evolution strategy with meta-models for well
placement optimization. In 12th European Conference
on the Mathematics of Oil Recovery (ECMOR XII).
EAGE, 2010.

[4] Z. Bouzarkouna, D. Ding, and A. Auger. Partially
separated meta-models with evolution strategies for
well placement optimization. In SPE
EUROPEC/EAGE annual conference and exhibition,
number SPE 143292, May 2011.

[5] B. Colson and P. L. Toint. Optimizing partially
separable functions without derivatives. Optimization
Methods and Software, 20(4-5):493–508, 2005.

[6] D. Ding and F. Mckee. Using partial separability of
the objective function for gradient-based optimizations
in history matching. In SPE reservoir simulation
symposium, number SPE 140811, February 2011.

[7] N. Durand and J.-M. Alliot. Genetic crossover
operator for partially separable functions. In
Proceedings of the third annual Genetic Programming
Conference, 1998.

[8] N. Hansen. Adaptive encoding: How to render search
coordinate system invariant. In G. Rudolph et al.,
editors, Parallel Problem Solving from Nature - PPSN
X, volume 5199 of Lecture Notes in Computer Science,
pages 205–214. Springer Berlin / Heidelberg, 2008.

[9] N. Hansen, A. Auger, R. Ros, S. Finck, and P. Poš́ık.
Comparing results of 31 algorithms from the black-box
optimization benchmarking BBOB-2009. In GECCO
’10: Proceedings of the 12th annual conference comp
on Genetic and evolutionary computation, pages
1689–1696, New York, NY, USA, 2010. ACM.

[10] N. Hansen and S. Kern. Evaluating the CMA
evolution strategy on multimodal test functions. In
X. Yao et al., editors, Parallel Problem Solving from
Nature - PPSN VIII, volume 3242 of Lecture Notes in
Computer Science, pages 282–291. Springer Berlin /
Heidelberg, 2004.

[11] N. Hansen and A. Ostermeier. Completely
derandomized self-adaptation in evolution strategies.
Evolutionary Computation, 9(2):159–195, 2001.

[12] S. Kern, N. Hansen, and P. Koumoutsakos. Local
meta-models for optimization using evolution
strategies. In T. Runarsson et al., editors, Parallel
Problem Solving from Nature - PPSN IX, volume 4193
of Lecture Notes in Computer Science, pages 939–948.
Springer Berlin / Heidelberg, 2006.

[13] I. Loshchilov, M. Schoenauer, and M. Sebag.
Comparison-based optimizers need comparison-based
surrogates. In R. Schaefer et al., editors, Parallel
Problem Solving from Nature - PPSN XI, volume 6238
of Lecture Notes in Computer Science, pages 364–373.
Springer Berlin / Heidelberg, 2011.

[14] J. Nocedal. Large scale unconstrained optimization. In
The state of the art in numerical analysis, pages
311–338. Oxford University Press, 1996.

[15] R. Ros and N. Hansen. A simple modification in
CMA-ES achieving linear time and space complexity.
In G. Rudolph et al., editors, Parallel Problem Solving
from Nature - PPSN X, 10th International Conference
Dortmund, Germany, September 13-17, 2008,
Proceedings, volume 5199 of Lecture Notes in
Computer Science, pages 296–305. Springer, 2008.

876

