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ABSTRACT

We study the behaviour of a (1, λ)-ES that applies a simple
repair mechanism to infeasible candidate solutions for the
problem of maximising a linear function with a single lin-
ear constraint. Integral expressions that describe the strat-
egy’s one-generation behaviour are derived and used in a
simple zeroth order model for the steady state of the strat-
egy. Applied to the analysis of cumulative step size adapta-
tion, the approach provides an intuitive explanation for the
algorithm’s behaviour as well as a condition on the setting
of its parameters. A comparison with the strategy that re-
samples infeasible candidate solutions rather than repairing
them is drawn, and the qualitatively different behaviour is
explained.

Categories and Subject Descriptors

I.2.8 [Problem Solving, Control Methods and Search];
G.1.6 [Optimization]: Constrained Optimization

General Terms

Algorithms

Keywords

Constrained optimisation, evolution strategy, step size adap-
tation

1. INTRODUCTION
A multitude of constraint handling techniques have been

proposed for use in evolutionary algorithms. The range of
strategies includes penalty approaches, repair mechanisms,
and algorithms based on ideas from multi-objective opti-
misation. A survey of techniques has been compiled by
Coello Coello [9]. Approaches used in the context of evolu-
tion strategies include those described by Oyman et al. [14],
Runarsson and Yao [16, 17], Mezura-Montes and Coello
Coello [12], and Kramer and Schwefel [10].
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Knowledge of the relative capabilities and limitations of
the approaches is most often gained from comparing their
performances on large and diverse sets of test functions, such
as the benchmark set compiled for the CEC 2010 Special

Session on Constrained Real-Parameter Optimization [11].
The evaluation criteria used are often relatively complex and
involve various parameters, such as the number of function
evaluations and different quality thresholds. As a result, the
observed outcomes are not always easy to interpret, and if
a mechanism fails it often remains unclear why. Likewise, it
is not always straightforward what “good” performance for
a problem means.

This paper pursues a complementary approach in which
the behaviour of an algorithm is not studied on a large test
bed, but instead on a very simple class of test functions
for which analytically based findings can be derived. The
results offer the advantage of being easy to interpret and
reveal scaling properties and the influence of parameters on
optimisation performance. Of particular significance is the
interaction of constraint handling technique and step size
adaptation approach. Most of the latter have been devel-
oped with unconstrained problems in mind, and it has been
seen in previous work that the presence of constraints may
lead step size adaptation to fail even on the simplest prob-
lems. As it appears likely that robust performance on com-
plex problems requires an algorithm to be able to succeed
on simple ones, work of the nature described here presents a
concrete challenge to the algorithm designer to devise such
strategies.

While a sizable number of studies have focused on the
performance of evolution strategies for simple classes of un-
constrained problems, little such work has been published
in constrained settings. Among the sparse references is the
early work by Rechenberg [15], who studies the performance
of the (1 + 1)-ES1 for the axis-aligned corridor model, and
upon which the formulation of the 1/5th success rule for
step size adaptation is partly based. Schwefel [18] considers
the performance of the (1, λ)-ES in the same environment.
Beyer [7] analyses the behaviour of the (1+1)-ES for a con-
strained discus-like function. All of those analyses have in
common that the normal vectors of the constraint planes
are oriented such that they are perpendicular to the gradi-
ent vector of the objective function.

Two more recent studies consider constrained problems
that do not have that specific property. Arnold and Brau-
er [5] study the behaviour of the (1 + 1)-ES for a linear

1See Beyer and Schwefel [8] for an overview of evolution
strategy terminology.
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problem with a single linear constraint of general orienta-
tion. They describe the distance of the parental candidate
solution from the constraint plane using a Markov chain ap-
proach and investigate the limit behaviour of the chain using
two simple statistical models. Schwefel [19, page 116f] points
out that using the 1/5th rule, the presence of constraints
may lead to the step size being reduced in situations where
the angle between the gradient direction and the normal vec-
tor of the active constraint is small, leading to convergence
to a non-singular point. The findings derived in [5] provide
a quantitative confirmation of this. Arnold [3] studies the
behaviour of a (1, λ)-ES that samples offspring candidate
solutions until λ feasible ones have been generated in the
same environment, using a similar approach. He finds that
cumulative step size adaptation may fail in scenarios simi-
lar to those where the success probability based mechanism
fails, though for different reasons.

The algorithm considered in [3] does not make any as-
sumptions with regard to the constraints other than the
availability of a black-box function that can be used to de-
termine whether a candidate solution is feasible or not. If a
candidate solution is infeasible, it is resampled. The goal of
this paper is to investigate the consequences of being able
to “repair” an infeasible candidate solution by projecting it
orthogonally onto the boundary of the feasible region. It
will be seen that the ability to repair infeasible offspring can
result in qualitatively different behaviour of the strategy.

The remainder of this paper is organised as follows. Sec-
tion 2 briefly formalises the algorithm and problem and in-
troduces notational conventions used throughout the paper.
Section 3 considers the single-step behaviour of the strat-
egy and derives probability distributions that characterise
the offspring candidate solutions as well as an expression for
the progress rate of the strategy. Section 4 investigates the
multi-step limit behaviour of the strategy for a fixed step size
employing a simple zeroth-order model for the distribution
of distances from the constraint plane. Section 5 considers
cumulative step size adaptation and compares with the be-
haviour of the strategy studied in [3]. Section 6 concludes
with a brief discussion and goals for future research.

2. PROBLEM AND ALGORITHM
Throughout this paper, we consider the problem of max-

imising2 a linear function f : R
N → R, N ≥ 2, with a

single linear constraint. We assume that the gradient vec-
tor of the objective function forms an acute angle with the
normal vector of the constraint plane. Without loss of gen-
erality, we choose a Euclidean coordinate system with its
origin located on the constraint plane, and with its axes
oriented such that the x1-axis coincides with the gradient
direction ∇f , and the x2-axis lies in the two-dimensional
plane spanned by the gradient vector and the normal vec-
tor of the constraint plane. The angle between those two
vectors is denoted by θ as illustrated in Fig. 1, and it is
referred to as the constraint angle. Constraint angles of
interest are in (0, π/2). The unit normal vector of the con-
straint plane expressed in the coordinate system described
above is n = 〈cos θ, sin θ, 0, . . . , 0〉. The signed distance of a
point x = 〈x1, x2, . . . , xN 〉 ∈ R

N from the constraint plane

2Strictly speaking, the task is one of amelioration rather
than maximisation, as a finite maximum does not exist. We
do not make that distinction here.

fitness gradient
constraint plane

x1

x2

θ

x

y
g(x)

n

Figure 1: Linear objective function with a single

linear constraint. The subspace spanned by the x1-

and x2-axes is shown. The shaded area is the feasible

region. The parental candidate solution x of the

(1, λ)-ES is at a distance g(x) from the constraint

plane. Infeasible candidate solution y is projected

orthogonally onto the constraint plane.

is thus g(x) = −n · x = −x1 cos θ − x2 sin θ, resulting in the
optimisation problem

maximise f(x) = cx1 subject to g(x) ≥ 0

for some constant c > 0. Notice that due to the choice of
coordinate system, variables x3, x4, . . . , xN enter neither the
objective function nor the constraint inequality.

Assuming a feasible initial candidate solution x ∈ R
N , the

(1, λ)-ES generates a sequence of further candidate solutions
by iterating the following steps:

1. For i = 1, . . . , λ

(a) Generate offspring candidate solution y(i) ∈ R
N

by sampling an N-dimensional normal distribu-
tion with mean x and covariance matrix σ21N×N ,
where 1N×N is the N × N identity matrix and
σ ∈ R is referred to as the mutation strength.

(b) If n ·y(i) > 0 then project y(i) onto the constraint
plane by letting

y
(i) ← y

(i) − (n · y(i))n. (1)

(c) Compute f(y(i)).

2. Replace the parental candidate solution with the off-
spring candidate solution that has the largest objective
function value.

3. Modify the mutation strength.

Termination criteria are irrelevant in the context of this
study. As a performance measure, we consider the expected
per step distance covered in the direction of the gradient of
the objective function, which is referred to as the progress
rate.

3. SINGLE-STEP BEHAVIOUR
This section first describes the operation of the strategy

as a Markov process. It then provides a characterisation of
the distribution of offspring candidate solutions and finally
considers the expected step made in a single iteration of
the algorithm. In all of what follows, superscripts refer to
iteration number rather than the numbering of offspring.
Values associated with the offspring candidate solution that
replaces the parent are indicated with a hat.
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3.1 Markov Process
The generation of offspring candidate solutions is a two-

step process that involves random sampling and potentially
projection. The sampling of an offspring candidate solu-
tion y in step 1(a) of the algorithm in Section 2 involves
generating standard normally distributed mutation vector
z = 〈z1, z2, . . . , zN 〉 = (y − x)/σ. If

z1 cos θ + z2 sin θ > δ (2)

where δ = g(x)/σ is the normalised distance of the parental
candidate solution from the constraint plane, then y is in-
feasible and projected orthogonally onto that plane. Let
w = 〈w1, w2, . . . , wN〉 = (y − x)/σ, where y refers to the
offspring after step 1(b), denote the mutation vector after
projection. From Eq. (1), its first two components are

w1 =

(

δ cos θ + (z1 cos θ − z2 sin θ) sin θ if Eq. (2) holds

z1 otherwise

and

w2 =

(

δ sin θ − (z1 sin θ − z2 cos θ) cos θ if Eq. (2) holds

z2 otherwise

All other components of w equal those of z.
Until Section 5, we consider the behaviour of the strat-

egy for fixed mutation strength. In that case, its state is
completely described by the normalised distance δ of the
parental candidate solution from the constraint plane. Sim-
ple trigonometry reveals that the evolution of δ is described
by

δ(t+1) = δ(t) − ŵ1 cos θ − ŵ2 sin θ (3)

where ŵ = 〈ŵ1, ŵ2, . . . , ŵN 〉 is the mutation vector after
projection corresponding to the offspring candidate solution
with the largest objective function value.

3.2 Offspring Distribution
The joint distribution of the w1- and w2-components of

the mutation vectors after projection is a mixture of the
distribution of the corresponding components of mutation
vectors of immediately feasible offspring and those projected
onto the constraint plane. Let us consider the marginal dis-
tribution of the w1-components. The contribution to the
density p1(x) of that distribution from the immediately fea-
sible offspring is obtained by integrating the joint density
for w1 = x up to the constraint plane and thus equals

1

2π

Z (δ−x cos θ)/ sin θ

−∞

e−
1

2
(x2+y2)dy

as the plane with w1 = x intersects the constraint plane at
w2 = (δ− x cos θ)/ sin θ. The contribution from the initially
infeasible and thus projected offspring candidate solutions
is obtained by integration along the line with x = δ cos θ +
(w1 sin θ−w2 cos θ) sin θ, on which all of the points projected
onto the constraint plane at location w1 = x lie, and it equals

1

2π sin θ cos θ

Z

∞

x

e−
1

2
y2

exp

 

−1

2

„

y tan θ − x− δ cos θ

sin θ cos θ

«2
!

dy.

Adding both contributions and solving the integrals yields
the marginal density function

p1(x) =
1√
2π

e−
1

2
x2

Φ

„

δ − x cos θ

sin θ

«

+
1− Φ(δ)√

2π sin θ
exp

 

−1

2

„

x− δ cos θ

sin θ

«2
!

(4)

where Φ(·) denotes the cumulative distribution function of
the standard normal distribution. Integration of the density
yields the cumulative distribution function

P1(x) =
1√
2π

Z x

−∞

e−
1

2
y2

Φ

„

δ − y cos θ

sin θ

«

dy

+ (1− Φ(δ)) Φ

„

x− δ cos θ

sin θ

«

(5)

of the w1-components of mutation vectors after projection.
Next, consider the distribution of the w2-components of

mutation vectors after projection conditional on w1 = x.
The probability of an offspring being infeasible and thus in
need of repair conditional on w1 = x is obtained by comput-
ing the relative weight of the second term in the marginal
density p1(x) in Eq. (4) and equals

Pinf(x) = Prob [z1 cos θ + z2 sin θ > δ|w1 = x]

=
1− Φ(δ)√

2πp1(x) sin θ
exp

 

−1

2

„

x− δ cos θ

sin θ

«2
!

.

All initially infeasible candidate solutions after projection
have w2-coordinate (δ − x cos θ)/ sin θ and thus

E [w2|w1 = x and z1 cos θ + z2 sin θ > δ] =
δ − x cos θ

sin θ
.

Initially feasible offspring candidate solutions are not pro-
jected and have expected value

E [w2|w1 = x and z1 cos θ + z2 sin θ ≤ δ]

=
1√

2πΦ((δ − x cos θ)/ sin θ)

Z (δ−x cos θ)/ sin θ

−∞

ye−
1

2
y2

dy

=
−1√

2πΦ((δ − x cos θ)/ sin θ)
exp

 

−1

2

„

δ − x cos θ

sin θ

«2
!

.

Weighting both terms with the probability of their occur-
rence yields

E [w2|w1 = x]

= (1− Pinf(x))E [w2|w1 = x and z1 cos θ + z2 sin θ ≤ δ]

+ Pinf(x)E [w2|w1 = x and z1 cos θ + z2 sin θ > δ]

Combining the results and simplifying allows deriving the
expression

E [w2|w1 = x]

=
1

p1(x)

"

− 1

2π
e−

1

2
x2

exp

 

−1

2

„

δ − x cos θ

sin θ

«2
!

+
1− Φ(δ)√

2π sin θ

δ − x cos θ

sin θ
exp

 

−1

2

„

x− δ cos θ

sin θ

«2
!#

(6)

for the expected value of the w2-component of a mutation
vector after projection conditional on w1 = x.
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Figure 2: Progress rate ϕ divided by the mutation

strength σ plotted against the normalised distance δ
of the parent from the constraint plane for λ = 10
and, from bottom to top, θ ∈ {π/8, π/4, 3π/8}.

3.3 Expected Step
The w1-component of the mutation vector after projection

that results in the best offspring candidate solution is the λth
order statistic of the sample of w1-values of the entire set of
offspring. Its probability density is

p̂1(x) = λp1(x)P λ−1
1 (x).

The expected value of the w1-component of the selected off-
spring candidate solution is thus

E [ŵ1] =

Z

∞

−∞

xp̂1(x) dx

= λ

Z

∞

−∞

xp1(x)P λ−1
1 (x) dx (7)

and can be computed numerically using Eqs. (4) and (5).
The expected value of the w2-component of the selected off-
spring is

E [ŵ2] =

Z

∞

−∞

E [w2|w1 = x] p̂1(x) dx

= λ

Z

∞

−∞

E [w2|w1 = x] p1(x)P λ−1
1 (x) dx (8)

and can be computed numerically using Eqs. (4), (5) and (6).
The progress rate

ϕ = E
h

x
(t+1)
1 − x

(t)
1

i

of the strategy, i.e., the expected step taken in the direction
of the gradient of the objective function, is the product of the
mutation strength and E[ŵ1]. It is shown as a function of the
normalised distance of the parental candidate solution from
the constraint plane in Fig. 2. The solid lines in that figure
have been obtained from Eq. (7) for λ = 10 and three differ-
ent values of the constraint angle. The dashed lines depict
corresponding results for the strategy that resamples infeasi-
ble offspring instead of repairing them and have been derived
in [3]. It can be seen that for any value of δ, the strategy
that repairs infeasible offspring makes greater progress in the
direction of the gradient of the objective function. At the
same time, progress rates increase with increasing distance
from the constraint plane. For large δ, all curves approach
the same value attained in the absence of constraints.
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Figure 3: Average normalised distance δ from the

constraint plane plotted against the constraint an-

gle θ for, from top to bottom, λ ∈ {5, 10, 20}.

4. STEADY STATE BEHAVIOUR
The results derived thus far consider single time steps only

and are conditional on the distance of the parental candi-
date solution from the constraint plane. Assuming for now
that the mutation strength σ is held constant, when the al-
gorithm is iterated, the distribution of δ-values tends to a
stationary limit distribution. As done in [3] for the strategy
that resamples instead of repairing infeasible candidate solu-
tions, as a zeroth order approximation let us assume that the
limit distribution is well characterised by its mean, and that
higher order moments can be neglected. That is, we model
the limit distribution as a (shifted) Dirac delta function and
compute its mode by requiring that

E
h

δ(t+1)
i

= δ(t).

According to Eq. (3), this results in stationarity condition

E [ŵ1] cos θ + E [ŵ2] sin θ = 0.

Using Eqs. (7) and (8) and solving numerically for δ yields
the solid curves shown in Fig. 3. The dashed lines again
represent results from [3] for the strategy that resamples in-
feasible offspring rather than repairing them. The points
mark measurements obtained by averaging over 106 steps
of the strategy described in Section 2. Comparing the solid
lines and points in the figure, the quality of the zeroth order
approximation provided by the delta Dirac model appears
visually good for small constraint angles, but it deteriorates
markedly with increasing θ. That is, in situations where the
strategy closely tracks the constraint plane the behaviour of
the algorithm is quite well described by the model that does
not include variations of that distance. As the constraint an-
gle becomes less acute and the strategy tracks the constraint
plane at a greater distance, variations in that distance be-
come significant and the delta Dirac model is inappropriate.
The same effect has been observed in [3] for the strategy that
resamples infeasible offspring rather than repairing them.
Presumably, using an exponential model for the distribu-
tion of distances as employed in [5] for the (1+1)-ES would
allow deriving more accurate values.

It can be seen from Fig. 3 that for both strategies, the
average distance from the constraint plane decreases with
increasing λ, and it increases with increasing constraint an-
gle θ. Unsurprisingly, as its candidate solutions will often lie
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Figure 4: Progress rate ϕ divided by the mutation

strength σ plotted against the constraint angle θ for,

from bottom to top, λ ∈ {5, 10, 20}.

on the constraint plane, the strategy that projects infeasible
offspring onto that plane tracks it much more closely than
the one that resamples.

The solid curves in Fig. 4 have been obtained by using
the δ-value predicted by the delta Dirac model in Eq. (7)
in order to compute the progress rate of the (1, λ)-ES. As
above, the dashed lines represent results from [3] for the
strategy that resamples infeasible offspring candidate solu-
tions rather than repairing them. The points mark measure-
ments averaged over 106 iterations of the strategy described
in Section 2. As observed in [3], the quality of the approx-
imation of the progress rate provided by the delta Dirac
model is visually good for the entire range of constraint an-
gles. While for larger values of θ, Fig. 3 has shown that the
approximation of the average value of δ is very inaccurate,
the influence of the distances from the constraint plane on
the progress rate becomes weaker as the slope of the curves
in Fig. 2 decreases with increasing δ.

It can be seen from Fig. 4 that the progress rate increases
with increasing θ and λ. Differences in performance between
the strategy that repairs infeasible offspring and the strategy
that resamples are significant mostly for small constraint an-
gles, where progress is slow in either case. Even though the
strategy that repairs infeasible candidate solutions tracks
the constraint plane more closely (and thus operates farther
to the left hand side in the graph in Fig. 2), it generally ex-
hibits larger progress rates than the strategy that resamples.
The difference appears quantitative rather than qualitative.

5. MUTATION STRENGTH ADAPTATION
The mutation strength of the (1, λ)-ES can be adapted

using one of several mechanisms, including mutative self-
adaptation, two-point adaptation, and cumulative step size
adaptation. The latter mechanism has been introduced by
Ostermeier et al. [13] and is popular due to its use in the
CMA-ES. It has been studied for the sphere model in [1,
4], for a class of further convex quadratic functions in [2],
and for ridge functions in [6]. In the case of the (1, λ)-
ES, cumulative step size adaptation employs a search path
s ∈ R

N defined by s(0) = 0 and

s
(t+1) = (1− c)s(t) +

p

c(2− c)ŵ (9)

that implements an exponentially fading record of past steps
taken by the strategy. Constant c ∈ (0, 1) is referred to

as the cumulation parameter and determines the effective
length of the memory implemented in the search path. The
mutation strength is updated according to3

σ(t+1) = σ(t) exp

„

c
‖s(t+1)‖2 −N

2DN

«

(10)

where D > 0 is a damping constant that scales the magni-
tude of the updates. Clearly, the sign of ‖s‖2−N determines
whether the mutation strength is increased or decreased.
The underlying idea is that long search paths indicate that
the steps made by the strategy point predominantly in one
direction and could beneficially be replaced with fewer but
longer steps. Short search paths indicate that the strat-
egy steps back and forth and that it should operate with a
smaller step size. The search path has a squared length of N
if consecutive steps are perpendicular on average, in which
case no change in mutation strength is effected.

For the linear, constrained environment considered here,
the (1, λ)-ES with cumulative step size adaptation does not
assume a stationary limit state. The mutation strength is ei-
ther increased or decreased on average. As the progress rate
of the strategy is positive and proportional to the mutation
strength, increasing σ is desirable while decreasing it leads
to stagnation and convergence to a non-singular point. Sim-
ilarly to [1] we define the logarithmic adaptation response of
the strategy as

∆(t+1)
σ = D log

„

σ(t+1)

σ(t)

«

.

Rather than attempting to solve the difficult problem of ex-
amining the dynamic behaviour of the non-linear stochastic
process generated by the algorithm, we consider the loga-
rithmic adaptation response of the (1, λ)-ES operating out
of a stationary state. That is, we assume that the strat-
egy has been run with a fixed mutation strength until time
step t, where t is large, and we compute the expected log-
arithmic adaptation response at time step t + 1. The same
approach has been pursued in [3] for the strategy that re-
samples infeasible offspring candidate solutions rather than
repairing them. The derivation in that reference holds with-
out changes for the algorithm considered here and yields
expression

E [∆σ] =
c

2N

»

e1,2 + e2,2 + 2
1− c

c

`

e2
1,1 + e2

2,1

´

− 2

–

(11)

where

ei,j = E
h

ŵj
i

i

for the expected logarithmic adaptation response. Expres-
sions for e1,1 and e2,1 have been derived in Eqs. (7) and (8),
respectively. Similarly,

e1,2 = E
ˆ

ŵ2
1

˜

= λ

Z

∞

−∞

x2p1(x)P λ−1
1 (x) dx

3Notice that this update differs from the original prescrip-
tion in that [13] adapts the mutation strength based on
the length of the search path rather than on its squared
length. With appropriately chosen parameters both variants
often behave similarly. Basing the update of the mutation
strength on the squared length of the search path simplifies
the analysis.
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Figure 5: Expected logarithmic adaptation response

E[∆σ ] plotted against cumulation parameter c for

N = 2, λ = 5, and, from top to bottom, θ ∈
{10−1, 10−2, 10−3}.

and

e2,2 = E
ˆ

ŵ2
2

˜

= λ

Z

∞

−∞

E
ˆ

w2
2 |w1 = x

˜

p1(x)P λ−1
1 (x) dx

where

E
ˆ

w2
2|w1 = x

˜

= (1− Pinf(x))E
ˆ

w2
2 |w1 = x and z1 cos θ + z2 sin θ ≤ δ

˜

+ Pinf(x)E
ˆ

w2
2 |w1 = x and z1 cos θ + z2 sin θ > δ

˜

with

E
ˆ

w2
2 |w1 = x and z1 cos θ + z2 sin θ ≤ δ

˜

=
1√

2πΦ((δ − x cos θ)/ sin θ)

Z (δ−x cos θ)/ sin θ

−∞

y2e−
1

2
y2

dy

= 1− 1√
2π

δ − x cos θ

sin θ

exp(−((δ − x cos θ)/ sin θ)2/2)

Φ((δ − x cos θ)/ sin θ)

and

E
ˆ

w2
2 |w1 = x and z1 cos θ + z2 sin θ > δ

˜

=

„

δ − x cos θ

sin θ

«2

.

Both coefficients can be computed numerically using Eqs. (4)
and (5).

The expected logarithmic adaptation response is plotted
against the cumulation parameter c for N = 2, λ = 5, and
several constraint angles in Fig. 5. The lines depict results
from Eq. (11), where values from the Dirac delta model have
been used for the average distance of the strategy from the
constraint plane. The points mark measurements made in
runs of the strategy in which δ is free to vary while σ remains
fixed. It can be seen that the expected logarithmic adapta-
tion response decreases with increasing cumulation parame-
ter, and that it may assume negative values, signalling con-
vergence to a non-stationary point, if c becomes too large.

Of particular interest is the zero crossing of the curves in
Fig. 5 as it represents the maximum value of the cumulation
parameter c for which the expected logarithmic adaptation
response is positive. It can be computed from Eq. (11),
which yields

c ≤ e2
1,1 + e2

2,1

1 + e2
1,1 + e2

2,1 − e1,2/2− e2,2/2
(12)
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Figure 6: Maximum value of the cumulation param-

eter c for which the expected logarithmic adaptation

response is positive plotted against the constraint

angle θ for, from bottom to top, λ ∈ {5, 10, 20}. The

inset shows a log-log plot of the same curves.

when set to zero and solved for c. That relationship is il-
lustrated with solid lines in Fig. 6. The dashed lines once
again represent corresponding results from [3] for the strat-
egy that resamples infeasible offspring rather than repairing
them. Note that for the strategy that applies the repair
mechanism and λ = 20, the value obtained from Eq. (12)
exceeds 1.0 for any constraint angle, and that the corre-
sponding curve therefore does not show up in the figure.

The qualitative difference between the curves for the strat-
egy that resamples infeasible offspring and the one that ap-
plies the repair mechanism is striking. For the former, Fig. 6
illustrates that as the constraint angle becomes smaller and
smaller, the range of cumulation parameter values for which
convergence to a non-stationary point is avoided shrinks as
well. For the strategy that repairs infeasible offspring on the
other hand, Eq. (12) predicts that the value of the cumula-
tion parameter that separates the two regimes approaches a
finite (and not very small) limit value as θ decreases.

The different behaviours of the two strategies can be ex-
plained from Eq. (11). In the limit of very small constraint
angles, e1,1 and e1,2 assume very small values for both strate-
gies as both stay in immediate vicinity of the constraint
plane (compare Figs. 3 and 4). In order to have a positive
logarithmic adaptation response, the terms involving e2,1

and e2,2 in Eq. (11) must be large enough to compensate for
the lack of a contribution to the squared length of the search
path from the components in the direction of the x1-axis.
The strategy that resamples infeasible offspring in the limit
of very small constraint angles performs an almost random
walk in ŵ2, resulting in e2,1 ≈ 0.0 and e2,2 ≈ 1.0, which is in-
sufficient to ensure positive logarithmic adaptation response
unless c is small enough in order to sufficiently amplify the
term involving e2

1,1 in Eq. (11). The strategy that repairs
infeasible offspring on the other hand does not perform a
random walk in ŵ2. In the limit of very small θ, on average
half of the offspring are infeasible and will be projected onto
the constraint plane. In the mean, half of those that are
projected have a negative w2-component and are likely to
prevail under selection as their w1-components are positive.
Unless λ is very small, the majority of steps will thus point
in the direction of the negative x2-axis and lead to relatively
large values of e2

2,1 and e2,2 that ensure positive logarithmic
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adaptation response. It is important to note that this is not
a consequence of a bias built into the step size adaptation
mechanism as a result of changing the length of individual
steps through projection. Projection of mutation vectors
never increases their length (i.e., ‖w‖ ≤ ‖z‖), and thus any
bias as a result of projection is toward smaller step sizes,
not toward larger ones. The positive logarithmic adaptation
response is a result of the coherence of the selected steps in
the direction of the negative x2-axis, not the length of the
mutation vectors.

Finally, to confirm the validity of the results that have
been derived, Fig. 7 shows observations of runs of (1, λ)-
ES in search spaces with constraint angle θ = 10−6, N ∈
{2, 10}, λ ∈ {5, 10, 20}, D = 1.0, and different settings of
the cumulation parameter c. The constraint angle has de-
liberately been chosen small in order to test the strategy
in those situations where the algorithm that resamples in-
feasible offspring is known to fail unless c is chosen very
small. All curves have been obtained by averaging muta-
tion strengths geometrically over 100 independent runs. For
λ = 5, Eq. (12) suggests that the point that separates the
runs that result in increasing mutation strength from those
where the step size is decreased is approximately 0.5. In-
deed, it can be observed that for c = 0.6 convergence to a
non-stationary point occurs, while for c = 0.4 the step size
is increased as desired. The slope of the curves for N = 2
is steeper than the slope of those for N = 10 due to the
presence of N in the denominator in Eq. (11). The same be-
haviour is observed for λ = 10 with c = 0.85 and c = 0.95,
where according to Eq. (12) the point separating the two
regimes should be approximately 0.9. For λ = 20, Eq. (12)
predicts that increasing step sizes will be observed even for
c = 1.0, and that behaviour is indeed observed in the exper-
iments.

6. SUMMARY AND CONCLUSIONS
To conclude, in this paper we have studied the behaviour

of a (1, λ)-ES with cumulative step size adaptation that re-
pairs infeasible candidate solutions by orthogonally project-
ing them onto the boundary of the feasible region for a sim-
ple linear problem with a single linear constraint. For fixed
mutation strength, the normalised distance of the parental
candidate solution from the constraint plane is the only state
variable of the stochastic process that describes the opera-
tion of the strategy. It has been possible to derive exact ex-
pressions that characterise the single step behaviour of the
algorithm and are conditional on the normalised distance
from the constraint plane. The multi-step behaviour forms a
non-linear stochastic process and is not as easily determined.
Under the assumption of constant mutation strength, a sim-
ple zeroth order model has been used to compute the ap-
proximate average normalised distance of the strategy from
the constraint plane. That value has been used to compute
approximate values of the progress rate of the strategy as
well as its expected logarithmic adaptation response when
operating out of the stationary state.

The most interesting finding of this paper is that the
strategy that repairs infeasible candidate solutions exhibits
qualitatively differently behaviour from the one that resam-
ples infeasible offspring. For the latter strategy, it has been
found in [3] that for any value of the cumulation parameter,
cumulative step size adaptation will systematically reduce
the mutation strength if the constraint angle becomes too
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Figure 7: Mutation strength σ plotted against time

for runs of the (1, λ)-ES with cumulative step size

adaptation and different combinations of the num-

ber λ of offspring generated per time step, search

space dimension N , and the cumulation parameter c.

small, resulting in convergence to a non-stationary point.
When repairing infeasible candidate solutions on the other
hand, it has been possible to derive approximate values for
the cumulation parameter that guarantee that convergence
to a non-stationary point does not occur, no matter how
small the constraint angle. The difference in the behaviour
of the two strategies has been explained by considering the
components of the search path in the two-dimensional sub-
space spanned by the gradient of the objective function and
the normal vector of the constraint plane. For small con-
straint angles, both constraint handling mechanisms result
in very small steps in the direction of the gradient vector
being made. However, while for the strategy that resamples
infeasible offspring steps in the perpendicular direction be-
come increasingly random as θ decreases, they tend to point
in the same direction for any θ > 0 for the strategy that
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applies a repair mechanism, resulting in longer search paths
and consequently in a systematic increase of the step size.

Opportunities for extending this work are manifold. The
exponential model in combination with the Kullback-Leibler
divergence used for modelling the steady state of the (1+1)-
ES in [5] can be used in an attempt to obtain a better ap-
proximation of the distribution of normalised distances from
the constraint plane. Further future work includes the exten-
sion of the results of the paper to the more general (µ/µ, λ)-
ES, which performs recombination of several selected can-
didate solutions. It also remains to consider other step size
adaptation mechanisms, such as mutative self-adaptation,
and non-linear objective functions where the local constraint
angle is not constant.
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