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ABSTRACT 
This paper addresses the issue of non-uniform motion deblurring 
due to hand shake for a single photograph. The main difficulty of 
spatially variant motion deblurring is that the deconvolution 
algorithm can not directly be used to estimate the blur kernel as 
the kernel of different pixels are different to each other. In this 
paper, the blurred image is considered as a weighted summation 
of all possible poses, and we proposed to use a PSO (particle 
swarm optimization) to optimize the weighed parameters of the 
corresponding poses after building the motion model of the 
camera, and an alternatively optimizing procedure is used to 
gradually refine the motion kernel and the latent image. The main 
issue of using a PSO for deblurring is that it is generally 
impossible to obtain the ground true of the observed blurred 
image, which must be used as the input of the PSO algorithm. In 
this paper, a non-linear structure tensor with anisotropic diffusion 
is used to smooth the texture while keeping the salient edges in 
the image. Experimental results show the validly of the algorithm. 

Categories and Subject Descriptors 
I.4.3 [Image Processing and Computer Vision]: Enhancement-
Sharpening and Deblurring; 

General Terms 
Algorithms, Experimentation. 

Keywords 
Computational photography, motion deblurring, PSO 

1. INTRODUCTION 
Motion blur caused by camera shake is a one of the most common 
problems in photography. In many situations there is not enough 
light, and a long exposure is required. Then if the camera is not 
held still the snapshots come out blurry. Removing blur from a 
single photograph has been a fundamental research problem and 
received much attention in the past few years. With a few 
exceptions, most of current image deblurring methods assume a 
spatially invariant kernel. If the blur kernel is known, it is a non-

blind case and only a latent image must be recovered from the 
observed image.  

The main difficulty for solving non-uniform motion deblurring is 
that we can not directly use the deconvolution algorithm to 
estimate blur kernel, because the kernels of different pixels are 
different. The key idea of this work is that the observed blurred 
image is the integration of the image taken by the camera over all 
the poses in its path over the exposure, and the blurred image can 
be viewed as a weighed summation of all possible poses. So we 
can solve the deblurring problem by searching the optimized 
weighted parameters in the pose space.  

The contributions of this work are two folds. Firstly we proposed 
a novel deblurring framework, which can be considered as the 
extended version of the fast blind deconvolution proposed by 
Sunghyun and Seungyong [2009]. The main difference between 
their and our framework is that they assumed a uniform kernel 
and used deconvolution method to estimate it, while in our 
framework we assume the kernel to be non-uniform and used a 
PSO (particle swarm optimization) method to solve it. Secondly 
we develop a model relating the camera motion, the latent image 
and the blurred image for a scene with constant depth in pose 
space. Then the PSO algorithm is introduced into our framework 
to effectively optimize the weighted parameters in pose space. 
Meanwhile we find that strong edges do not always help to deblur 
image, since regions with high frequency texture may damage the 
deblurring process, which is the motivation behind a new latent 
image prediction method. A non-linear structure tensor with 
anisotropic diffusion is used to smooth the image while keeping 
the image’s salient edges.  

The paper is organized as follows. In Section 2, we survey related 
work including non-blind deconvolution and blind decnvolution. 
In Section 3 we give the overview of the proposed deblurring 
framework. From Section 4 to Section 7, we give the detail of the 
framework, that is, camera motion model, latent image prediction, 
kernel estimation and deconvolution. In Section 8, we show the 
results of our approach and finally conclude with a discussion of 
limitations and future work in Section 9. 

2. RELATED WORKS 
Image deblurring has received much attention in the past several 
decades. Deblurring is the combination of two tightly coupled 
sub-problems: PSF estimation and non-blind image deconvolution. 
If the blur kernel is known, it is a non-blind case and only a latent 
image must be recovered from the observed. The most famous 
technique may be the Richardson-lucy (RL) deconvolution [Lucy, 
1974], which computes the latent image with the assumption that 
its pixel intensities conform to a Posisson distribution. Recently, 
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Neelamani et al [2004] propose in the signal processing 
community solve the deconvolution problem in the wavelet 
domain or the frequency domain; Donatelli et al. [2006] use a 
PDE-based model to recover a latent image with reduced ringing 
by incorporating an anti-reective boundary condition and a re-
blurring step. Yuan et al. [2008] proposed a progressive multi-
scale refinement scheme based on an edge preserving bilateral 
Richardson-Lucy (BRL) method. Krishnan and Fergus [2009] 
proposed to solve the hyper-Laplacian priors by finding the roots 
of a cubic and quartic polynomial, and using a lookup table (LUT) 
to achieve fast image deconvolution. Their approach can 
deconvolve a 1 megapixel image in less than 3 seconds.  

Blind deconvolution is a significantly more challenging and ill 
posed problem, since the blur kernel is also unknown. Raskar et al. 
[2006] flutter the opening and closing of the camera shutter 
during exposure to minimize the loss of high spatial frequencies. 
Fergus et al. [2006] recover a blur kernel by using a natural image 
prior on image gradients in a variational Bayes framework. Yuan 
et al. [2007] use a pair of images, one blurry and one noisy, to 
facilitate capture in low light conditions. Jia [2007] use 
transparency maps to get cues for object motion to recover blur 
kernels by performing blind-deconvolution on the alpha matte, 
with a prior on the alpha-matte. Shan et al. [2008] incorporate 
spatial parameters to enforce natural image statistics using a local 
ringing suppression step. Joshi et al. [2008] predict a sharp image 
that is consistent with an observed blurred image. They then solve 
for the 2D kernel that maps the blurred image to the predicted 
image. Levin et al. [2009] give a overview of several of these 
existing deblurring techniques, and show that spatial invariance is 
often violated, as it is only valid in limited cases of camera 
motion. Their experiments show that in practice in-plane camera 
rotation is quite common, which leads to spatially varying blur 
kernels. 

Recently there some works on handling spatially-varying blur. 
Shan et al. [2007] propose a technique to handle rotational motion 
blur. They require user interaction for rotation cues and also rely 
on constraints from the alpha matte. Levin et al. [2007] segments 
an image into several areas of different motion blur and then each 
area is deblurred independently. Tai et al. [2008] developed a 
hybrid camera which captured a high frame rate video and a 
blurred image. Optical flow vectors from the video are used to 
guide the computation of spatially-varying blur kernels which are 
in turn used for deblurring. Joshi et al. [2008] run their method for 
non-overlapping windows in an image and use this to remove 
spatially varying defocus blur and chromatic aberration; however, 
they do not address camera motion blur, nor do they try to recover 

a global model of the blur. Dai et al. [2008] propose a method to 
estimate spatially varying blur kernels based on values of the 
alpha map. The method relies strongly on the pre-computation of 
a good alpha matte and assumes the scene to be a foreground 
object moving across a background. Tai et al.[2010] use a coded 
exposure to produce a stroboscopic motion image and estimate 
motion homographics for the discrete motion steps with some user 
interaction, which are then used for deblurring. Their method 
requires close user interaction and relies on non-overlapping 
texture information in the blurred regions. Hirsch et al. [2010] 
also propose a multi-frame patch-based deblurring approach but 
do not impose any global camera motion constraints on the 
spatially-varying blur. 

Our approach is inspired by that of Ankit et al. [2010], Oliver et al. 
[2010] and Neel et al. [2010]. Similar to [2010] and [2010], we do 
not try to recover the spatially varying blur kernels directly, but 
rather recover the camera motion from which the blur kernels can 
be derived in the pose space. The main difference between our 
work and theirs is that, Neel et al. try to recover the camera 
motion by hardware support (3 gyroscopes and 3 accelerometers), 
then the main work of them is to recovery the motion path based 
on the information from the sensors. Ankit et al. present the 
blurred image by a motion density function in the pose space 
based on the framework of uniform blind deconvolution used in 
Shan et al. [2008], and then how to solve the motion density 
function is a hard problem. In our work we propose a new 
framework which searches the optimized parameters using PSO in 
the pose space directly. We also propose a new latent image 
prediction method, which use nonlinear structure tensor to smooth 
the image while keeping salient edges.  

3. THE OVERALL FRAMEWORK 
Blind deconvolution in this paper is alternating optimization 
of L and K in an iterative process. In the latent image estimation 
and kernel estimation steps of the process, we respectively solve 
the equations similar to: 

   arg min * L
L

L B K L L    (1) 

   arg min * K
K

K B K L L    (2) 

In (1) and (2), *B K L is the data fitting term, for which 

the
2

L norm is usually used, and  
L

L  and  
K

L  are 

regularization terms. To progressively refine the motion blur 
kernel K  and the latent image L , our method iterates four steps: 

Figure 1: Process of our deblurring framework.
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latent image prediction, motion estimation, kernel reconstruction 
and deconvolution.  

The process of the framework in this paper is shown in Fig.1. Our 
framework can be considered as the extended version of 
the fast blind deconvolution proposed by Sunghyun and 
Seungyong [2009], which can effectively deblur images. 
The main difference between [Sunghyun and Seungyong, 
2009] and our framework is that they assumed a uniform 
kernel and used deconvolution method to estimate it, while 
in our framework we assume the kernel to be non-uniform 
and used PSO method to solve it. Note that the reason for 
choosing the framework of [Sunghyun and Seungyong, 
2009] is that we need the results from the predicting step as 
the input for the PSO based kernel estimation step in our 
framework as discussed in the section 5. Compared with 
some previous works another main difference is that we 
divide the kernel estimation step into two steps: motion 
estimation and kernel reconstruction, due to spatially-
varying blur. 

4. CAMERA MOTION MODEL 
Currently most of current image deblurring methods assume 
motion blur with a spatially invariant kernel, which is modeled as 
the convolution of a latent sharp image with a shift-invariant 
kernel plus noise. Blur process is commonly modeled as: 

 B L K N     (1) 

where K is the blur kernel, N  is the system noise, which is 
typically considered to be white Gaussian noise.  

Basing on (1), one can get the latent image L  by optimizing K  
and B  iteratively even only has the blurred version of it. 
However, the spatially invariant motion often does not hold in 
practice, so we need setup a more complex model of camera 
motion. We assume the camera initially lies at the world origin 
with its axes aligned with the world axes; a camera motion is a 
sequence of camera poses where each pose can be characterized 
by 6 parameters - 3 rotations and 3 translations. During the 
exposure period of a camera, the intensity of light from a scene 
point  , ,X Y Z  at an instantaneous time t is captured on the image 

plane at a location ( , )t tu v , which can be written as: 

  ( , ,1) , , ,1
TT

t t tu v P X Y Z  (2) 

where tP is the camera projection matrix. tP  varies with the 

camera rotation and translation, which causes fixed points in the 
scene to project to different locations at each sample time.  

For an uncalibrated camera, this is a general 8-parameter 
homography, but in the case of a camera with known internal 
parameters, the homography H  is parameterized rotation matrix 
and translation matrix describing the rotation and the translation 
of the camera: 

   11 TH d M R TN M
d

       
 (3) 

where M is the intrinsic matrix, R  and T are the translation and 
rotation matrix of the camera, d is the scene depth, N  is the unit 

vector that is orthogonal to the image plane. Thus at sample 
time t , the pixel value of the image is: 

      0 0, , ,1
T

t t t tI u v I H d u v  (4) 

We rewrite (4) in matrix form as: 
  t tI K d I  (5) 

The observed image B  is the integral over the exposure time 
T of all the warped versions of I , plus some observation noise 
N : 

   
0

T

tB K d I dt N   (6) 

The integration of these projected observations creates a blurred 
image, and the projected trajectory of each point on the image 
plane is that point’s point-spread function. Thus, the spatially-
varying blur estimation process is reduced to estimating the 
rotations R and translations T for times  0 t , the scene depths d , 

and the camera intrinsic M . We can get the information of the 
camera intrinsic M in the image EXIF tags. In this work we 
assume d is constant due to usually the customer-level camera 
has a long focus length, which is estimated by the method in 
[Joshi, 2010]. 

In general, a single blurry image has no temporal information 
associated with it, so we can not get the exact motion path at each 
sample time from it. We rewrite (6) as: 

  
0

S

s sB w K I dt N   (7) 

In the discrete pose space, it can be written as:  

 
1

S

s s
s

B w K I N


   (8) 

where S is the camera pose space, which consists of all the 
possible camera poses, sw is corresponding parameters which 

indicate the time spent at the pose sK . 

All though we can form the pose space taking into account of all 3 
rotation and 3 translation, but 6D pose space will make the 
number of the possible camera poses too huge. Oliver et al. [2010] 
consider that blur from camera shake is mostly due to the 3D 
rotation of the camera, while Ankit et al. [2010] show that camera 
motion can be modeled well by 2D translation and 1D rotation. In 
this paper we follow Ankit et al. manner and setup a 3D pose 
space with 2D translation and 1D rotation. 

In Eq.(7), except B , all variables are unknown. But if a latent 
version of B  is obtained, then we can estimate the motion of the 
camera by minimize Eq.(8): 

    
2

2

1

S

s s
s

E k w K L wB  


   
 
 
  (9) 

where   is a positive parameter to balance the first item and the 

second item,    is some special feature of  , such as 1-norm or 

2-norm of gradients. 
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5. LATENT IMAGE PREDICTION 
Before using PSO to estimate the motion kernel, we firstly need 
to estimate the latent version of the blurred image. In this paper 
we use a latent image prediction step to do this. Note that 
although some previous work [Xu and Jia, 2010, Sunghyung et al, 
2009] also includes the latent image prediction step, the aim of 
them is totally different to ours. In their work, as the motion 
kernel is uniform, the latent image prediction acts as an auxiliary 
method and not be a key point on the final results, which is why 
many similar works do not have this step. But in our work the 
motion kernel are non-uniform and the image prediction step 
plays a key role when solving Eq.(8). 

In some previous deblurring work [Xu and Jia, 2010, Sunghyung 
et al, 2009], a shock filter was used to restore salient edges in 
latent image. The shock filter is an effective tool for enhancing 
image feature, which can recover sharp edges from blurred step 
signals. The evolution equation of a shock filter is formulated as: 

  1 signt t t tI I I I dt      (10) 

where tI is an image at time t, and tI and tI are the Laplacian 

and gradient of tI , respectively. dt is the time step for a single 

evolution. 

Insignificant edges make PSF estimation vulnerable to noise. But 
it has been found that salient edges do not always help the 
deblurring process. An example is shown in Fig.2, in which three 
step signals have the same observed blurred edges, but the sparse 
prior always prefers the smallest intensity gradient that is 
consistent with the observation. Neel et al. [2008] use local color 
statistics to provide a strong constraint during deconvolution. Xu 
and Jia [2010] consider that edge information could damage 
kernel estimation if the scale of an object is smaller than that of 
the blur kernel.  

In this paper we use a non-linear structure tensor with anisotropic 
diffusion [Brox et al., 2006] to smooth the image. The main 
consideration of the proposed method is to simplify the texture of 
the image while keeping the sharp edges of it. Vector-valued 
anisotropic diffusion evolves the original image under the PDE: 

 
1

n
T

t i k k i
k

u div g u u u


  
      

  
  (11) 

subject to the reflecting boundary conditions: 

 
1

0
n

T
v k k i

k

g u u u


  
      

  
  (12) 

where u is a vector with n components, v denotes the outer 
normal on the image boundary  . The diffusion time t  
determines the amount of simplification: when 0t  the original 
image is recovered and larger values of t  will result in more 
pronounced smoothing. 

In our work, in the earlier iterations of the latent image prediction 
step, we use a large number of iterations of the non-linear 
structure tensor as at this time the latent image is far away from 
the original image so we can only depend on large scale objects 
with salient edges. Following the evolution of the latent image, 
we gradually reduce the number of iterations of the nonlinear 
structure tensor to allow more detail of the image to join into the 

motion estimation. The detail of the latent image prediction step is 
shown in Algorithm 1. 

 

Algorithm 1: Latent Image Prediction 

Input:  
Blurred Image B , the current number of iteration cM in 
Algorithm 2, the maximal number of iterations M  in Algorithm 
2, the maximal number of iterations of the nonlinear structure 
tensor nM . 

 1 / *c c nN M M M     ; % *    is the rounded up of *。 
For 1: cii N  
 Smooth the texture of the blurred image B using Eq.(11) . 
End 

Output: 
The predicted image. 

In Algorithm 1, we use  *  to let the minimal number of 

iterations of the nonlinear structure tensor be 1, in order to 
suppress the noise in the blurred image. 

6. OPTIMIZATION USING PSO 
In Eq.(9), optimizing sw is difficult due to the huge number of 

possible poses of the camera in the pose space, and the problem is 
converted to searching the optimized weighted parameters in a 
high dimensional space. In this paper, we propose to use the PSO 
algorithm to solve this issue. 

The PSO algorithm was first described by Kennedy and Eberhart 
[1996]. The basic PSO (BPSO) algorithm begins by scattering a 
number of “particles” in the function domain space. Each particle 
is essentially a data structure that keeps track of its current 
position x  and its current velocity v . Additionally, each particle 
remembers the “best” position it has obtained in the past, 
denoted ip . The best of these values among all particles (the 

global best remembered position) is denoted gp . At each time 

step, a particle updates its position and velocity by the following 
equations: 

1 1 2 2

( 1)

( ) ( )( ( ) ( )) ( )( ( ) ( ))

ij

ij j ij ij j gj ij

v t

wv t c r t p t x t c r t p t x t

 

   
 (13) 

 
( 1) ( ) ( 1)ij ij ijx t x t v t   

 (14) 

Figure 2: Sharp edges (black) and corresponding observed 
blurred edges (gray). Different sharp edges may have the 
same observed blurred edges.   
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where {1,2,..., }j D , {1,2,..., }i N , N  is the size of the 

population and D  is the Dimension of the space searched,  w  is 
the inertia weight, 1c  and 2c  are two positive constants, 1r  and 2r  

are two random values into the range  0,1 .  

Different with general optimization issue, we normalize the 
weight of particles at the end of the iteration, because 1sw  in 

Eq.(9), where   1|Ds sw w  , D is the dimensional number of the 

pose space.  

Algorithm 2: Optimization by PSO 

For each particle 

 Initialize xi, vi; 

End 

While convergence criteria is dissatisfied 

 For each particle 

  Evaluate the fitness of particle using (9) 

  Update lbest and gbest 

  For each dimension 

   Update velocity and position using (13) and 
(14) 

  End 

 End 

End 

 

When using PSO algorithm to optimize parameters, the first is to 
identify the fitness function. In our work, the fitness function is 
just the  E k in Eq.(9). Then we need to identify the dimension 

of the each particle, which is equal to the total number of possible 
poses in pose space. It is clear that the number of dimension 
depends on the resolution of pose space. As at each step we only 
want to recover the relationship between the predicted latent 
image and the latent image from the previous iteration, we can set 
the maximum offset of the 1D rotation max and 2D translation 

maxT  in each iteration to be some small values, typically, 10 

degrees and 20 pixels. For translation, the resolution directly 
depends on the maximum offset, while for rotation we use the 
following method to determine its resolution. Supposing the size 
of image is N*M, we calculate the smallest value of rotation 
while makes the point on the image edge move a pixel distance by: 

 
2 2

min

4
arccos

2

M N

MN


  
  

 
 (15) 

Then we set max min/  to be the basic scale of the rotation 

dimension. The process of optimizing weighted parameters by 
PSO is shown in Algorithm 2. 

Fig.3 shows an example of using PSO to optimize the weighted 
parameters of all possible pose in pose space. The original image 
is 300*300, and PSO is with 200 particles and 80 max steps. The 
bottom figure shows the convergence curves of PSO with 
different searching parameters, for example, C1(10,20) means 
Curve 1 with max translation 10 and max rotation 20 of the search 
range for PSO. The right image in the second row is the results of 
C4. We find that the PSO results are more sensitive to the max 
rotation. In this experiments, C2(20,30) can not get a satisfied 
result, while tests with C1(10,20), C3(30,20), C4(20,10) can yield 
a better results. Although we can get a better results from 
C2(30,20) by using more particles, but it is found to be time-
consuming and not robust. And in the following tests we always 
use (20, 10) as the searching range for PSO. The result of the PSO 

Figure 3:  One iteration in the proposed framework. First
row: from left to right: the blurred image, the predicted
image. Second row: from left to right: four images in pose
space of the predicted image, the latent image. The third
row: the convergence curves of the algorithm using PSO 
with different parameters respectively. Noticing that the 
latent image contains more sharpen edges then the blurred
one.  
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algorithm will have lot of small values near to zero due to the fact 
that PSO uses real numbers and hardly can make some 
dimensions of the particle to be zeros when the corresponding 
pose is independent of the blurred image, so we need to refine 
these optimized parameters. In this paper, we use the ISD-Based 
Kernel Refinement proposed by Xu and Jia [2010] to exclude the 
independent points.  

With the information projected on the X-Y plane we can directly 
get the kernel of the center of the image, as its rotation is always 
zero in our pose space. We can also get the kernel of other points 
in the image by: 

' cos cos cos sin sin sin cos sin sin cos sin cos '

' cos sin cos cos sin sin sin sin cos cos sin sin '

' sin sin cos cos cos '

1 0 0 0 1 1

x

y

z

x t x

y t y

z t z

           
           

    

      
            
     
     
       

In our model, 0   , ' 0zz t  , xt and yt are the coordinate 

relative to the center of the image. Then we can get the kernel of 
any point in the image based on the kernel of the image center 
and the relative coordinates of the point. 

7. DECONVOLUTION 
We have already discussed the step 1, step 2 and step 3 in Section. 
Now we detail step 4. In the deconvolution step we fix K  and 
optimize L . The energy  E k is as follows: 

  E L L K B L      (16) 

It is a non-blind deconvolution issue which contains non-linear 
penalties for both the data and regularization terms. This process 
is similar to the deconvolution in the motion deblurring 
framework with spatially invariant kernel [Shan et al., 2008, 
Sunghyun and Seungyong, 2009, Xu and Jia, 2010]. In this work 
we mainly use the fast non-blind image deconvolution using 
hyper-laplacian priors proposed by Xu and Jia [2010]. In details, 

we denote image gradients by  ,x yq q q in two directions. The 

use of these auxiliary variables leads to a modified objective 
function 

   2 2

2
, ,

2 2
E I w v I k B I q q

 
        (17) 

where   is a weight that we will vary during the optimization. It 

is easy to see that  when   → ∞, the solution of (17) converges 
to that of (16). In solving for w and v given the I estimate, 
because w and v are not coupled with each other in the objective 
function, their optimization is independent. Two separate 
objective functions are thus yielded. We minimize (17) for a 
fixed   by alternating between two steps, one where we solve for 
x, given values of q and vice-versa. For the x-sub problem we 
directly solve the following equation according to the Parseval’s 
theorem after the Fourier transform: 

 
            
            

** *

** *
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






    


     

  

  
   (18) 

where *  is the complex conjugate and ◦ denotes component-wise 
multiplication. 

For the q-sub problem, a auxiliary variable v  is introduce into the 

 E L . In each iteration, we first compute I given the initial or 

estimated q by minimizing:  

   2 2

2
, ,E I w v I k B v I w




        (19) 

The optimal solutions for all q can be derived according to the 
shrinkage formula: 

  2
2

max ,0x
x

I
w I

I


  


 (20) 

yw  can be computed similarly using the above method. 

Computing v can be:  

    sign max ,0v I k B I k B         (21) 

where β and θ are two small positive values to enforce the 
similarity between the auxiliary variables and the respective terms. 

8. EXPERIMENTS 
For all the test in this work, we set the maximum iteration number 
of nonlinear filter 20 and the minimum iteration number of it 1. 
For the PSO algorithm, we set c1 and c2 both 1, the maximum 
iteration number is 50. The inertia weight w  is 0.4. In the energy 
function,   and   are set 1. kernel size is 31*31. Fig.4 shows 
our results for real-world blurred images of scenes captured using 
an OLYMPUS u840 camera. It shows the original blurred image, 
the deblurred result with the method proposed by Ankit et al. 
[2010], and our deblurring results. The reason of choosing Ankit 
et al works as a comparison is that they also estimate camera 
motion in the pose space without hardware support. But from the 
experimental results it can be seen that their results are worse than 
us. The reasons may be as follows: firstly, although they also 
build up pose space and estimate camera motion, their method 
selects some patches with rich corners to carry out motion 
estimation locally without the consideration of the relationship of 
the pixels motion globally. Secondly, as discussed in section 5, 
rich texture may mislead the motion estimation process, and we 
used a novel latent prediction step to overcome this issue, while 
Ankit et al directly used the selected patch for motion estimation. 

9. CONCLUSION 
In this paper we firstly propose a novel framework to deal with 
motion blur for a single photograph. Secondly, we find that 
regions with high frequency texture may damage the deblurring 
process and we combine non-linear structure tensor with 
anisotropic diffusion and a shock filter to smooth the image while 
keeping the salient edges of large object in the blurred image. 
Thirdly, we develop a model relating the camera motion, the 
latent image and the blurred image for a scene with constant depth 
in the pose space. Finally we introduce PSO algorithm into our 
framework to effectively optimize the weighted parameters in the 
pose space. We show that our approach makes it possible to 
model and remove non-uniform motion blur without any 
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hardware support, and demonstrate its effectiveness with 
experiments on some challenge images. 
One limitation of our method is that at the early period of the 
deblurring process we mainly depend on the edges of large scale 

objects in the predicted image. If these edges are far away from 
their ‘true’ position in the latent image, our method may fail. 
Another limitation is that the PSO used in the framework is a 
random algorithm which is unstable and can not ensure 

Figure 4: Left: Blurred image. Center: The deblurring result of Ankit et al [2010]. with spatially-variant kernel. Right: The 
deblurring result of our work with spatially-variant kernel. 
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convergence. In the experiments we improve the stability of the 
algorithm by using larger number of particles. 
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