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ABSTRACT

In this paper, we show that sequential parameter optimiza-
tion (SPO), a method that was designed for (offline) pa-
rameter tuning, can be successfully used as a controller for
multistart approaches of evolutionary algorithms (EA). We
demonstrate this by replacing the restart heuristic of the
IPOP-CMA-ES with the SPO algorithm. Experiments on
the BBOB 2010 test cases suggest that the performance is
at least competitive while the approach provides more op-
tions, e.g. setting more than one parameter at once. Essen-
tially, we argue that SPO is a generalization of the IPOP
heuristic and that the distinction between tuning and con-
trol is—although often useful—an artificial one.

Categories and Subject Descriptors

G.1.6 [Numerical Analysis]: Optimization—global opti-
mization, unconstrained optimization; F.2.1 [Analysis of
Algorithms and Problem Complexity]: Numerical Al-
gorithms and Problems

General Terms

Performance, Experimentation

Keywords

parameter setting, parameter tuning, parameter control,
SPO, CMA-ES

1. INTRODUCTION
A straightforward approach to improve optimization per-

formance on multimodal problems are multistart strategies.
These approaches work by splitting up the available budget
of objective function evaluations into several independent
runs of the optimization algorithm. Their advantage lies in
the randomly chosen starting points that greatly influence in
which region the optimization concentrates. A special case
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of multistart approaches are restart approaches, which usu-
ally contain heuristics to detect e. g. the algorithm’s stag-
nation in a local optimum. It is then possible to trigger
a restart with a new, random initial solution and modified
strategy parameters. The variation of strategy parameters
may follow simple heuristics, e.g. doubling the population
size in order to better cope with the highly multimodal but
regular global structure of the problem, as done in the co-
variance matrix adaption evolution strategy with increasing
population size (IPOP-CMA-ES) by Auger and Hansen [1].
It may or may not take feedback from the previous starts
into account. An example for an (although very indirect)
feedback based mechanism is the somewhat more complex
heuristic employed in the BI-population (BIPOP) CMA-ES
by Hansen [6]. It uses IPOP and another heuristic inter-
leaved, depending on which one has consumed a smaller bud-
get of function evaluations. However, it may be argued that
these mechanisms have been designed for tackling the special
cases of some otherwise unsolvable problems and would have
to be adapted to cope well with other difficult problems. Ef-
fectively, one is trying to solve a low dimensional (1 in this
case) meta-optimization or parameter setting problem here
which could be handled in a very different way.

The currently predominant nomenclature divides parame-
ter setting into parameter tuning and parameter control [3].
In this context, control means the dynamic setting of param-
eters during the run, while tuning means parameter setting
in a separate stage before the actual optimization. The lat-
ter one is often criticized as extremely time-consuming [3,
14], because it implies several complete runs of the opti-
mizer to test different configurations. However, multistart
approaches provide us with the same simple interface and
are actually similarly expensive if the number of restarts is
high enough.

As our approach utilizes restarts which are performed af-
ter somehow recognizing that the search becomes unproduc-
tive, it may make sense to ask for criteria that provide such
information. Most current EA employ movement criteria for
this purpose as already proposed by Schwefel [20]. This con-
cept is e. g. applied by Sastry [19] or Zielinski and Laur [23].
Qualified run-time distributions by Hoos and Stützle [10]
may be an alternative but have only been investigated for
combinatorial/discrete optimization. We also disregard the-
oretical concepts here as they rather have a global view on
the search space that is inappropriate if restarts shall be
done rapidly.

The CMA-ES in its different variants employs the best
known developed set of movement criteria relating to pop-
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Algorithm 1 Sequential Parameter Optimization

Input:
l,u // box constraints
Ninit // size of the initial design set

1: D← lhs(l,u, Ninit) // generate initial design
2: Y ← runDesign(D) // perform experiments
3: while budget not exhausted do
4: // calculate performance indices
5: y← aggregateRuns(Y)
6: // fit empirical model of the response
7: M← fitModel(D,y)
8: // find promising design point
9: dnew ← modelOptimization(M)
10: // perform experiments and add results
11: Y ← Y ∪ runDesign(dnew)
12: D← D ∪ dnew

13: end while
14: return M, d∗ // return final model and best design

ulation variance, step sizes and numerical issues, mostly
tasked at detecting situations where no further movement
of the population can be expected [9, 5]. This is another
motivation to rely on the CMA-ES for setting up a restart-
based parameter variation method.

2. METHOD
In contrast to the given examples, we suggest to carry out

the parameter setting by means of a tuning method, namely
the sequential parameter optimization (SPO) by Bartz-Beiel-
stein et al. [2]. The benefit of SPO is that it is a general
purpose optimizer designed for extremely noisy real-valued
problems and small budgets. Thus, it can be easily plugged
into existing systems as a restart heuristic. It adopts ideas
from design of experiments (DoE) [13] and design and anal-
ysis of computer experiments (DACE) [17, 18] to tackle the
noisy optimization problem that parameter setting is.

Algorithm 1 outlines how SPO works. In the first ex-
ploratory phase, a random sample D (typically latin hyper-
cube sample) of the search space is drawn and evaluated.
To filter out noise, points may be sampled repeatedly and
the results Y averaged. Then, a surrogate modelM is cre-
ated. In our case, DACE Kriging [11] is used as model. In
an optimization loop, the model is then used to predict the
next promising parameter configuration dnew. When it is
evaluated, the data is fed back into the model. If no new
best configuration is found in a step, the number of repeats
is increased by one. This means that the current best con-
figuration is evaluated again, too. This adaptive mechanism
ensures that wrong values that mislead the model get cor-
rected over time.

Note that there is an important difference between our
and the ‘traditional’ application of SPO. Usually, one would
indentify the whole IPOP-CMA-ES as a monolithic block
and try to optimize its parameters with SPO. Instead, we
replace the IPOP heuristic with SPO and use it to control
the remaining parameters. However, the SPO algorithm in
itself remains completely unchanged. The only thing that
has to be adapted to the new application are some of its pa-
rameters and the stopping criterion, which stays dependent
on the function evaluations of the original problem. SPO is
a true extension of IPOP as a restart heuristic, because

1. there are lower and upper bounds for the number of
offspring λ, and

2. IPOP does not use any feedback from the optimization,
except for the restart events themselves.

Thus, the possible configurations generated by IPOP can
be included in SPO’s initial sample and tried in order of
increasing population size. So, the whole approach can be
interpreted as a first exploration stage followed by a careful
mix of exploitation and exploration.

Apart from possible performance gains, the real advantage
is the flexibility of the approach. The user can smoothly
adjust the trade-off between exploration and exploitation
by determining the number of parameters, their boundaries,
the number of configurations, repeats per configuration, and
the order in which configurations are tried. The surrogate
model then not only helps to exploit the information gained
in this phase, but is easily visualizable afterwards. Thus, the
user may employ it to choose a more exploitative set-up on
the next problem instance, or generally look into parameter
interactions on the algorithm/problem system. We will now
go on to experimentally demonstrate both performance and
practicability aspects in Section 3 before conclusions and
outlook follow in Section 4.

3. EXPERIMENT
Research Question: How competitive is SPO as a restart
heuristic in comparison with other specially designed heuris-
tics?
Pre-experimental planning: The existing literature [1,
6, 12] and our preliminary experiments indicate that λ is
the most important parameter. Thus, we initially tried out
two SPO variants that use slightly different initial designs.
Both generate a latin hypercube sample of five points in the
region defined by Table 1. The number of offspring divided
by the number of parents, λ/µ, is called selection pressure.
It controls how greedy the algorithm is. The initial step size
σinit determines the size of the neighborhood at the begin-
ning of the search. We shall add that the CMA-ES employs
a weighting scheme that usually emphasizes the importance
of the best individuals. This of course also influences the se-
lection pressure. However, we stay with the default scheme
here.

The smallest λ found in the initial design is replaced by
λdef = 4 + ⌊3 lnD⌋. One of our two approaches arranges
the configurations according to λ in ascending order (mono-
tonically increasing, MOIN), while the other uses a random
order except for the first configuration (RAND). Both be-
gin with λdef . These two heuristics are loosely inspired by
IPOP [1] and BIPOP [6], respectively. However, prelimi-
nary experiments revealed that the RAND variant usually
performed slightly worse. Thus, it is ignored in the remain-
ing analysis.

To obtain more reliable results, we decided to increase
the number of problem instances from 15 to 30 for the func-
tions that appear interesting to us (see Table 2). These are
generally the ones that force IPOP-CMA-ES to do a lot of
restarts.
Task: The new appoach is tested on the BBOB 2010 prob-
lems [4]. The performance is assessed by keeping the de-
sired quality fixed and estimating the expected running time
(ERT). ERT depends on a given target function value, ft =
fopt + ∆f , and is computed over all relevant trials as the
number of function evaluations executed during each trial
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Table 1: Considered parameters including their box
constraints, default value, and additional transfor-
mation.

Parameter λ λ/µ σinit

ROI {λdef , . . . , 1000} [1.5, 2.5] [1, 5]
Default 4 + ⌊3 lnD⌋ 2 2
Transformation log10 none none

Figure 1: The RT ratio of IPOP-CMA-ES divided
by SPO-CMA-ES is plotted against the number of
restarts carried out by IPOP-CMA-ES. In this fig-
ure, larger values indicate an advantage for SPO-
CMA-ES (contrary to Figure 3).

while the best function value did not reach ft, summed over
all trials and divided by the number of trials that actually
reached ft [8, 15]. Statistical significance is tested with the
rank-sum test for a given target ∆ft using, for each trial,
either the number of needed function evaluations to reach
∆ft (inverted and multiplied by −1), or, if the target was
not reached, the best ∆f -value achieved, measured only up
to the smallest number of overall function evaluations for
any unsuccessful trial under consideration.
Setup: As much as possible of the experimental setup is
taken over from the BBOB 2010 guidelines [8]. Namely, the
initial solution is chosen from [−4, 4]D and the final target
precision is ∆f = 10−8. The maximal budget per instance
is 106 · D

2
function evaluations. To be competitive, we reduce

the SPO budget to the minimal possible values, namely an
initial design of five configurations (default 10D) and ini-
tially only one repeat per configuration (default 4). The
experiments are carried out with the CMA-ES implementa-
tion in Python, version 0.9.51 [7]. The used BBOB version
is 10.2.
Results: Figure 3 shows the ERT ratios between IPOP-
CMA-ES and SPO-CMA-ES only on multimodal functions,
but in all dimensions, while Table 2 shows the ERT and
success rates in 5, 10, and 20 dimensions on all problems.
Figure 1 reveals that SPO-CMA-ES can mainly yield lower
running times when IPOP-CMA-ES makes more than ten
restarts. Here, the x-axis represents the number of restarts
of IPOP-CMA-ES. On the y-axis, we plotted the running
time ratio of the two algorithms for each problem instance
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Figure 2: The success probabilities of both algo-
rithms plotted against each other. The values are
averaged over all problems.

and random seed. The points with a ratio of exactly one
refer to problem instances that could not be solved by both.
On the other hand, Figure 2 shows that the success rate
of SPO-CMA-ES is generally higher than for IPOP-CMA-
ES. Figure 4 finally illustrates some selected Kriging models
which represent the main strength of the SPO approach.
The models predict the best objective value to be achieved
with each configuration.
Discussion: As Figure 1 suggests, it would have been ad-
vantageous for the SPO-CMA-ES to be even more conser-
vative and try the exact default configuration at first. This
way, the cases where IPOP-CMA-ES made no restarts and
SPO-CMA-ES was worse could have been avoided. Appar-
ently, the default values are indeed quite competitive on
many problems.

We are convinced that the small difference between the
success rates of the algorithms in 20D and 40D (see Fig-
ure 2) is due to a floor effect: The problems become too
hard to be solved by any algorithm with the limited number
of function evaluations.

The models in Figure 4 were chosen according to the num-
ber of points they were built from and their coefficient of
determination (R2). R2 is an indicator for the proportion
of sample variance that is explained by the model [21]. A
model that perfectly fits the data would achieve a value of
R2 = 1. From this indicator, there still seems to be room
for improvements of the models, most likely due to the low
number of points and repeats. Each panel in the upper
triangles of each subfigure shows an interaction effect be-
tween two parameters, while the lower triangles show the
prediction uncertainty. The panels in each triangle share a
common color map covering the range between the overall
min and max values. This enables us to distinguish different
strengths of effects. Naturally, the uncertainty is low (blue)
around sampled points and high (red) far away from them.
Note that this uncertainty estimation only accounts for the
error possibly made by the model, not the random noise
that comes from the stochastic process. Regarding the in-
teraction effects, we can see from the absence of deep red or
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5-D 10-D 20-D
∆f 1e+11e+0 1e-1 1e-3 1e-5 1e-7 #succ

f1 11 12 12 12 12 12 15/15
0: I 3.4 9.8 15 29 42 54 15/15
1: S 3.5 8.7 15 26 38 49 15/15

f2 83 87 88 90 92 94 15/15
0: I 13 16 18 19 21 22 15/15
1: S15 17 18 20 21 22 15/15

f3 720 1600 1600 1600 1700 1700 15/15
0: I 1.1 51 3.1e3 3.1e3 3.0e3 3.0e3 10/30
1: S 1.8 32 490 500 500 500 26/30

f4 810 1600 1700 1800 1900 1900 15/15
0: I 2.3 ∞ ∞ ∞ ∞ ∞2.5e6 0/30
1: S 2 ∞ ∞ ∞ ∞ ∞2.5e6 0/30

f5 10 10 10 10 10 10 15/15
0: I 5.9 17 21 22 22 22 15/15
1: S 7.6 18 25 26 26 26 15/15

f6 110 210 280 580 1000 1300 15/15
0: I 1.6 1.8 2 1.6 1.2 1.2 15/15
1: S 1.5 1.6 1.9 1.4 1.1 1.1 15/15

f7 24 320 1200 1600 1600 1600 15/15
0: I 4.5 2.3 1.5 1.2 1.2 1.3 15/15
1: S 4.4 1.4 1.4 1.2 1.2 1.3 15/15

f8 73 270 340 390 410 420 15/15
0: I 3.7 4.2 4.8 5.2 5.4 5.6 15/15
1: S 3 5.5 6.1 6.3 6.5 6.9 15/15

f9 35 130 210 300 340 370 15/15
0: I 6.4 7.3 6.6 6 6 5.9 15/15
1: S 6 10 8.4 7.4 7.2 7 15/15

f10 350 500 570 630 830 880 15/15
0: I 3.3 3.4 3.2 3.1 2.6 2.6 15/15
1: S 3.2 2.7 2.8 2.8 2.3 2.3 15/15

f11 140 200 760 1200 1500 1700 15/15
0: I 7.9 7.1 2.1 1.6 1.4 1.3 15/15
1: S 7.5 6.9 2.1 1.6 1.4 1.3 15/15

f12 110 270 370 460 1300 1500 15/15
0: I 6.5 6.3 7.6 8.1 3.6 3.5 15/15
1: S 8.4 6.4 6.6 7.1 3.2 3.2 15/15

f13 130 190 250 1300 1800 2300 15/15
0: I 4.2 4.9 5.9 1.6 1.6 1.5 15/15
1: S 5.4 7.5 6.9 1.9 2 1.9 15/15

f14 9.8 41 58 140 250 480 15/15
0: I 1.4 2.8 3.6 4.8 5.6 4.4 15/15
1: S 2.5 3.1 3.8 4.7 5.2 4.3 15/15

f15 510 9300 1.9e4 2.0e4 2.1e4 2.1e4 14/15
0: I 1.5 0.94 0.98 0.98 0.99 0.99 15/15
1: S 1.8 1.1 0.85 0.87 0.89 0.91 15/15

f16 120 610 2700 1.0e4 1.2e4 1.2e4 15/15
0: I 1.6 3.3 2.1 0.91 0.91 0.91 30/30
1: S 1.3 3.4 3 1.3 1.3 1.3 30/30

f17 5.2 210 900 3700 6400 7900 15/15
0: I 4.9 1.1 1.1 0.92 1 1.1 30/30
1: S 5 1 1.1 1.1 0.89 1 30/30

f18 100 380 4000 9300 1.1e4 1.2e4 15/15
0: I 5.5 3.7 1.1 1.1 1.1 1.2 30/30
1: S 1.1 2.7 0.98 0.86 0.88 0.9 30/30

f19 1 1 240 1.2e5 1.2e5 1.2e5 15/15
0: I 19 2.6e3360 2 2 2 30/30
1: S25 6.9e3270 1.3 1.3 1.3 30/30

f20 16 850 3.8e4 5.4e4 5.5e4 5.5e4 14/15
0: I 3.2 9.9 1.7 1.3 1.4 1.4 30/30
1: S 4.4 9.9 1.5 1.1 1.2 1.2 30/30

f21 41 1200 1700 1700 1700 1800 14/15
0: I 4.6 16 30 32 32 33 30/30
1: S 3.1 7.7 31 31 31 31 30/30

f22 71 390 940 1000 1000 1100 14/15
0: I 6.3 33 310 630 610 600 28/30
1: S 8.8 69 570 550 530 520 28/30

f23 3 520 1.4e4 3.2e4 3.3e4 3.4e4 15/15
0: I 2.6 9.3 3.4 2.1 2 2 30/30
1: S 2.6 10 12 5.6 5.5 5.4 30/30

f24 16002.2e5 6.4e6 9.6e6 1.3e7 1.3e7 3/15
0: I 2.8 40 5.7 7.6 5.7 5.7 1/30
1: S 3 8.5 0.85 1.1 0.86 0.86 6/30

∆f 1e+1 1e+0 1e-1 1e-3 1e-5 1e-7 #succ

f1 22 23 23 23 23 23 15/15
0: I 5.3 12 18 31 44 56 15/15
1: S 5.8 13 19 31 45 58 15/15

f2 190 190 190 190 190 200 15/15
0: I 21 24 25 27 29 30 15/15
1: S 21 25 26 28 30 31 15/15

f3 1700 3600 3600 3600 3600 3700 15/15
0: I 3.6 770 1.3e4 1.3e4 1.3e4 1.3e4 3/30
1: S 3.1 170 760 750 750 750 24/30

f4 2200 3600 3700 3700 3700 2.9e4 12/15
0: I 6.3 ∞ ∞ ∞ ∞ ∞5.0e6 0/30
1: S 5.4 ∞ ∞ ∞ ∞ ∞5.0e6 0/30

f5 20 20 20 20 20 20 15/15
0: I 17 36 38 39 39 39 15/15
1: S 14 28 31 33 33 33 15/15

f6 410 620 830 1300 1800 2400 15/15
0: I 1.7 1.8 1.8 1.8 1.7 1.6 15/15
1: S 1.6 1.8 1.9 1.8 1.7 1.7 15/15

f7 170 1600 4200 5100 5100 5400 15/15
0: I 2 1.4 1.4 1.5 1.5 1.4 15/15
1: S 3.5 1.5 1.1 1.3 1.3 1.2 15/15

f8 330 920 1100 1300 1300 1300 15/15
0: I 2.4 4.2 4.3 4.4 4.6 4.7 15/15
1: S 2.5 4.8 4.9 4.9 5 5.2 15/15

f9 200 650 860 1100 1100 1200 15/15
0: I 4.6 6.4 5.9 5.4 5.4 5.5 15/15
1: S 3.3 6.2 5.9 5.4 5.5 5.5 15/15

f10 1800 2200 2500 2800 4500 4700 15/15
0: I 2 2 2 1.9 1.3 1.3 15/15
1: S 2.1 2.1 2 1.9 1.3 1.3 15/15

f11 270 1000 2600 3300 4100 4800 15/15
0: I 12 3.8 1.7 1.5 1.3 1.2 15/15
1: S 12 3.7 1.6 1.5 1.3 1.2 15/15

f12 520 900 1200 1600 3700 5200 15/15
0: I 2.5 3 3.7 4.8 2.7 2.3 15/15
1: S 3.2 3.2 3.5 4.6 2.6 2.2 15/15

f13 390 600 800 4600 6200 7800 15/15
0: I 4 5.7 5.1 1.3 1.7 1.6 15/15
1: S 5.5 6.1 5.9 1.5 1.9 2 15/15

f14 37 98 130 390 690 4300 15/15
0: I 2.1 3 3.7 4 5.2 1.4 15/15
1: S 3 3.4 4.1 4.1 5.3 1.4 15/15

f15 4800 3.9e4 7.4e4 7.6e4 7.8e4 8.0e4 12/15
0: I 0.8 1.2 0.94 0.95 0.97 0.98 15/15
1: S 0.87 1.1 0.8 0.82 0.84 0.86 15/15

f16 430 7000 1.6e4 5.1e4 6.6e4 7.2e4 15/15
0: I 1.9 0.81↓ 1.3 1 0.96 0.91 30/30
1: S 2.1 0.6↓ 2.6 1.5 1.3 1.3 30/30

f17 26 430 2200 9900 2.0e4 2.7e4 15/15
0: I 1.8 1.2 0.87↓ 1 0.84 1.1 30/30
1: S 2.4 1.1 0.76↓ 0.96 0.82 0.87 30/30

f18 240 840 7000 2.8e4 3.7e4 4.3e4 15/15
0: I 1.1 3.1 1.3 1.1 1 1 30/30
1: S 1.3 1.8 1.1 0.87 0.86↓ 0.84↓ 30/30

f19 1 1 1.1e4 1.4e6 1.4e6 1.4e6 15/15
0: I 59 2.4e4 25 0.85↓ 0.85↓ 0.85↓ 30/30
1: S 90 3.2e4 25 0.95↓ 0.94↓ 0.94↓ 29/30

f20 32 1.5e4 5.5e5 5.7e5 5.8e5 5.9e5 15/15
0: I 5.4 2.8 1.1 1.1 1.1 1.1 30/30
1: S 6.4 2.6 1.8 1.7 1.7 1.7 29/30

f21 130 2200 4400 4600 5100 1.1e4 15/15
0: I 6.9 31 63 61 56 25 30/30
1: S 8.6 33 74 70 64 29 30/30

f22 98 2800 6400 6800 8300 1.0e4 15/15
0: I 12 360 4.0e3 3.8e3 3.1e3 2.5e3 5/30
1: S 50 350 2.5e3 2.3e3 1.9e3 1.7e3 7/30

f23 2.8 920 1.6e4 2.0e5 2.1e5 2.1e5 15/15
0: I 1.8 36 21 11 11 11 26/30
1: S 2.5 48 18 8.7 8.6 8.4 29/30

f24 9.9e4 1.0e6 7.5e7 7.5e7 7.5e7 7.5e7 1/15
0: I 32 6.9 1 ∞ ∞ ∞5.0e6 0/30
1: S 26 3.6 2 2 2 2 1/30

∆f 1e+1 1e+0 1e-1 1e-3 1e-5 1e-7 #succ

f1 43 43 43 43 43 43 15/15
0: I 7.9 14 20 33 45 58 15/15
1: S 8.3 14 20 32 45 57 15/15

f2 380 390 390 390 390 390 15/15
0: I 34 40 44 47 48 49 15/15
1: S 32 40 43 47 48 49 15/15

f3 5100 7600 7600 7600 7600 7700 15/15
0: I 26 ∞ ∞ ∞ ∞ ∞1.0e7 0/30
1: S 25 3.9e4 ∞ ∞ ∞ ∞1.0e7 0/30

f4 4700 7600 7700 7700 7800 1.4e5 9/15
0: I ∞ ∞ ∞ ∞ ∞ ∞1.0e7 0/30
1: S6.2e4 ∞ ∞ ∞ ∞ ∞1.0e7 0/30

f5 41 41 41 41 41 41 15/15
0: I 19 30 34 34 34 34 15/15
1: S 16 28 31 32 32 32 15/15

f6 1300 2300 3400 5200 6700 8400 15/15
0: I 1.4 1.3 1.2 1.1 1.2 1.2 15/15
1: S 1.4 1.2 1.1 1.1 1.1 1.2 15/15

f7 1400 4300 9500 1.7e4 1.7e4 1.7e4 15/15
0: I 1.8 5 3.1 1.9 1.9 1.9 15/15
1: S 1.4 3.5 2.4 1.5 1.5 1.5 15/15

f8 2000 3900 4000 4200 4400 4500 15/15
0: I 3.6 3.9 4.2 4.4 4.5 4.5 15/15
1: S 3.8 5.6 5.9 6 6 6.1 15/15

f9 1700 3100 3300 3500 3600 3700 15/15
0: I 4.3 5.4 5.8 5.9 5.9 5.9 15/15
1: S 4.3 5.6 5.9 6.1 6.1 6.1 15/15

f10 7400 8700 1.1e4 1.5e4 1.7e4 1.7e4 15/15
0: I 1.7 1.8 1.6 1.2 1.1 1.1 15/15
1: S 1.7 1.8 1.6 1.2 1.1 1.1 15/15

f11 1000 2200 6300 9800 1.2e4 1.5e4 15/15
0: I 9.4 4.9 1.9 1.3 1.2 1 15/15
1: S 9.2 4.9 1.9 1.3 1.1 1 15/15

f12 1000 1900 2700 4100 1.2e4 1.4e4 15/15
0: I 1.9 1.6 2.5 2.9 1.4 1.5 15/15
1: S 2.2 3 3.8 3.8 1.7 1.8 15/15

f13 650 2000 2800 1.9e4 2.4e4 3.0e4 15/15
0: I 3.1 4.8 7.2 1.5 1.7 2.3 15/15
1: S 4.5 4.5 5 1.7 2 2.2 15/15

f14 75 240 300 930 1600 1.6e4 15/15
0: I 3.4 2.7 3.4 4 6.1 1.2 15/15
1: S 4.1 2.8 3.6 3.8 5.9 1.2 15/15

f15 3.0e4 1.5e5 3.1e5 3.2e5 4.5e5 4.6e5 15/15
0: I 1.1 1 0.68 0.69 0.51↓ 0.52↓ 15/15
1: S 1 1 0.6 0.62 0.46↓ 0.48↓ 15/15

f16 1400 2.7e4 7.7e4 1.9e5 2.0e5 2.2e5 15/15
0: I 1.3 0.59 1.1 1.9 1.9 1.8 30/30
1: S 1.6 1 1.6 2.5 2.8 2.5 30/30

f17 63 1000 4000 3.1e4 5.6e4 8.0e4 15/15
0: I 2.1 0.99 1.1 0.7↓ 0.94 0.96 30/30
1: S 2.7 1.1 1.2 0.79↓ 0.82 0.85↓ 30/30

f18 620 4000 2.0e4 6.8e4 1.3e5 1.5e5 15/15
0: I 1 1.3 0.83 0.97 0.99 0.97 30/30
1: S 1.3 1.8 0.96 0.79↓ 0.87 0.87 30/30

f19 1 1 3.4e5 6.2e6 6.7e6 6.7e6 15/15
0: I 190 5.2e4 2.9 4.4 5.6 5.5 7/30
1: S220 1.6e5 1.6 9.3 11 11 4/30

f20 82 4.6e4 3.1e6 5.5e6 5.6e6 5.6e6 14/15
0: I 4.9 5.4 46 ∞ ∞ ∞1.0e7 0/30
1: S 5.5 5.7 18 53 52 52 1/30

f21 560 6500 1.4e4 1.5e4 1.6e4 1.8e4 15/15
0: I 8.4 240 240 230 220 200 26/30
1: S 23 160 190 180 170 150 26/30

f22 470 5600 2.3e4 2.5e4 2.7e4 1.3e5 12/15
0: I 38 720 ∞ ∞ ∞ ∞1.0e7 0/30
1: S 42 750 6.1e3 5.8e3 5.3e3 1.1e3 2/30

f23 3.2 1600 6.7e4 4.9e5 8.1e5 8.4e5 15/15
0: I 2.1 8.6e3 380 ∞ ∞ ∞1.0e7 0/30
1: S 1.9 6.5e3 170 200 120 120 3/30

f24 1.3e6 7.5e6 5.2e7 5.2e7 5.2e7 5.2e7 3/15
0: I 4.4 2.3 ∞ ∞ ∞ ∞1.0e7 0/30
1: S 5.9 3.7 ∞ ∞ ∞ ∞1.0e7 0/30

Table 2: Expected running time (ERT in number of function evaluations) divided by the best ERT measured
during BBOB-2009 (given in the respective first row) for different ∆f values for functions f1–f24. The median
number of conducted function evaluations is additionally given in italics, if ERT(10−7) = ∞. #succ is the
number of trials that reached the final target fopt + 10−8. 0: I is IPOP-CMA-ES and 1: S is SPO-CMA-ES.
Bold entries are statistically significantly better compared to the other algorithm with p ≤ 0.05. Up and down
arrows indicate significant differences to the best BBOB-2009 algorithm.
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Figure 3: ERT ratio of SPO-CMA-ES divided by IPOP-CMA-ES versus log10(∆f) for multimodal functions
in 2, 3, 5, 10, 20, 40-D. Ratios < 100 indicate an advantage of SPO-CMA-ES, smaller values are always
better. The line gets dashed when for any algorithm the ERT exceeds thrice the median of the trial-wise
overall number of f-evaluations for the same algorithm on this function. Symbols indicate the best achieved
∆f-value of one algorithm (ERT gets undefined to the right). The dashed line continues as the fraction of
successful trials of the other algorithm, where 0 means 0% and the y-axis limits mean 100%, values below
zero for SPO-CMA-ES. The line ends when no algorithm reaches ∆f anymore. The number of successful
trials is given, only if it was in {1 . . . 9} for SPO-CMA-ES (1st number) and non-zero for IPOP-CMA-ES
(2nd number). Results are significant with p ≤ 0.05 for one star and p ≤ 10−#⋆ otherwise, with Bonferroni
correction within each figure.

blue colors, that λ/µ and σinit usually have a weaker influ-
ence than λ. Furthermore, high λ values yield better results
(blue), as was already expected. Interestingly, there seem to
be cases where a lower selection pressure λ/µ is promising
(Fig. 4a, 4b), and cases where the opposite is true (Fig. 4c,
4d). This cannot be said about σinit, so that it could be
probably omitted from the optimization without significant
loss. Note, however, that all problems in the BBOB test bed
have a feasible region of [−5, 5]D. On unbounded and/or
real-world problems it might be more difficult to find an
appropriate σinit.

4. CONCLUSIONS AND OUTLOOK
SPO can be regarded as an extension of the IPOP heuris-

tic. So, we compared the newly developed SPO-CMA-ES
to IPOP-CMA-ES, an algorithm that has proven to be still
competitive on recent benchmarks [16]. The experiments
showed that SPO-CMA-ES can achieve a better running
time and success rate than IPOP-CMA-ES, especially on
the harder problems of the BBOB test bed. Additionally,
SPO-CMA-ES can also provide insight into the parameter
influences, thanks to its roots in parameter tuning. The
surrogate model yields information whether parameters in-

teract with each other or have no influence. The user can
then employ this information to refine the parameter set-
ting for a possible next instance of the same problem class.
Thus, the approach can blend smoothly between parameter
tuning and parameter control. After all, parameter setting
(tuning) is just some kind of noisy optimization. Thus, we
would like to encourage researchers not to insist on a sharp
distinction of tuning and control but to take methods from
the respective other fields into account.

To make SPO-CMA-ES independent of the actual objec-
tive values, it might be promising to apply a rank transfor-
mation prior to modeling. This has already been demon-
strated to be effective in a parameter tuning context by
Wessing and Wagner [22]. In the future, it also would be in-
teresting to add SPO as restart heuristic to other algorithms
that might benefit even more from an improved parameter
control, as CMA-ES is already one of the most successful
local search algorithms with a very robust set of default pa-
rameters.

Another interesting question would be if it is possible to
incorporate some kind of cost management into the restart
heuristic. Such a heuristic would also account for the num-
ber of objective function evaluations carried out by each
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(a) 96 restarts, distributed over 19 configurations on f3 in
10D (R2 = 0.41). The run did not reach ft.
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(b) 67 restarts, distributed over 17 configurations on f4 in
5D (R2 = 0.28). The run did not reach ft.
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(c) 94 restarts, distributed over 19 configurations on f21 in
20D (R2 = 0.14). The run did not reach ft.
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(d) 101 restarts, distributed over 22 configurations on f22
in 5D (R2 = 0.19). The run reached ft in 1.8× 106 evalu-
ations.

Figure 4: Kriging model of the CMA-ES parameters on some selected problem instances.
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configuration, as BIPOP already does. However, prelimi-
nary experiments with an aggregated objective failed, which
is why we suspect that a multi-objective approach would be
necessary.
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