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ABSTRACT

This paper presents a performance comparison of 4 direct
search strategies in continuous search spaces using the noisy
sphere as test function. While the results of the Evolu-
tion Strategy (ES), Evolutionary Gradient Search (EGS), Si-
multaneous Perturbation Stochastic Approximation (SPSA)
considered are already known from literature, Implicit Fil-
tering (IF) as the fourth strategy is firstly analyzed in this
paper. After a short review of ES, EGS, and SPSA, the
derivation of the quality gain formula of IF is sketched. Us-
ing the results, a comparison of the strategies is performed
that worked out the similarities and differences of the strate-
gies.

Categories and Subject Descriptors

I.2.6 [Artificial Intelligence]: Learning—parameter learn-
ing ; G.1.6 [Numerical Analysis]: Optimization—perfor-
mance measures

General Terms

Algorithms, Theory, Experimentation, Performance

Keywords

Evolution Strategies, Evolutionary Gradient Search, Simul-
taneous Perturbation Stochastic Approximation, Implicit Fil-
tering, performance analysis and comparison, progress rate,
quality gain

1. INTRODUCTION
There exists a wealth of different strategies for optimiz-

ing large and complex models (e.g., traffic scheduling, bio-
chemical processes, portfolio optimization, etc.). Typically,
in such models the gradient is not available or computa-
tionally too expensive. Thus, (deterministic) optimization
strategies which rely on exact gradient information can not
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be used, instead so-called direct search methods [12]1 are the
methods of choice. The common behavior of these strategies
is that the search through the domain is guided by the in-
formation obtained from sending “intelligent” queries to the
model. No information on the underlying structure of the
model is necessary. Furthermore, these strategies can also be
applied in cases when there are uncertainties in the model’s
objective function (noisy optimization) and the outcome of
the objective function is a random variable. When treated
by standard deterministic optimization strategies, the be-
havior of such strategies might exhibit undesirable behav-
iors, e.g. premature convergence, divergence, or oscillating
behavior.

There exist different categories of direct search strategies,
ranging from derivative approximation to stochastic strate-
gies and nature-inspired strategies. Practitioners then face
the problem to select the best-performing strategy for their
problem of interest. Hence, there is a need for information
about the performance of the optimization strategies. One
approach to evaluate the performance of strategies relies on
benchmarking experiments, e.g. the BBOB framework [10]
for continuous optimization. On the other hand, investiga-
tions on the theoretical level provide further information not
(necessarily) available from experimental comparisons.

There are different theoretical approaches to the perfor-
mance evaluation problem. One approach considers func-
tion classes which satisfy certain assumptions on the func-
tion properties, e.g. differentiability. The results obtained
in such manner represent bounds on the runtime which are
(often) expressed in terms of order notation. Thus, they
contain hidden constants and it is hard to obtain statements
about the influence of the strategy and model parameters on
the performance of the strategy. The approach presented in
this paper is more concerned with this influence. By deter-
mining the functional dependency between the parameters
and the performance, one can obtain (approximate) opti-
mal choices for the strategy-specific parameters which then
could be used by practitioners. However, such information
can only be obtained if the function class considered is ex-
pressed in analytical form.

The paper is organized as follows: In Section 2 the steps
and assumptions of the framework for the theoretical anal-
ysis will be presented. The fitness environment for the com-
parison will be detailed in Section 3. In Section 4 the strate-
gies considered will be introduced and in Section 5 compared

1Sometimes these strategies are also referred to as zeroth-
order methods.
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with each other. Finally, conclusions and an outlook for fu-
ture research will be given in Section 6.

2. THEORETICAL APPROACH
The theoretical analysis approach considered in this paper

is based on methods from the analysis of dynamical systems.
To illustrate the applicability of the dynamical systems anal-
ysis, one can imagine the optimization problem as physical
environment. In this environment the optimization process
represents a physical process which is governed by the forces
acting and the equations of motion. Both can be expressed
with help of the strategy and model parameters.

For all strategies, the first step is to derive an expression
which represents a (local, expected) progress measure for
a single iteration step. Common progress measures are the
change in the fitness space, quality gain, or the change in the
search space, progress rate. In most cases, the derivation of
the performance measure is a demanding task. Often it is
somewhat easier to aim at asymptotic expressions for infinite
search space dimensionality, i.e., N → ∞. Such expressions
are usually much simpler and allow for a better interpre-
tation of the results w.r.t. the influence of strategy-specific
parameters. Thus, one is rather interested in simplified (due
to the asymptotic) expressions from which a meaning can be
inferred than in exact formulations which can not be easily
interpreted.

The progress measure obtained represents the functional
dependency between the strategy-specific parameters and
the performance of the strategy. It can be used as start-
ing point for obtaining convergence criteria and optimal
strategy-specific parameters. The progress measure itself
is a difference equation which in most cases depends on the
current location within the search space. By introducing
normalizations one is able to obtain values which attain a
steady state (or a steady state distribution) after some iter-
ations. These values can then be used to obtain the long-
term dynamic behavior by solving the corresponding dif-
ferential equations. From the long-term behavior one can
derive statements about the runtime of the strategy.

Another advantage of the dynamical systems approach
is that one can easily handle noisy optimization problems.
From the physical viewpoint, it represents an additional
force acting on the system. For most strategies and opti-
mization problems considered so far, the noisy case is the
generalization of the noise-free case. For noisy optimization
problems one is typically interested in the minimal achiev-
able distance to the optimizer, residual location error, or how
the performance scales with the noise intensity, depending
on the noise model considered.

In the following the fitness environment and the strategies
considered will be described. The description will also detail
the most important technical aspects used in the dynamical
systems analysis.

3. FITNESS ENVIRONMENT
In this paper the noisy sphere model

f(x) = xTx + σǫN (0, 1) (1)

is considered. In Eq. (1) f : R
N×1 7→ R, σǫ ∈ R+ is the

so-called noise strength, and N (0, 1) ∈ R is a standard nor-
mally distributed random variate. There exists no correla-
tion between successive evaluations of Eq. (1). In continuous

optimization, the sphere can be seen as a landscape in the
vicinity of a (local) optimizer of many optimization prob-
lems. It is amenable to rigorous mathematical analysis and
the results will provide valuable insight into the behavior of
the strategy considered. While there is absolutely no guar-
antee for generalization of the results to other optimization
problems, the results can be reused in the analysis of more
complex quadratic functions, see e.g. [7].

Concerning the noise, two different models are considered.
In the first model, constant noise variance, σǫ does not de-
pend on the current location. Thus, the noise is more pro-
nounced close to the optimizer and its influence can be ne-
glected far away from the optimizer (if xTx ≫ σǫN (0, 1)).
The second model considered, constant normalized noise
variance, reduces σǫ with decreasing distance to the opti-
mizer. It is defined by

σ∗
ǫ := σǫ

N

2R2
, (2)

where R := ‖x‖ is the distance to the optimizer and σ∗
ǫ

is the normalized noise strength. In this model the opti-
mizer is noise-free and σǫ increases quadratically with the
distance from the optimizer. Note, for this model the fol-
lowing simplification is made: The value of σǫ is assumed to
be constant within a single generation2 as long as the points
evaluated by the strategy are close to the current solution.
This allows to simplify the math involved.

4. STRATEGIES
In this paper four different strategies are compared with

each other: Evolution Strategy (ES) [13], Evolutionary Gra-
dient Search (EGS) [5], Simultaneous Perturbation Stochas-
tic Approximation (SPSA) [15], and Implicit Filtering (IF)
[9]. The latter three employ different forms of gradient ap-
proximation, while ESs do not use gradient approximation in
any way. All strategies are considered in their basic form and
certain assumptions about the choice of the strategy-specific
parameters are made. Therefore, the results will reflect (to
a certain extent) optimal performance of the strategies. In
the following the strategies are described and the equations
used in the comparison are stated.

4.1 Evolution Strategies
Evolution Strategies (ESs) are loosely based on the con-

cept of Darwinian evolution. Starting with an initial can-
didate solution x(g) ∈ R

N×1, with g being the generation
counter and N the search space dimensionality, a muta-
tion operator is applied to procreate the offspring popula-
tion of size λ. The mutation operator is an additive opera-
tor which is expressed as σN (0, I) where σ is the mutation
strength and N (0, I) ∈ R

N×1 is a vector consisting of iid
standard normally distributed components. Each offspring
yl ∈ R

N×1, l ∈ {1, . . . , λ} is evaluated, hence (at least) λ
function evaluations are performed in each generation. The
next step is the selection of the µ best offspring. The selec-
tion criterion is the fitness value f (yl). The ranking of the
offspring (in the case of minimization) is given by following
notation

f1;λ ≤ f2;λ ≤ . . . ≤ fµ;λ ≤ fµ+1;λ ≤ . . . fλ;λ.

2Throughout the text the terms iteration and generation are
used interchangeably.
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The order notation i; j characterizes the ith-best individual
out of a population of j individuals. Note, all results will
also hold for maximization due to the maximization prob-
lem being equal to the minimization problem with inverted
sign. The µ best offspring are recombined to obtain the new
parental point. In this paper the intermediate recombina-
tion scheme

x(g+1) =
1

µ

µ
X

m=1

y
(g)
m;λ

is considered. It determines the centroid of the selected
offspring. The technical notation for such a strategy is
(µ/µI , λ)-ES.

Applying the dynamical systems approach, one must ex-
press the stochastic mapping

n

x(g), s(g)
o

7→
n

x(g+1), s(g+1)
o

,

where s contains the strategy-specific parameters, e.g., the
mutation strength. The mapping itself is a homogenous
Markov process. An approximation of this process can be
derived from the Chapman-Kolmogorov equations yielding
the progress measure as an expected value. One assump-
tion made is N → ∞ which allows to neglect N−α-terms
for α > 2 in the derivation process (within Taylor series
expansions). Another effect of this assumption is that it
suffices to characterize the mapping by its expectation since
the variance is proportional to 1/N .

Considering the progress rate ϕ = E
h

R(g) − R(g+1)
i

one

obtains [6]

ϕ∗ N→∞
= cµ/µ,λ

σ∗

√
1 + ϑ2

− σ∗2

2µ
(3)

for the normalized progress rate ϕ∗ = ϕ
N

R
. In Eq. (3) cµ/µ,λ

is the generalized progress coefficient [6], σ∗ = σ
N

R
is the

normalized mutation strength, and ϑ =
σ∗

ǫ

σ∗
is the noise-to-

signal ratio. For N → ∞ the normalized progress rate and
the normalized quality gain q∗ are identical. The quality
gain q and its normalization q∗ are defined as

q := E
h

f(x(g)) − f(x(g+1))
i

and q∗ := q
N

2f (x(g))
. (4)

In the analysis it is assumed that σ∗ remains constant
throughout the evolutionary process. Therefore, no effects
of mutation strength adaptation schemes will be considered.

4.2 Evolutionary Gradient Search
EGS is a hybrid strategy combining principles from evo-

lutionary search and gradient approximation. Starting with
an initial solution, 2λ offspring are created and evaluated.
In [3] it was shown that using symmetrical points yields a
more robust performance (especially in noisy optimization)
than the original version from [14]. Using the same mutation
operator as for ES, the offspring are procreated by

zl = Nl(0, I)

yl = x + σzl

yl+λ = x− σzl

for l ∈ {1, . . . , λ}. The same notation as for ES holds. In-
stead of selection and recombination the gradient is approx-
imated next. The approximation steps are

zavg =
λ

X

l=1

[f (yl+λ) − f (yl)] zl

zprog =

√
N

κ

zavg

‖zavg‖ ,

where κ is a rescaling factor. The update of the solution is

x(g+1) = x(g) + σzprog.

One can see that the gradient approximation is used only
for the direction of the update, while the step length equals

σ

√
N

κ
.

Due to the similarity to ES, the steps in the dynamical
systems analysis are equal and the same assumptions are
used. Again, the derived progress measure is an expected
value. One obtains [3]

q∗
N→∞

=
1

κ

"

σ∗

s

λ

1 + ϑ2

2

− σ∗2

2κ

#

. (5)

The same notations and normalization as before were used.
As for ESs the normalized mutation strength σ∗ is assumed
to be constant for the analysis.

4.3 Simultaneous Perturbation Stochastic Ap-
proximation

The Simultaneous Perturbation Stochastic Approximation
(SPSA) [15] is a stochastic gradient approximation strategy.
Using a perturbation vector ∆, the gradient is approximated
by means of a central difference scheme. The iid compo-
nents of ∆ are (commonly) chosen from the ±1 symmetric
Bernoulli distribution. The advantage of this approximation
scheme is that one needs only 2 function evaluations per it-
eration step to approximate the gradient independently of
the search space dimensionality N .

Assuming SPSA is at state x(g), the points x(g)±c(g)∆(g)

are evaluated. Then the gradient approximation

g(g) =
f

“

x(g) + c(g)∆(g)
”

− f
“

x(g) − c(g)∆(g)
”

2c(g)
∆(g)

is performed. The term c(g) is the current step size fac-
tor for the approximation step. For noisy optimization it
might be advantageous to use the average of several gradi-
ent samples. For such a scenario c(g) remains constant for
all gradient samples within a single iteration step, however,
∆(g) is drawn anew for each sample. Afterwards, the update
of the solution is performed by

x(g+1) = x(g) − a(g)g(g),

where a(g) is the step size factor for the update step.
The choice of the step size factors (strongly) influences the

performance of SPSA. For noise-free quadratic functions the
choice for c(g) is only relevant for numerical issues due to the
use of the central gradient approximation scheme. For noisy
functions, the choice of c(g) will influence the resulting noise
level due to the appearing ratio σǫ/c(g). The step size factor

a(g) is commonly chosen as

a(g) = a(0)(g + A)−α, (6)
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where a(0) ∈ R is the initial step size factor (chosen by the
user), A ∈ R is the stability factor, and 0 ≤ α ≤ 1 is the
reduction rate of the step size factor sequence. The optimal
settings of these parameters depend strongly on the opti-
mization problem. For the analysis on the sphere model
A = 0 is assumed. For a(g) the optimal values determined
in [8] are used which do not contain the parameter α.

In [8] the normalized quality gain q∗ for SPSA was deter-
mined. The analysis was based on the determination of the
expectation of the gradient and subsequent decomposition
of the gradient into a part pointing towards the optimizer
and a perpendicular part. The assumption N → ∞ is al-
most exclusively used to handle the noise terms (which are
Gaussian distributed). For the sphere model one obtains

q∗
N→∞

= 2a(g)N

„

1 − a(g)

W
(N + W − 1)

«

− a(g)2R2σ∗2

ǫ

Wc(g)2
,

(7)
where W is the number of gradient approximations per it-
eration.

4.4 Implicit Filtering
Implicit filtering (IF) [16, 11] is a deterministic direct

search algorithm which approximates the gradient of the fit-
ness function using either forward or central difference for-
mula. In this analysis we will consider the central difference
gradient approximation

∂

∂xi
f(x) ≈ f(x + hei) − f(x − hei)

2h
, (8)

where h is the difference increment and ei are the unit vec-
tors building the identity matrix (e1, e2, . . . , eN) = I. The
IF algorithm initializes the iteration counter g = 0, the ini-
tial search point x(0), creates a decreasing sequence of dif-
ference increments {hn}, selects the first h = h0, and calls

a steepest descent algorithm passing x(g) and h to it.
The steepest descent algorithm uses Armijo’s rule [1] for

line search: it calculates the step length d = βm, where β ∈
(0, 1) is the line search parameter and m = 0, 1, . . . , mmax

is the step length index, and samples a new point

x(g+1) = x(g) − d∇hf(x(g)) (9)

with ∇hf(x(g)) obtained with Eq. (8). After that, the suffi-
cient decrease condition (in terms of Armijo’s rule)

f(x(g+1)) − f(x(g)) < −αd
‚

‚

‚

∇hf(x(g))
‚

‚

‚

2

(10)

is checked, where α ∈ (0, 1). If (10) is satisfied, then x(g+1)

is accepted, the index g is incremented, and the steepest
descent algorithm is executed again. At most, this procedure
may be repeated kmax times in the case when the sampled
x(g+1) is accepted each time. Afterwards the next h from
the sequence {hn} is chosen.

If the condition (10) is false, the step length d is reduced
by incrementing the step length index m, once again a point
is sampled and (10) is checked. The steepest descent al-

gorithm reduces d mmax times maximum. If no x(g+1) is
accepted after mmax step length reductions, the line search
fails and the steepest descent algorithm cancels its oper-
ation. The high-level IF algorithm switches to the next,
smaller h in the sequence {hn} and invokes the steepest de-
scent algorithm with this new h value. Since the difference
increment h gets smaller during the run of the IF algorithm,

difference formula (8) provides increasingly better gradient
approximations which improve the quality of newly sampled
x(g+1) in (9).

We begin with the analysis of the steepest descent step
(9). Due to space restrictions the derivations can only be
sketched3. For the derivations it is assumed that α is suffi-
ciently small such that (10) is fulfilled. Choosing the fitness
gain (4) as progress measure, one obtains from (9) and (1)

q(g) = E
h

‖x(g)‖2 − ‖x(g) − d∇hf(x(g))‖2
i

= E
h

2dx(g)T∇hf(x(g)) − d2‖∇hf(x(g))‖2
i

= 2dx(g)TE
h

∇hf(x(g))
i

− d2E
h

‖∇hf(x(g))‖2
i

. (11)

In (11), the gradient ∇hf is needed. Using (8) in conjunction
with the fitness model (1), one obtains for the ith component
of ∇hf

“

∇hf(x(g))
”

i
=

‖x + hei‖2 + σǫN1 − ‖x − hei‖2 − σǫN2

2h

= 2
“

x(g)
”

i
+

1√
2h

σǫNi. (12)

Here we have taken into account that the difference of two iid
normal variates is N (0, 2) distributed. That is, ∇hf(x(g)) =

2x(g) + σǫ√
2h

N (0, I). Inserting this result in (11), the ex-

pected values must be calculated. As for the first term one
immediately obtains from (12)

E
h

∇hf(x(g))
i

= 2x(g), (13)

while the second expectation term in (11) yields after some
calculations

E
h

‖∇hf(x(g))‖2
i

= 4‖x(g)‖2 +
σ2

ǫ N

2h2
. (14)

Using Eqs. (13) and (14) in Eq. (11) leads to

q(g) = 4d‖x(g)‖2 − 4d2‖x(g)‖2 − d2σ2
ǫ N

2h2

= 4d(1 − d)R2 − d2Nσ2
ǫ

2h2
, (15)

where R = ‖x(g)‖ is the distance to the optimizer. Further
we apply the quality gain (4) and noise strength normaliza-
tions (2) to get

q∗ = 2Nd(1 − d) − σ∗2
ǫ

d2

h2
R2. (16)

One sees that the quality gain consists of two parts, a pos-
itive gain part (note 0 < d ≤ 1) and a negative loss part.
The latter is only associated with noise. In the case of van-
ishing noise, IF is without any loss. Actually, choosing d
optimally to 1/2, the optimum is reached in one genera-
tion. The noisy case is more interesting and it makes sense
to compare it with SPSA (7). This reveals remarkable sim-
ilarities: The first term does not depend on the location
in the search space, whereas the second term depends on
f(x) = R2. Furthermore, the first term does only depend

on the step size factor a(g) and d, respectively. The second
term associated with the noise has again the same structure.

3The full derivation will be part of a forthcoming publica-
tion.
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Figure 1: IF experiments on the noisy sphere for N = 4 (left) and N = 40 (right). Solid lines correspond to
theoretical predictions of Eq. (16), while points with error bars represent the experimental results averaged
over 104 runs for the following difference increment values: + h/R = 10−2, ⋆ h/R = 0.1, ◦ h/R = 0.5 and
3 h/R = 1. Dashed curves with points depict the experimental runs of the original IF algorithm.

The step size factor a and d, respectively, appear squared in
the numerator. The increment step lengths c and h appear
squared in the denominator. In both IF and SPSA the loss
term depends on the squared normalized noise strength and
the current function value f(x) = R2. Convergence (in ex-
pectation) is obtained if q∗ > 0 is ensured. Using (16) this
implies (σ∗

ǫ R)2 < 2Nh2(1 − d)/d. Noting that σ∗
ǫ = const.

describes the fitness proportional noise case according to Eq.
(2), convergence to the optimizer is ensured for sufficiently
small distances R to the optimizer (given fixed d and h).
Conversely, when initializing IF too far away from the opti-
mizer, the strategy can diverge.

The normalized quality gain formula (16) allows for deter-
mination of the optimal step length dopt which maximizes
q∗. Calculating the derivative of q∗ and equating the result
to zero yields

dopt =
1

2

1

1 + 1
8

`

σǫN
hR

´2
. (17)

Moreover, inserting (17) into (16) results in the equation for
the maximal quality gain

q∗max =
N

2

1

1 + 1
8

`

σǫN
hR

´2
, (18)

from which we directly obtain that the IF is able to attain
q∗max = N/2 maximum in the absence of noise.

The next step in the analysis is to transfer the theoretical
result (16) derived for the single steepest descent step to the
complete IF algorithm. We take the following observation
for the noise-free sphere model into account: Substituting
the step length calculation formula d = βm in the IF algo-
rithm with d = dopt, where dopt is given by Eq. (17), provides
maximal possible quality gain in the steepest descent step
(9). This means that the optimal step length is selected
instantly without step length reductions, the sufficient de-
crease condition is therefore true and x(g+1) is accepted in
the first iteration of the steepest descent algorithm. Thus,
setting d = dopt results in the best performance scenario of
the IF algorithm when the first sampled x(g+1) has improved
fitness associated with it, and the need to spend additional
fitness function evaluations for line search is eliminated. The

complete IF algorithm transforms into a simplified IF with-
out the line search subroutine and the condition (10).

The situation is more complicated for the noisy sphere
model. There is no guarantee that x(g+1) will be accepted
even if d = dopt, but averaging over individual IF runs should
still yield the results matching Eq. (16). We check this hy-
pothesis in the following experiments. We run the simpli-
fied IF algorithm with step length reduction rule substituted
with the optimal value d = dopt calculated using Eq. (17).
Further we set kmax = 1 and mmax = 0. Using random
initial search points, we measure q∗ by using the non-noisy
fitness function values at x(g) and x(g+1) for a given value
of h. The experimental results averaged over 104 runs are
presented in Fig. 1. For comparison, we also run the same
experiments for the original IF algorithm (Fig. 1, dashed
curves) with the original step length reduction rule d = βm

and parameter settings kmax = 1, mmax = 2, α = 10−4,
β = 0.5. Note that the original IF algorithm uses for these
settings on average more fitness function evaluations (FEs)
per run than the simplified IF, which uses #FEs = 2N fit-
ness function evaluations per iteration for the gradient ap-
proximation.

As expected, Eq. (16) predicts the exact normalized qual-
ity gain of the IF with optimal step length for the noise-free
sphere. Moreover, Eq. (16) correctly predicts for σ∗

ǫ = 0 q∗

of the original IF algorithm which uses 2N + 3 FEs since it
requires 2N +2 FEs for the steepest descent algorithm and 1
FE for one step length reduction in order to sample a point
with improved f(x).

Considering the σ∗
ǫ > 0 data in Fig. 1, we conclude that

our hypothesis about averaging over IF runs is true: the pre-
diction quality of Eq. (16) is quite good for the simplified IF
with N = 4 and N = 40. Next to the curves for the simpli-
fied IF, results for the original IF are given by the dashed
curves in Fig. 1. While these curves do not quantitatively
coincide with the theoretical predictions by (16), one can
interpret the theoretical predictions as upper bound on the
performance. Note, the original IF curves did not use dopt

(17).
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Table 1: Maximal efficiency and corresponding
strategy-specific parameter

strategy optimal parameter max. efficiency
(µ/µI , λ)-ES µ/λ ≈ 0.27, ≈ 0.202 (µ → ∞)

σ∗ = µcµ/µ,λ

EGS σ∗ = κ
√

λ 0.25

SPSA a =
W

2(N + W − 1)
, 0.25

W = 1

IF d =
1

2
0.25

5. COMPARISON
The comparison is based on the following four equations:

Eq. (3) (ES), Eq. (5) (EGS), Eq. (7) (SPSA), and Eq. (16)
(IF). Further, the results will only consider scale-invariant
mutation strength adaptation (σ∗ = const.) for EGS and
ES, and the step size factors in IF and SPSA connected
with the update step will set to be optimal for the noise-free
sphere. For IF we additionally assume 2N + 2 ≈ 2N .

5.1 Results for the Noise-free Sphere
First, the comparison of the four strategies is performed

on the noise-free sphere model, i.e., σǫ = 0 in (1). While
one can simply compare the normalized quality gain expres-
sions, which all have theoretical maximum of q∗ = N/2, such
a comparison will neglect the “effort” of the strategy. A per-
formance measure accounting for that is (serial) efficiency

η =
q∗

#FEs
, (19)

where #FEs is the number of function evaluations per it-
eration step. Note, η does not scale between 0 and 1 as
for example efficiency of physical processes. The theoretical
maximal efficiency is η = N/2 (by using q∗ of above form) if

the maximal progress, i.e., f(x(g+1)) = f(xopt) = 0 will be

achieved for arbitrary x(g) with 1 function evaluation. How-
ever, due to the strategies either attaining maximal normal-
ized quality gain values lower than N/2 and/or using #FEs
of some order of N , η is typically in the range 0 < η ≤ 1/2.
The best efficiency on the sphere determined so far (within
direct search strategies) is attained by the (λopt)-ES with
η = 0.5 for λ → ∞ [4].

Inspecting the equations of interest, one can observe a
common feature. The positive gain term is linear in the
respective update step step size factor, namely σ (ES and

EGS), a(g) (SPSA), and d (IF). On the other hand, the
negative gain term is quadratic in the respective step size
factor. That means, there exist an optimal step size factor
for each strategy and an upper bound on the step size factor
until which progress towards the optimizer can be achieved.
Since the comparison will be based on these optimal values,
the following results should be interpreted as upper bounds
on the performance of the strategies.

In Table 1 the maximal efficiencies and the corresponding
strategy-specific parameters are listed. The three strate-
gies using some type of gradient approximation have the
same maximal efficiency of η = 0.25 which is about 25%
higher than the efficiency for the (µ/µI , λ)-ES. Compar-
ing the optimal step size factors, one can observe a differ-
ence. For EGS and ES the normalized mutation strength

is chosen σ∗ ∝ #FEs, and in SPSA a(g) ∝ #FEs/N . This
yields for these three strategies a normalized quality gain of
q∗ ∝ #FEs. On the other hand, in IF the normalized quality
gain is q∗ ∝ N (16), while #FEs ∝ N . This shows a differ-
ence in the basic ideas of the strategies. In IF one hopes to
achieve a high quality gradient estimate which will be used
for the update. In SPSA and EGS, a low quality gradient
estimates suffices and one hopes that the resulting estima-
tion errors will cancel out during the iteration process. The
questions now is how these ideas work if one considers noisy
optimization.

5.2 Results for the Noisy Sphere
For the comparison on the noisy sphere the setting σ∗

ǫ =
const. will be considered first. If one looks at the equations
of interest one can observe that the noise term is coupled
with a (single) step size factor for each strategy. For each
strategy holds that increasing this step size factor will reduce
the noise level. For EGS and (µ/µI , λ)-ES this factor is the
normalized mutation strength σ∗. For IF and SPSA, it is
the step size factor used in the gradient approximation step,
i.e. h (IF) or c(g) (SPSA). Therefore, the first analysis will
look at the change in η by increasing the respective step size
factor coupled with the noise term for σ∗

ǫ = 1.
The respective curves are shown in the left-hand plot of

Fig. 2. One can observe two different general behaviors. On
the one side, for EGS and (µ/µI , λ)-ES the efficiency will be
maximal for a certain σ∗ and there exist an upper bound on
the choice of σ∗. On the other hand, for IF and SPSA in-
creasing h or c(g), respectively, increases the efficiency up to
the noise-free value. Depending on the location, there exist
a lower bound on these step size factors. These differences
can be explained by realizing that in EGS and (µ/µI , λ)-ES
σ∗ is used for creating the test points and updating the so-
lution. In IF and SPSA the respective step size factors for
these two steps are uncoupled.

Another observation can be made from the left-hand plot
in Fig. 2. Unlike ES and EGS, the normalized quality gains
for IF and SPSA still depend on R and N for σ∗

ǫ > 0.4 The
influence of both factors is about the same. Thus, the same
conclusions can be drawn by analyzing either the case of
keeping N constant and changing R or vice versa5. There-
fore, two curves are shown for IF and SPSA in Fig. 2 repre-
senting two different values of R. Note, if x(g) = (1, 1, 1, 1)T,
the resulting distance to the optimizer will be R = 2. From
the curves, one can conclude that by increasing R the mini-
mal necessary value for h or c(g) (i.e. η > 0) will increase and

that the same value of h and c(g) (as used for the smaller
R) will yield a reduced efficiency. Thus, one could argue

that h (or c(g)) should be chosen large such that even for
large R η > 0 is achieved. However, this could result in nu-
merical errors/reduced accuracy close to the optimizer. A
better choice is to reduce the respective step size factor dur-
ing the optimization process such that η > 0. This is also

4This is partially an effect of the different types of step
size factors (coupled with the update step) employed. In
ESs and EGS, normalized values of the step size factor are
considered, while in IF and SPSA these values are non-
normalized.However, using the same normalization for the
step size factors in IF and SPSA would still result in expres-
sions depending on the current search point location.
5Note, increasing N for R = const. will be the same as
reducing R for N = const. w.r.t. the conclusions drawn.
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Figure 2: Efficiencies η on the noisy sphere with σ∗
ǫ = const. for the (3/3I , 10)-ES, EGS with λ = 5, SPSA with

W = 1 and a = 1/(2N), and IF with d = 1/2. Left: The noise level is σ∗
ǫ = 1 and the step size factor coupled

with the noise is increased. Right: The noise level σ∗
ǫ is increased and the step size factors c(g) = R and h = R

are used, respectively. The IF curves with R = 2 and R = 10 are identical. The same holds for SPSA.

consonant with the completely implemented SPSA and IF
algorithms where both c(g) and h decrease during the run.
By investigating (7) and (16), one may choose h = R and

c(g) = R, respectively, to achieve such a decreasing sequence.
For larger values one will observe a better efficiency value,
while for smaller values the noise term will be multiplied by
a factor larger than 1.

The next scenario considered will look at the change in ef-
ficiency for increasing σ∗

ǫ while keeping the strategy-specific
parameters constant. The values for σ∗, d, and a(g) are
chosen to be optimal for σ∗

ǫ = 0. The motivation for this
setup is that the optimal noise-free performance will serve as
baseline performance. The influence of the different strat-
egy parameters will be discussed later. The corresponding
curves for all strategies are shown in the right-hand plot of
Fig. 2. The same markers and linestyles as before were used.
With the chosen setup, i.e., h = R and d = 1/2 for IF, the
curves for R = 2 and R = 10 are identical. The same holds
for SPSA. All strategies are only able to achieve progress
up to a certain value of σ∗

ǫ for a given set of strategy pa-
rameters. Further, the efficiency decreases faster for IF than
for the other three strategies considered. Note, for σ∗

ǫ = 0
the (µ/µI , λ)-ES achieves the maximal efficiency for µ = 3
and λ = 10. Due to the suboptimal population ratio, the
maximal efficiency does not achieve η = 0.2.

The last scenario to be considered concerns the question
how close each strategy can attain the optimizer if σǫ =
const. holds. This can be obtained by determining the max-
imal value σ∗

ǫ for which η ≥ 0 is satisfied and then solving
the corresponding equation for R. This stationary distance
will be called residual location error and denoted as R∞.
The results are listed in Table 2. Concerning the influence
of the noise strength, one can observe that σǫ is linear in
R2

∞ for EGS and (µ/µI , λ)-ES, while it is quadratic for IF

and SPSA. Note, in the case of SPSA a(g) ∝ 1/N must hold,
which ensures the root term to be positive.

The equations for R∞ also reveal (to a certain extent)
which strategy parameters can be used to handle noisy in-
formation. For the (µ/µI , λ)-ES, one can increase the num-
ber of offspring λ while holding the population ratio µ/λ
constant. This in turn yields higher optimal values of the

normalized mutation strength due to σ∗
opt ∝ µ and a de-

crease in the noise-to-signal ratio ϑ. However, the increase
is limited if one considers finite search space dimensionali-
ties [2]. In EGS, one can increase the number of points λ,
too. Similar effects as for the (µ/µI , λ)-ES will be observed.
Additionally, one can increase κ which results in smaller R∞

and for the noise model with σ∗
ǫ = const. the maximal effi-

ciency value will shift to larger normalized noise strengths.
The effect of κ is that the test points created will have a
larger distance from the current solution, while the length
of the update step remains unchanged. Again, there exist
an upper bound on the choice of κ for finite N . In SPSA,
in addition to c(g), one could increase the number of gradi-
ent samples or decrease a(g) to reduce R∞. Increasing the
number of gradient approximations, however, is only benefi-
cial once SPSA is close to the R∞, before that a significant
decrease in the efficiency would be observed. Commonly,
a pre-defined decreasing sequence (6) for a(g) will be used.
However, as shown in [8] this might result in suboptimal per-
formance. In IF, decreasing d improves the quality of the
solution albeit at the cost of a reduced normalized quality
gain (16).

6. CONCLUSION
This paper contributed to the performance comparison of

four strategies on the noisy sphere. The results provide in-
sight on“good”parameter settings and allow to directly com-
pare the performances with each other. For the (µ/µI , λ)-
ES, EGS, and SPSA we used available results, while for (a
simplified version of) IF new theoretical results have been
given and the derivation steps have been sketched.

The strategies considered differ in their basic approaches.
Three of them (IF, SPSA, and EGS) rely on different kinds
of gradient approximations to improve the current solution.
From these, EGS and SPSA use low quality gradient esti-
mate which is computationally cheap (low number function
evaluations necessary). Due to the iterative process, the es-
timation errors cancel out over time. In IF a high quality
gradient approximation is used which is expensive, however,
less iterations than in SPSA and EGS should be necessary to
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Table 2: Residual location error R∞

strategy (µ/µI , λ)-ES EGS SPSA IF

R∞

s

Nσǫ

4µcµ/µ,λ

(σ∗ → 0)

r

Nσǫ

4κ
√

λ
(σ∗ → 0)

σǫ

2c(g)

r

N

2(W (1/a(g) − 1) − N + 1)

σǫ

2h

r

dN

2(1 − d)

achieve a good solution quality. Finally, ESs are considered
which do not use gradient approximation in any form.

Considering the noise-free sphere, the strategies with gra-
dient approximation achieved the same efficiency which was
higher than the one achieved by ESs. For the noisy sphere,
IF and SPSA can achieve a higher efficiency under the as-
sumption that the respective step size factor associated with
the noise is chosen correctly. For both strategies one can
choose the respective factor proportional to the current dis-
tance to the optimizer, which on the sphere model equals
the root of the function value of the current search point.
Another difference is the order of the noisy influence. For
EGS and ES the noise appears as linear term in the quality
gain, while it is quadratic for the other two strategies.

For all strategies optimal step size factors can be deter-
mined depending on the noise level, the distance to the op-
timizer, and the resulting strategy parameters. For σǫ > 0
these values can usually not be determined without informa-
tion typically not available to the strategy (e.g., distance to
the optimizer or noise level). However, these values can serve
as baseline for comparison with the actually employed step
size factor adaptation schemes. For ES, EGS, and SPSA it
was shown that the employed schemes only achieve a portion
of the optimal performance. The corresponding analysis for
the full IF version including Armijo’s rule is still missing.
An interesting question here is, if one can derive more rig-
orous statements about the performance of pre-defined and
decoupled schemes for the step size factor(s) vs. schemes
based on self-adaptation principles.

Finally, the question is how these results transfer to other
test functions. This is an open question which can only
be answered by performing the analysis on those functions.
However, experience shows that in continuous optimization
the results for the sphere can be (partially) reused for the
analysis of more general quadratic functions, e.g. f = xTHx.
Further, the results presented here are a first step for the
analysis of such functions.
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