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ABSTRACT
The design of resource efficient integrated circuits (ICs) re-
quires solving a minimization problem which consists of more
than one objective given as measures of the available re-
sources. This multi-objective optimization problem (MOP)
can be solved on the smallest unit of the IC, the standard
cells, to improve the performance of the entire circuit.
In this work, transistor sizing of an IC is approached via
a multi-objective approach which includes the use of multi-
objective evolutionary algorithms (MOEAs). We compare
the performance of two MOEAs on a four-dimensional MOP
of a particular standard cell. The results indicate that evo-
lutionary strategies are suitable for the treatment of such
problems and advantageous against other rather classical
methods.

Categories and Subject Descriptors
G.1.6 [Optimization]: Global Optimization; D.2.8 [Software
Engineering]: Metrics—complexity measures, performance
measures; B.7.1 [Integrated circuits]: Standard cells

General Terms
Design, Performance

Keywords
multi-objective optimization, evolutionary computation, cir-
cuit design, CMOS standard cells.
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1. INTRODUCTION
A resource efficient design of standard cells is the basis for

a resulting resource efficient design of the integrated systems
(e.g., [1, 2]). That is, improvements on the smallest unit
will affect positively the overall performance of the entire
IC. Optimization of standard cells is basically the search for
‘optimal’ transistor sizes since the transistors’ widths and
lengths influence significantly the consumption of the cir-
cuit resources. Important characteristics of logic gates are
noise margins as well as time and power dissipation. Hence,
a multi-objective optimization problem (MOP) arises natu-
rally when stating the sizing problem of CMOS standard
cells. Apparently, the multi-objective approach, i.e., the
computation/approximation of the entire solution set (the
Pareto set), takes these objectives directly into account.
Here we address the problem of designing optimal ICs by
means of evolutionary computation.
On the examples of several CMOS gates we demonstrate
in this work that the well-known MOEAs SPEA ([16]) and
the ε-MOEA ([10]) can be successfully applied to optimize
standard cells. For gates representing logic functions with
even quite a few boolean variables deterministic search al-
gorithms collapse due to the relatively high computational
cost for a performance evaluation. In those cases the two
MOEAs under consideration still compute sufficiently good
results which we show on the And-Or-Invert gate. This is a
four dimensional example where both MOEAs succeed while
another (classical) method reaches its limit.

The remainder of this paper is organized as follows: In
Section 2, we present the background and related work. In
Section 3, we introduce how a MOP for the design of stan-
dard cells is deducted from a gate’s circuit properties using
the example of an inverter. In Section 4, we present some
numerical results comparing two MOEAs performing on a
more complex CMOS standard cell. In Section 5, we address
a sensitivity based decision support of this application, and
finally, we conclude in Section 6.
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2. BACKGROUND AND RELATED WORK
A multi-objective optimization problem (MOP) can be

stated as follows:

min
x∈R

F (x), (1)

where F : R ⊂ �
n → �

k is defined as the vector of k
objective functions fi : R ⊂ �

n → �, i = 1, . . . , k, and
where R is the restriction set

R = {x ∈ �n : g(x) ≤ 0 and h(x) = 0}, (2)

where g : �n → �
m and h : �n → �

p are the mappings
defining the inequality and equality constraints, respectively.
A point x ∈ R is said to dominate an other point y ∈ R (in
short x ≺ y), if fi(x) ≤ fi(y) for all i ∈ {1, . . . , k}, and if
there exists an index j ∈ {1, . . . , k} such that fj(x) < fj(y).
A point x ∈ R is called optimal, or Pareto optimal, with re-
spect to (1), if there is no other point y ∈ R that dominates
x. The set P of all optimal solutions is called the Pareto
set, and its image F (P) is called the Pareto front.

So far, there exists a huge variety of methods for the com-
putation of the Pareto set of a MOP. Among them, multi-
objective evolutionary algorithms (MOEAs) have caught the
attraction of many researchers (e.g., [7, 6] and references
therein). One major reason for this might be that the popu-
lation based approach together with a stochastic component
in the search procedure allows typically for an approxima-
tion of the entire (global) Pareto set in one single run of the
algorithm. This represents an adantage over most mathe-
matical programming techniques, which require in addition
certain smoothness assumptions on the MOP.
Multi-objective approaches to design integrated circuits
(however, different than the ones considered in this paper)
can be found in the works of Dienstuhl [11] and Thomas [14].
Both authors applied and adjusted the SPEA to optimize
memory elements [11] and adders [14] for timing, resistance,
power consumption and chip area. In [3], the search for op-
timal transistor sizings of standard cells was performed by
the software tool GAIO1. A whole new standard cell library
for sub-threshold operation was designed based on a multi-
objective approach and supported by SPEA as documented
in [2].
Earlier algorithmic optimization approaches for integrated
circuit design are, most likely due to less available computa-
tion power, single objective approaches. Although Fischer
et al. [12] do not explicitly formulate it, they transform
the problem into a scalar objective optimization problem.
They developed several algorithms to minimize resources as
power, speed and silicon area in one objective while restrict-
ing the other resources by an upper bound. Borah et al. [4]
minimize power while constraining the delay time.

For the treatment of the MOPs at hand we have chosen
to take and compare two different MOEAs. First, we have
chosen for SPEA since this algorithm has already been used
successfully for the design of integrated circuits. Second,
we have chosen for a variant2 of ε-MOEA which is a steady
state MOEA and which offers certain convergence properties

1Global Analysis of Invariant Objects, see
www.math.upb.de/∼agdellnitz
2The name of this algorithm is not given here for sake of a
bouble blind review.

for the limit set of the external archive of the MOEA (e.g.,
[13]).
To compare our results we use the Hausdorff distance to
measure the distance between the the final population and
the Pareto set as well as the indicator Δp which which is
a composition of the Generational Distance (GD, see [15])
and the Inverted Generational Distance (IGD, see [5]).

Definition 2.1 Let u, v ∈ �n, A, B ⊂ �
n, and ‖ · ‖ be a

vector norm. The Hausdorff distance dH(·, ·) is defined as
follows:

(a) dist(u, A) := inf
v∈A

‖u − v‖

(b) dist(B, A) := sup
u∈B

dist(u, A)

(c) dH(A, B) := max(dist(A,B), dist(B, A))

Definition 2.2 Let X = {x1, . . . , xn} ⊂ �n be a candidate
set and Y = {y1, . . . , yn} ⊂ �

k be its image, i.e., yi =
F (xi), i = 1, . . . , n. Further, let P := {p1, . . . , pm} ⊂ �k be
a discretization of the Pareto front. Then it is

Δp(Y,P) =

max

0
@ 1

n

nX
i=1

dist(yi,P)p

!1/p

,

 
1

m

mX
i=1

dist(pi, Y )p

!1/p
1
A
(3)

It is Δ∞ = dH , but for finite values of p the indicator Δp

averages (using the p-vector norm) the distances considered
in dH . Hence, in spite of dH , Δp does in particular not
punish single (or few) outliers in a candidate set.

3. SIZING A CMOS INVERTER USING MOEA
Figure 1 shows the netlist of a simple electric circuit con-

taining two metal-oxide-semiconductor field-effect transis-
tors (MOSFETs) T1 and T2. Vdd denotes the supply voltage
which is the highest potential in the circuit. A MOSFET can
be thought of as a voltage controlled resistor. Both transis-
tors are of different types. T1 is a pMOSFET (indicated by
the ring) whose resistance decreases with decreasing gate-
source voltage Vin − Vdd (which is always negative). T2
is an nMOSFET (without ring) whose resistance decreases
with increasing gate-source voltage3 Vin. Thus, the output
voltage Vout is pulled up when the input voltage Vin drops
and falls if Vin rises. Because a logic ‘1’ is mapped to a
logic ‘0’ and a ‘0’ to a ‘1’ this circuit is an inverter and due
to the transistor types it is built with a so-called CMOS
inverter (CMOS, Complementary Metal Oxide Semiconduc-
tor). Given an alternating input signal the resulting output
signal will not be a perfect inversion of the analog signal.
Figure 2 shows an example of a possible input/output rela-
tion. Particularly there is always a delay which can be mea-
sured as the timespan between both signals crossing 50%Vdd

indicated by tpd,HL and tpd,LH. One objective in designing
an inverter is thus to minimize

tpd = max (tpd,HL, tpd,LH) . (4)

The circuit’s switching properties can be influenced by the

3The position of a transistor’s source contact depends on its
type. The nMOSFET’s source is here connected to ground
and the source of the pMOSFET T1 is connected to Vdd.
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Figure 1: Netlist of the CMOS inverter

designer when sizing the transistors. For each transistor a
width and a length can be chosen. These parameters con-
trol the current flow through the transistor’s channel. The
length is usually set to a minimal size to attain low area
consumption. A wider transistor has less resistance than a
device of smaller width. Therefore, a circuit can be sped up
by increasing the width of its transistors which leads in turn
to a reduction of the delay time tpd.

Increased current floating from Vdd to ground on the other
hand means that more energy Edyn is consumed. Larger
transistors create larger parasitic capacities that have to be
charged for switching the output which also raises energy
consumption induced by current from the input Ein. Hence,
a second important objective to be minimized is

E = Edyn + Ein (5)

In digital integrated circuit design standard cells represent-
ing simple logic functions like an inverter, NAND or NOR
are connected to build more complex functions. Here it has
to be secured that the logic value of one output signal is
interpreted by the next cell’s input as the right value. With

NM = min (NMH, NML) (6)

where

NMH = |UOH − UIH|
NML = |UIL − UOL| (7)

Figure 2: Transient signal input Vin and output Vout.

Figure 3: DC signal input Vin to output Vout.

a safety (or noise) margin the NM is defined to measure
a standard cells robustness towards noise that could lead to
misinterpretation of the logic levels. UIL, UIH, UOL, UOH are
defined as indicated in Figure 3. The noise margin should
be maximized.

A MOP which naturally arises for the CMOS standard
cells hence reads as follows:

min
x∈R

{−NM, tpd, E} (8)

where R is the search space spanned by the n transistors’
widths W1, ..., Wn. The lower bound for each width is
usually given by a minimal possible width. For the 65 nm
technology this is 0.12 µm. The designer will also define an
upper bound based on the application. Thus, R is connected
and compact as it is defined by box-constraints.

As described in [1] the relation between the widths of the
pMOSFET W1 and the nMOSFET W2 should be

W1 = α · W2 (9)

where α ≈ µp

µn
and µp and µn are constants of the mobility

of holes and electrons, respectively. The approximation of
(9) aims for symetric input-output-curve and thus inderectly
achieves decent noise margins and delay times. In [3], this
procedure is described as the classical approach. The advan-
tage is that for a given driving strength all parameters are
determined. For more complex CMOS logic gates the widths
of all pMOS- and nMOS-transistors have to be summarrized.
The disadvantage is that this approach limits the designer’s
freedom in optimizing the circuit properties directly. An
exploration of the complete search space supports the de-
signer with all resource efficient designs that he/she could
choose from. Very often the direct approach finds designs
that dominate the ones that would be computed based on
the classical approach [3].

Figure 4 shows an approximation of the Pareto set and
front of MOP (8) for the CMOS inverter. It can be seen
that a major part of the Pareto set indeed satisfies the lin-
ear relationship given in Equation (9). The set opens coni-
cal with larger transistor widths which is because the noise
margin and delay times are less conflicting at smaller tran-
sistor widths. The buckle in the Pareto set is due the box-
constraints: When the minimal value of W2 is reached, W1

can still be reduced which lowers energy consuption E and
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(a) NOR (b) And-Or-Invert

Figure 5: Schematics of CMOS gates.

decreases tpd and -NM at the same time. Since two out
of three objectives are not conflicting in this area its image
resembles a one-dimensional set.

4. OPTIMIZATION TECHNIQUES FOR SIZ-
ING CMOS STANDARD CELLS

Using both nMOSFET and pMOSFET more complex logic
gates than the inverter can be assembled. A CMOS circuit
consists of a pull down path of nMOS transistors that can
pull down the voltage of the output vertex Z to ground and
pMOS transistors buliding a pull up path to eventually pull
up the Z to the supply voltage Vdd. The number of the
nMOSFETs and pMOSFETs are equal. Parallel transistors
of the pull up path appear in the pull down path connected
in series with the same input signals connected to their gate
contact. As a consequence the output Z never has a high
impedance meaning that its digital value is always either
zero or one. The way CMOS logic gates are constructed
it is easier to build circuits of logic expressions that con-
tain an inversion. Figure 5 shows the schematics or netlists
of an inverted Or gate called NOR (Z = A ∨ B) and an

And-Or-Invert AOI (Z = (A ∧ B) ∨ (C ∧ D)). In inverting
CMOS gates the minimal number of transistors is twice the
number of boolean parameters. Some transistors can and
should be sized equally but in general the complexity of the
search space of the sizing promblem R rises with the number
of input signals. Hence, for the NOR gate R can be two-
dimensional spanned by all nMOS and pMOS transistors’
widths Wn and Wp, respectively. The result of the Pareto
optimization for this search (including additional informa-
tion, see Section 5) is shown in Figure 7.
There is an advantage of expending R to a third dimension
allowing both pMOSFET’s widths to be chosen indepen-
dently. The possible gain is documented in [3]. There the
Pareto set was approximated by subdivision techniques and
thus the extension of the search space resulted in a massive
runtime increase. For a worst case scenario the runtime de-
pends exponentially on the number of dimensions of R. As a
consequence, when facing the optimization problem of more
complex gates like the AOI, new search strategies which can
cope with larger search spaces have to be used.

Figure 6: Approximated Pareto front of the MOP
(8) for the And-Or-Invert gate schown in Figure 5.

Here, we have chosen for an AOI consisting of four vari-
ables4. This is a good example to compare different evo-
lutionary strategies for the application of sizing integrated
circuits.
On the one hand, we used the Strength Pareto EA (SPEA).
It uses the concept of Pareto dominance to assign fitness
values for the tournament to each individual of a popula-
tion. In our implementation we use a polynomial mutation
(PM) as introduced in [9] where each individual is set off
by a random variable with a parameter controlled variance.
The crossover is derived from the simulated binary crossover
(SBX) introduced in [8]: For every randomly chosen pair of
individuals (parents) two children are generated such that
the parents’ barycenter stays the same for the children.
On the other hand, we have used ε-MOEA equipped with
PM and SBX. Since the objectives in MOP (8) have been
evaluated by a simulator which requires certain (significant)
time to initialize and free the required memory, we have
selected in each iteration step 2 ∗ Niter parents for the gen-
erational operators.

Table 1 shows some numerical results for the AOI gate
obtained by SPEA and ε-MOEA. Here, we have chosen a
budget of N1 = 1700 and N2 = 4000 function evaluations
per run of the algorithm. For N1, the computational time
for one run for both algorithms was approximately one hour,
and more than two hours for N2. For the plot of the Pareto
front see Figure 6. As reference solution we have taken the
results of much longer runs (one from each MOEA). The
results show that i) there is no clear winner out of the two
competitors though there is a slight advantage for SPEA,
and ii) that both MOEAs are capable of producing satisfying
results in this application since a maximal error (obtained
by discretization or by lack of convergence) of 0.3 is still
acceptable for the AOI gate under consideration.

4These are the widths of the left transistors of the schematic
in Figure 5(b). The right transistors are sized equally.
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Figure 4: Approximated Pareto set and front of the MOP (8) for the CMOS inverter shown in Figure 1.

Table 1: Numerical results for SPEA and ε-MOEA
for the AOI gate. The results are averaged over 10
independent runs.

N1 = 1700 N2 = 4000
Δ1 Δ2 dH Δ1 Δ2 dH

SPEA 0.134 0.216 0.271 0.083 0.094 0.257
ε-MOEA 0.111 0.123 0.248 0.132 0.142 0.287

5. DECISION SUPPORT
The design process of logic gates requires choosing tran-

sistor sizes such that the corresponding circuit properties
result in a tradeoff between several resources. The search
algorithms support the designer of an integrated circuit with
the set of all resource efficient sizings thus providing a great
variety of choices.

All simulations for the search have been performed based
on average values for parameters of the circuit’s environment
such as temperature and supply voltage. But these values
can vary and thus as part of the design process sensitivity
of the circuit has to be analyzed and reduced.
A measure of sensitivity in one particular objective can sup-
port the designer in choosing elements from the set of re-
source efficient sizings. Figure 7 shows the Pareto set of the
CMOS NOR gate with grey shades indicating the sensitivity
of the objectives NM, tpd and E. This is a simple example
to indicate the idea of sensitivity based decision support on
an example of a two-dimensional search space. For the four-
dimensional AOI gate a visualization is not as easy anymore
and thus not presented here. Also measures combining sev-
eral objectives’ sensitivities can be defined and thus simplify
even more complex dependencies.

6. CONCLUSIONS AND FUTURE WORK
We showed that a MOP naturally arises when stating the

sizing problem of CMOS standard cells. With examples
of several CMOS gates we demonstrated that the SPEA

and the ε-MOEA can be successfully applied to optimize
standard cells. For gates representing logic functions of
many boolean variables search spaces are higher dimensional
and deterministic search algorithms collapse. In those cases
MOEAs still provide sufficient results which was demon-
strated on the And-Or-Invert gate. This four-dimensional
example’s Pareto set was approximated by the ε-MOEA
with similar precision as the SPEA.

We introduced a simple example of a NOR gate to visual-
ize the possibility of using sensitivity measures for decision
support (see Figure 7). Here it could be discovered that
larger transistors are less sensitive which is in general ex-
pected (however, not to which extend). This dependency
is not guaranteed when gates become more complex. Sen-
sitivity is especially difficult to predict and thus even more
important to consider for analog circuits.

To support the designer in choosing robust elements from
the set of resource efficient sizings of analog designs sensi-
tivity measures are inevitable. For the search space explo-
ration of such circuits it would even make sense to integrate
such measures in the search process. This further increases
the search space’s complexity. So for these applications the
MOEAs advantages over the subdivision techniques will in-
crease even more.
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