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ABSTRACT 
Objective evaluation is subject to noise in many real-world 
problems. The noise can deteriorate the performance of multi-
objective evolutionary algorithms, by misleading the population 
to a local optimum and reducing the convergence rate. This paper 
proposes three novel noise handling techniques: accumulative 
sampling, a new ranking method, and a different selection scheme 
for recombination. The accumulative sampling is basically a kind 
of dynamic resampling, but it does not explicitly decide the 
number of samples. Instead, it repeatedly takes additional samples 
of objectives for the solutions in the archive at every generation, 
and updates the estimated objectives using all the accumulated 
samples. The new ranking method combines probabilistic Pareto 
rank and crowding distance into a single aggregated value to 
promote the diversity in the archive. Finally, the fitness function 
and selection method used for recombination are made different 
from those for the archive to accelerate the convergence rate. 
Experiments on various benchmark problems have shown that the 
algorithm adopting all these features performs better than other 
MOEAs in various performance metrics. 

Categories and Subject Descriptors 
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods, 
and Search 

General Terms 
Algorithms 

Keywords 
Multi-objective optimization, noisy optimization, evolutionary 
algorithm, dynamic resampling, probabilistic Pareto ranking 

1. INTRODUCTION 
Due to their population concept and inherent parallelism, multi-
objective evolutionary algorithms (MOEAs) have been used as 
supporting tools for multi-criteria decision making in various 

fields, such as manufacturing, finance, logistics, material science 
and sustainable design. For the last two decades, Pareto-based 
ranking, diversity preservation, and elitism have been deeply 
studied, and evolutionary algorithms such as NSGA-II [5] and 
SPEA2 [18] adopting these schemes have been applied to various 
real-world multi-objective optimization problems (MOPs). Most 
of the researches on MOEAs deal with noiseless problems even 
though we often get uncertain or noisy objective functions for 
many real-world problems. Noise or uncertainty are caused by 
various reasons such as measurement error, unknown model 
parameter, and randomized simulation. The noise brings about 
various difficulties to MOEAs. Because of the noise, a superior 
solution may be evaluated worse than its true objectives and thus 
erroneously eliminated from the population. Similarly, an inferior 
solution may be evaluated better than its true objectives and is 
given the opportunity to reproduce. This can mislead the 
population to a local optimum, and reduce the convergence rate of 
the population. 

For single objective problems, many works have been reported for 
evolutionary optimization in noisy environments. These works 
can be divided into four categories: resampling, fitness 
approximation, population sizing, and modified selection. 
Resampling methods take multiple samples of fitness and average 
them to reduce the effects of noise. In the simplest method, the 
number of samples is identical for all the solutions generated, and 
it is unchanged during the entire evolution. Since the sampling of 
fitness is usually time-consuming and costly, previous works [1] 
and [2] proposed methods of adapting the number of samples 
during the run for a better use of the limited computational time. 
Fitness approximation methods calculate the fitness of a solution 
by averaging its neighborhood’s fitness, instead of drawing 
multiple samples of the fitness from the solution [13]. The 
population sizing method uses a larger population to reduce the 
influence of noise on an evolutionary process. Since an 
evolutionary algorithm (EA) samples promising regions of fitness 
landscape repeatedly, the population usually contains many 
similar solutions. Therefore, the average behavior of the 
population is not significantly affected by the noise of each 
individual solution if the population size is large enough [8][12]. 
Other works have suggested modified selection methods for noisy 
problems. For example, [11] proposed a noisy evolutionary 
strategy called thresholding method, which accepts an offspring 
only when its fitness is better than that of its parent by at least a 
predefined threshold. 
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Relatively a small number of works have been reported for MOPs 
in noisy environments where the noise blurs dominance relations 
between solutions or their Pareto ranks. [10] and [16] introduced 
probabilistic dominance and probabilistic Pareto ranking schemes 
in order to reduce the error of dominance relations caused by 
noise. These two works require prior knowledge about the noise 
model, such as the variance or confidence interval of the noise 
even though they are usually unknown. Therefore, some studies 
used resampling methods [4][6] to estimate the expected values 
and variances of objectives. In addition, [4] used fitness 
inheritance to reduce the computational burden of resampling, 
while [6] proposed stochastic and significant dominance schemes 
for better discrimination among candidate solutions. Another 
study modified the elite preservation scheme of MOEAs [3]. This 
work assigns a lifetime to a newly archived solution based on the 
number of solutions it dominates and reevaluates the expired 
individuals to decide whether they should be removed from or 
allowed to continually reside in the archive. This method can 
reduce the impact of inferior solutions which were erroneously 
believed to be superior. 

In this paper, we propose three key features to be adopted to solve 
noisy MOPs efficiently. Firstly, we propose an accumulative 
sampling method. The accumulative sampling is basically a kind 
of dynamic resampling, which takes multiple samples for each 
objective of a solution and uses their average as its estimated 
objective. Although ordinary dynamic resampling methods decide 
the number of samples to be taken at the time the solution is first 
generated or evaluated, the accumulative sampling does not do so 
explicitly. The accumulative sampling takes only a minimum 
number of samples when a solution is generated, but then takes 
additional samples at every generation during its stay in the 
archive, and updates the estimated objectives using both newly 
and previously sampled values. Secondly, we propose a new 
ranking scheme which combines probabilistic Pareto rank and 
crowding distance into a single aggregated value. Probabilistic 
Pareto ranking can minimize the expected errors between the 
estimated ranks and real ranks. However, [6] and [15] pointed out 
that it can result in serious lack of diversity because each solution 
has a unique real-valued rank and thus tie-breaking by the 
crowding distance never occurs when selecting solutions for the 
archive and recombination. The combination of probabilistic 
Pareto rank and crowding distance helps to avoid the problem of 
lack of diversity. Finally, we propose to use different fitness 
functions and selection methods for the archive and 
recombination in order to accelerate the convergence of the 
algorithm. 

Section 2 describes noisy multi-objective optimization problems. 
Section 3 gives the details of the proposed methods. Section 4 
reports the experimental results comparing the performance of the 
proposed algorithm with those of other MOEAs. Finally, Section 
5 gives some conclusions. 

2. NOISY MULTI-OBJECTIVE PROBLEM 
Without loss of generality, we can define multi-objective 
optimization as a minimization problem. Formally  

 1 2min ( ) ( ( ), ( ),..., ( ))mf f f fx x x x  

where x is a candidate solution and m is the number of objectives 
to be minimized. Solution a dominates solution b (a b), if every 
objective of a is less than or equal to that of b and at least one 
objective of a is less than that of b. This is formally defined as 
follows: 


, if 1, 2, ..., : ( ) ( )

1, 2, ..., : ( ) ( )
i i

j j

i m f f

j m f f

   

  

a b a b

a b


 

A solution is Pareto optimal if it is not dominated by any other 
possible solution. For a Pareto optimal solution, any of its 
objectives cannot be improved without deteriorating at least one 
other objective. The set of all possible Pareto optimal solutions is 
called Pareto front. Since an MOP typically has so many 
solutions in the Pareto front, an MOEA tries to find the best 
subset of the solutions which best represents the Pareto front. 

A noisy MOP is defined as follows: 

 1 2min ( ) ( [ ( )], [ ( )],...,E[ ( )])mf E f E f fx x x x  

Assuming additive normal noise, 

 2ˆ( ) ( ) (0, )i i if f N  x x  

where ˆ ( )if x  is the noiseless objective function. Since E[fi(x)] = 

ˆ ( )if x , equation (3) implies that the goal of the optimization is to 

minimize the noiseless objective functions. 

For noisy problems, the dominance relation between two 
solutions cannot be deterministically determined based on their 
estimated objective values. As a solution, previous works [10], 
[16], and [7] defined and used probabilistic dominance and 
significant dominance schemes. Assuming independence among 
all the objective functions, solution a probabilistically dominates 
solution b with a probability of  


1

( ) ( ( ) ( ))
m

i i
i

p p f f


 a b a b  

For two independent normal random variable x and y, the 
probability p(x    y) can be calculated as follows: 

   /
( ) ( 0) / ( )

dd

dp x y p d d s f t dt



        

where d = y – x is a normal random variable with the mean 

d y x   and the variance 2 2 2
d x ys s s  . Φ is the cumulative 

distribution function of the standard normal distribution f(t). 
However, the assumption of normal distribution is not valid when 
the sampling size is not large enough. Therefore, in this paper, we 
calculate the probability using the student t-distribution: 

        
/

0 / , ,
dd s

dp x y p d F d s v f t v dt


       

where F is the cumulative distribution of the student-t distribution 
f(t, v) with v degree of freedom. If it is assumed that the two 
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variables x and y have the same variance and their sample sizes 
are nx and ny, respectively, then sd and v are calculated as 


2 2

2 ( 1) ( 1)

2
x x y y

d
x y

n s n s
s

n n

  


 
 

 2x yv n n    

If their variances are different, sd and v are calculated as 


22

2 yx
d

x y

ss
s

n n
   


2 2

2 2 2 2

( / / )

( / ) / ( 1) ( / ) / ( 1)
x x y y

x x x y y y

s n s n
v

s n n s n n




  
 

To discriminate solutions in noisy environments, we can look for 
significant differences of objectives between two solutions. If 
every objective of solution a is significantly less than that of 
solution b, solution a significantly dominates solution b. A formal 
definition is given below. 

Definition 1: Solution a significantly dominates solution b with a 
confidence level of approximately (1 – mα) if p(fi(a) < fi(b)) > (1 
– α) for each objective i ∈ {1, 2, …m}. 

3. PROPOSED METHODS 
The MOEA proposed in this paper has three novel features to 
cope with the negative effect of noise: accumulative sampling, 
probabilistic Pareto rank combined with crowding distance, and a 
new parent selection scheme to accelerate the convergence. 

3.1 Accumulative Sampling 
Elitism is one of the most important features of recent MOEAs, 
such as NSGA-II and SPEA2, with Pareto-based ranking and 
diversity preservation. The MOEAs preserve some of the non-
dominated solutions found throughout evolution in an additional 
space, named archive. While the solutions in the archive will 
eventually become the final output of the algorithm after its 
completion, they also guide the evolutionary process during the 
run of the algorithm by being selected as parents for 
recombination. Previous work [17] showed that the elitism helps 
to improve the convergence rate of MOEAs. 

For noisy problems, however, the elitism can deteriorate the 
performance of the algorithms. Once archived, a solution is never 
reevaluated in ordinary MOEAs. Therefore, if the objectives of an 
inferior solution are erroneously estimated much better than its 
true values and selected for the archive, this solution can stay in 
the archive for many generations and be repeatedly selected as 
parents. This can mislead the evolution to a wrong direction. In 
addition, this inferior solution can dominate other superior 
solutions that should not actually be dominated and better than 
that solution, and thus it can prevent the superior solutions from 
being included in the archive. This makes it difficult for the 
archive to be updated with better solutions and thus decreases the 
convergence rate of the algorithm. Our preliminary experiments 

showed that the errors between the sampled and true objectives 
tend to become larger as the evolution progresses, making the 
problem worse. 

A simple solution to this problem would be not to use elitism. 
There are two alternatives we can think of. One is not to use the 
archive like the original NSGA [14], and the other is to select 
parents from the population of the previous generation instead of 
the archive. However, these non-elitistic methods have to give up 
the advantages of the elitism. Note that if really good solutions 
are retained in the archive, they help to accelerate the 
convergence of the algorithm. 

The forgetting method does not give up elitism but discards the 
sampled objectives of the archived solutions and takes new 
samples of the objectives at every generation. The repeated 
reevaluation can remove the inferior solutions erroneously 
included in the archive at the cost of increased number of 
evaluations at every generation. Previous work [3] used the 
concept of dominance-dependent lifetime to reduce the number of 
reevaluations. This method assigns lifetimes to solutions when 
they are generated, and reevaluates only those whose lifetimes 
expire. The length of the lifetime of a solution depends on the 
number of solutions in the archive that it dominates. The more 
solutions one dominates, the shorter life time it is assigned. These 
reevaluation-based methods effectively reduce the negative effect 
of the inferior outliers while taking advantage of the elitism. 

What we propose in this paper is an accumulative sampling 
method for noisy MOPs. Similarly to the forgetting methods, this 
method repeatedly takes samples of the objectives for the 
solutions in the archive at every generation, but it does not discard 
the samples of the objectives taken in the previous generations. 
What it does after sampling is to recalculate the average over not 
only the objective samples newly taken but also the samples taken 
in the previous generations for each objective function and to use 
it as the estimated objective of the solution. By the accumulative 
sampling, the estimated objectives of a solution in the archive are 
getting more accurate as generation goes on until it is removed 
from the archive. Therefore, even if a solution is erroneously 
included in the archive by being overestimated, it will be removed 
from the archive in several generations after the estimated 
objectives become accurate enough. Moreover, if the objectives 
of a good solution in the archive are evaluated much worse than 
its true objective values at a generation, the sampled objectives in 
the prior generations can compensate the error and the solution 
can stay in the archive. 

The accumulative sampling is a kind of dynamic resampling. As 
mentioned earlier, resampling methods take several samples of 
objectives and average them to reduce the effect of noise. In a 
static resampling method, the number of samples is identical for 
all the individuals and is unchanged during the whole run of the 
algorithm. For an effective utilization of the limited 
computational time given for optimization, dynamic resampling 
adapts the number of samples during the algorithm’s run. While 
other dynamic resampling methods decide the number of samples 
when the solution is generated or evaluated, the accumulative 
sampling does not make such an explicit decision. Instead, the 
number of samples is implicitly decided in proportion to the 
length of stay of each solution in the archive. 
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3.2 Combined Ranking 
Ordinary MOEAs select solutions for the archive and 
recombination based on the Pareto rank and crowding distance. 
Given two solutions, the one with a higher Pareto rank is 
considered better. If their Pareto ranks are the same, the solution 
with a larger crowding distance is preferred. The Pareto ranks are 
calculated based on the Pareto relations among the solutions. The 
non-dominated solutions are usually assigned the highest rank ‘1’ 
and the dominated solutions are given lower ranks. For noisy 
problems, it is difficult to determine the true Pareto rank of a 
solution due to the uncertainty on the Pareto dominance relations. 
One of the following methods may be considered as a solution to 
this problem: 

1. Simply ignore the existence of noise and consider the 
estimated objectives as the true objectives. 

2. Calculate Pareto ranks based on significant dominance 
relations instead of deterministic dominance relations 

3. Calculate probabilistic Pareto ranks based on probabilistic 
dominance relations 

The first method considers the estimated objectives as the true 
objectives, and uses ordinary MOEAs without any change. In this 
case, the errors between real and estimated Pareto ranks can cause 
problems. A typical problem is that the selections are governed 
more by Pareto ranks than they are when there is no noise. When 
the population gets filled with only non-dominated solutions, as 
frequently observed in rather early generations of non-noisy 
MOEAs, the selection for the archive and parents is solely 
controlled by the crowding distance. However, in presence of 
noise, the selection is controlled more by the Pareto rank than the 
crowding distance because the population tends to consist of 
individuals of erroneous multiple ranks. This causes severe loss of 
diversity. The second method decides the dominance relation 
more conservatively. Therefore, most solutions become non-
dominated even in early generations and the selections are more 
dependent on the crowding distances than the Pareto-ranks. While 
it promotes the diversity of the archive and population, it reduces 
the convergence rate of the algorithm. The third method can 
minimize the expected error between the estimated and real ranks. 
However, previous work [6] and [15] pointed out that the 
crowding distance is never used for selection because each 
solution has a unique real-valued rank. Therefore the algorithms 
using the probabilistic Pareto rank suffer from severe lack of 
diversity. 

We adopt both the second and the third methods with some 
modifications. Unlike the usual Pareto ranking, the solutions are 
divided into only two ranks by the significant dominance relations. 
If a solution xi is significantly non-dominated, it is assigned a 
significant Pareto rank of ‘1’ (i.e. ranki = 1). Otherwise, ranki = 2. 
To avoid significant dominance by outliers we allow only the 
reliable solutions to significantly dominate others. The reliable 
solution is defined as follows: 

Definition 2: Solution x is reliable if the number of samples used 
to estimate each of its objectives is larger than a certain threshold 
Nr. 

For tie-breaking, we combine the probabilistic Pareto rank and the 
crowding distance into a single value as follows for use as the 
fitness CR(xi) of a solution xi: 

 ( ) min( ( ), ( ))i PR i CD iCR R R x x x  

where RPR(xi) is the relative rank of solution xi after sorting the 
composite population CP according to their probabilistic Pareto 
ranks. CP consists of all the solutions in the archive and the 
offspring population. RCD(xi) is the rank by crowding distance of 
solution xi within CP. By crowding distance, the highest (or the 
minimum) rank ‘1’ is given to the one with the largest distance. 
Parameter α reflects the importance of crowding distance relative 
to Pareto rank. Typically, α  1 because the Pareto rank is usually 
considered more important than the crowding distance. The 
probabilistic Pareto rank PR(xi) of solution xi is calculated as 
follows: 

 ( ) ( )
j

i j iPR P


 
x CP

x x x  

It is a simplified version of the probabilistic Pareto rank of [10] 
and [4]. The crowding distances are calculated in the same way as 
that of NSGA-II with one difference. NSGA-II gives an infinite 
value to the extreme solutions. In addition to that, we give an 
infinite crowding distance to the reliable extreme solutions, 
whose at least one objective is the minimum of all the reliable 
solutions of the same rank. 

For the archive selection, we use a strategy similar to that of 
NSGA-II, with the comparison operator (≺n) modified as follows: 

xi ≺n xj  if (ranki < rankj) or  

((ranki = rankj) and (fitnessi < fitnessj)) 

where fitnessi = CR(xi). After sorting the solutions in CP using ≺n, 
the best Narc solutions are selected for the archive, where Narc 
denotes the archive size. The measure used for fitnessi becomes 
different for parent selection as described below. 

3.3 Parent Selection 
Compared to the scheme using only the probabilistic Pareto rank, 
the above combined ranking preserves more diversity at the cost 
of reducing the convergence rate. To accelerate the convergence 
without losing the advantage of preserving diversity, we use a 
strategy for the parent selection which is different from that of the 
archive selection. The following fitness function F(xi) instead of 
CR(xi) is used for parent selection: 

 ( ) ( ) ( )
j

i i j i jF n P S


  
x CP

x x x x  

where ni denotes the number of samples used to estimate each 
objective of xi, and 

 ( ) ( )
k

j j kS P


 
x CP

x x x  

This fitness function is quite similar to that of SPEA2 [18] except 
that it considers the number of samples and is based on the 
probabilistic dominance. Note that it does not take crowding 
distance into account but prefers solutions which are generated 
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more recently, i.e., those with smaller ni. Another difference in 
our strategy is that, instead of being selected directly from the 
archive, parents are selected from the parent population whose 
size is the same as that of the archive. The members of the parent 
population is selected from CP using the same method as that for 
the archive except that fitnessi = F(xi). Note that the members in 
the parent population do not act as elites. They are simply 
discarded after the offspring are generated. Figure 1 shows the 
procedure of generating offspring and selecting solutions for the 
new archive and parent population. In this figure, At, Pt, Ot, and 
CPt denote the archive, parent population, offspring population, 
and composite population at generation t, respectively. 

 

 

4. EXPERIMENTAL RESULTS 
Five well-known benchmark problems of ZDT1, ZDT2, ZDT3, 
ZDT4, and ZDT6 [17] are used in our experiments. Three levels 
of additive Gaussian noise are used: low (σi = 0.01 × (Fi

max – 
Fi

min)), medium (σi = 0.05 × (Fi
max – Fi

min)), and high (σi = 0.1 × 
(Fi

max – Fi
min)), where Fi

max and Fi
min are the maximum and 

minimum of the ith objective in the true Pareto front. In our report 
of results, ZDTnL, ZDTnM, and ZDTnH denote ZDTn with low, 
medium, and high noise level, respectively. 

We compared the proposed algorithm (NMOE-AS) with NSGA-II 
(NSGA2) and its four variants: non-elitistic NSGA-II (NSGA2-
NE), NSGA-II without archive (NSGA2-NA), NSGA-II with 
forgetting (NSGA2-F), and NSGA-II with accumulative sampling 
(NSGA2-AS). For all the algorithms, both the population size and 
archive size are set to 100. Simulated binary crossover (SBX) 
with ηc = 15, and a polynomial mutation with ηm = 20 are used. 
The crossover rate and mutation rate are set to 0.9 and 1/l, 
respectively, where l is the length of a chromosome. The 
sampling size is set to 4 for NSGA2, NSGA2-NE, and NSGA2-
NA, but 2 for both the population and archive of NSGA2-F and 
NMOE-AS. Note that the total number of samples for each 
objective taken in every generation is the same for all the 
algorithms. 

We used three performance metrics: ϒ metric or generational 
distance (GD) [5], maximum spread (MS) [9], and hyper volume 
ratio (HVR) [7]. GD and MS are indicators for convergence and 
diversity, respectively. HVR is used as an overall quality measure. 

1,000 uniformly-spaced solutions are taken from the optimal 
Pareto front and used to calculate the metrics. For each 
experiment, 30 independent trials were executed and the results 
were averaged. 

Figure 2 compares the results of NSGA2, NSGA2-NE, NSGA2-
NA, and NSGA2-F on ZDT1, ZDT2, and ZDT3 with low and 
high noise levels. In this and the following results, the values of 1 
– MS are shown instead of the values of MS. Therefore, smaller 
values are better for all the metrics. When the noise level is low, 
NSGA2 shows overall better results than NSGA2-NE and 
NSGA2-NA, which do not take elitism, though its performance in 
GD for ZDT3 is slightly worse than that of NSGA2-NE. However, 
when the noise level is high, NSGA2 is worse than not only 
NSGA2-NE but also NSGA2-NA, showing the worst 
performances in all the metrics. Especially, NSGA2 gives much 
worse results in GD than the other algorithms. This implies that 
the elitism helps NSGA2 to better solve the problems when the 
noise level is low, but it hinders rather than helps the convergence 
of NSGA2 when the noise level is high. 

NSGA2-NA shows overall worse results than NSGA2-NE when 
the noise level is high except for in MS and HVR for ZDT2H, and 
the worst results when the noise level is low. The absence of 
archive really hurts the performance. For all the problems and 

At

Ot

CPt

At+1 Pt+1

Pt

+

Offspring 
Generation

Selection based on 
ranki and CR(xi)

Selection based on 
ranki and F(xi)

 

Figure 1. Procedure for generating offspring and selecting 
members for the new archive and parent population 
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Figure 2. Experimental results of NSGA2, NSGA2-NE, 
NSGA2-NA, and NSGA2-F on (a) ZDT1L, (b) ZDT1H, (c) 

ZDT2L, (d) ZDT2H, (e) ZDT3L, and (f) ZDT3H 
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noise levels, NSGA2-F gives the best results with only one 
exception in MS for ZDT1H, for which NSGA2-NE shows the 
best performance. By the forgetting method, NSGA2-F can take 
the advantage of the elitism even under the hindrance of noise. 

Figure 3 shows the results of NSGA2, NSGA2-NE, NSGA2-NA, 
and NSGA2-F on ZDT4 and ZD6 with low and high noise levels. 
The results are quite different from those seen before. For these 
problems with both the noise levels, NSGA2 shows much better 
performance than NSGA2-NE and NSGA2-NA in all of GD, MS, 
and HVR. NSGA2-NE and NSGA2-NA show similar results even 
though the results of NSGA2-NE are slightly better than those of 
NSGA2-NA for all the problems. Both elitism and the archive 
seem to be essential to solve these problems efficiently. For all 
the problems, NSGA2-F is still the clear winner.  

Figure 4 compares average GD curves of NSGA2, NSGA2-NE, 
NSGA2-NA, and NSGA2-F for ZDT1L and ZDT1H. With low 
noise level, NSGA2 performs a little better in GD than NSGA2-
NE and NSGA2-NA up to about generation 50. After then, 
NSGA2 and NSGA2-NE show similar curves. With high noise 
level, NSGA2 still shows better GD before generation 25, but 
become much worse than NSGA2-NE and NSGA2-NA after then. 
NSGA2-NE and NSGA2-NA show quite similar GD curves with 
high noise level. NSGA2-F shows the fastest convergence and 
better GD than the other algorithms with both the noise levels all 
through the generations. With both the noise levels, NSGA2 and 
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Figure 3. Experimental results of NSGA2, NSGA2-NE, 
NSGA2-NA, and NSGA2-F on (a) ZDT4L, (b) ZDT4H, (c) 

ZDT6L, and ZDT6H 
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Figure 4. Average GD curves of NSGA2, NSGA2-NE, 
NSGA2-NA, and NSGA2-F for (a) ZDT1L and (b) ZDT1H

Table 1. Experimental results of NSGA2-F, NSGA2-AS, and 
NMOE-AS on ZDT1, ZDT2, and ZDT3 with low, medium, 

and high noise levels 

Problem Metric NSGA2-F NSGA2-AS NMOE-AS

ZDT1L GD 2.92E-03 2.50E-03 2.48E-03
 1–MS 2.96E-02 3.54E-02 1.94E-02
 HVR 9.01E-04 9.76E-04 5.33E-04
ZDT1M GD 1.17E-02 9.66E-03 9.32E-03
 1–MS 4.68E-02 4.45E-02 2.45E-02
 HVR 2.56E-03 2.29E-03 1.66E-03
ZDT1H GD 2.11E-02 1.76E-02 1.91E-02

 1–MS 5.18E-02 5.45E-02 3.70E-02
 HVR 3.97E-03 3.52E-03 3.02E-03

ZDT2L GD 2.29E-03 2.12E-03 2.08E-03
 1–MS 3.97E-03 5.13E-03 2.77E-03
 HVR 6.39E-04 7.82E-04 4.82E-04
ZDT2M GD 1.04E-02 8.80E-03 7.89E-03
 1–MS 1.18E-02 1.04E-02 8.50E-03
 HVR 2.02E-03 1.74E-03 1.49E-03
ZDT2H GD 1.94E-02 1.66E-02 1.60E-02
 1–MS 1.14E-01 9.15E-02 1.46E-02
 HVR 1.15E-02 1.04E-02 2.67E-03

ZDT3L GD 2.85E-03 2.68E-03 2.44E-03
 1–MS 1.52E-02 1.44E-02 6.08E-03
 HVR 9.88E-04 1.52E-03 6.29E-04
ZDT3M GD 8.47E-03 7.27E-03 7.89E-03

 1–MS 1.46E-02 1.69E-02 1.07E-02
 HVR 2.29E-03 2.23E-03 1.92E-03
ZDT3H GD 1.36E-02 1.23E-02 1.30E-02

 1–MS 3.44E-02 2.95E-02 1.84E-02
 HVR 5.15E-03 4.51E-03 3.52E-03
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NSGA2-F show similar convergence rate and GD curves during 
the first 10 generations, but the convergence rate of NSGA2 
gradually becomes slower than that of NSGA2-F after then. 

Table 1 and 2 compare NSGA2-F, NSGA2-AS, and NMOE-AS 
on all the problems with low, medium, and high noise levels. In 
the tables, the best result for each performance metric is indicated 
by boldface. For ZDT1–4, NMOE-AS gives the best results in MS 
and GD metrics. For ZDT1L, ZDT3M, ZDT3H, ZDT4M, and 
ZDT4H, NSGA2-AS shows the best results in GD metric. 
Exceptionally for ZDT6, NSGA2-F shows the best results in GD 
with all the noise levels and in MS and HVR with low noise level. 

Figure 6 shows the archive update rate, which is measured by the 
proportion of the solutions in the archive that are replaced with 

newly generated ones at each generation, in a typical run on 
ZDT1H. The update rate of NSGA2 begins at a very low value 
and remains at near-zero values during the entire generations. The 
update rate of NSGA2-NE starts at a much higher value of about 
0.7, but it gradually decreases and finally stays at near-zero 
values after about 130 generations. On the other hands, the update 
rates of NSGA2-F and NMOE-AS stay at relatively high values 
of around 0.2 all through the generations. They do not show any 
tendency of decrease in early generations. 

Figure 5 compares the average error between the true and 
estimated objectives of the solutions in the archive in a typical run 
on ZDT1H. NSGA2 and NSGA2-NE show similar curves. They 
begin at around 0.045, which are lower values than those of 
NSGA2-F, NSGA2-AS, and NMOE-AS, but it gradually 
increases with generations. Especially, they soar up in very early 
generations and remain much higher than those of the other three 
algorithms after 25 generations. This explains why the archive 
update rates of these algorithms are so low and gradually decrease 
in early generations. The errors of NSGA2-F, NSGA2-AS, and 
NMOE-AS do not show any tendency of increase over all the 
generations. NMOE-AS shows the overall smallest error over the 
entire generations, and NSGA2-AS marks the second best. 

Figure 7 shows the averaege sample size to estimate each 
objective of the solutions in the archive in a typical run on 
ZDT1H. Without the accumulative smapling, the average sample 
sizes of NSGA2 and NSGA-F stay at fixed values of 2 and 4, 
respectively. Both NSGA2-AS and NMOE-AS show a tendency 
of increase of their average sample sizes. The average sample size 
of NSGA2-AS stays relatively constant inbetween 5 and 8 after 
about 50 generations, but that of NMOE-AS shows a continual 
increase over the entire generations. Even though the sample size 
of NSGA2-AS and NMOE-AS for new offsping is set to 2 which 
is a smaller value than 4 of NSGA2, the average sample sizes of 
them are maintained larger than that of NSGA2 except for only 
the earliest few generations. Over all the genrations, the average 
sample size of NMOE-AS is larger than that of NSGA2-AS. This 
brings about the smallest error on the sampled objectives of the 
NMOE-AS and the smaller error of NSGA2-AS than that of 
NSGA2-F. 

Figure 7 reveals an additional advange of the accmulative 
sampling. In most other dynamic resampling methods, the total 
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Figure 6. Archive update rate of (a) NSGA2, (b) NSGA2-NE, 
(c) NSGA2-F, and (d) NMOE-AS 

Table 2. Experimental results of NSGA2-F, NSGA2-AS, and 
NMOE-AS on ZDT4 and ZDT6 with low, medium, and high 

noise levels 

Problem Metric NSGA2-F NSGA2-AS NMOE-AS

ZDT4L GD 4.14E-02 8.59E-02 1.61E-02
 1–MS 1.85E-02 1.46E-02 1.20E-02
 HVR 8.18E-04 8.58E-04 5.92E-04
ZDT4M GD 9.46E-02 9.22E-02 1.01E-01

 1–MS 2.94E-02 1.82E-02 1.10E-02
 HVR 1.78E-03 1.35E-03 1.20E-03
ZDT4H GD 1.92E-01 9.50E-02 2.43E-01

 MS 3.01E-02 3.16E-02 1.73E-02
 HVR 2.42E-03 2.58E-03 2.04E-03

ZDT6L GD 2.32E-03 1.14E-02 6.48E-03

 1–MS 2.97E-03 3.76E-03 3.39E-03

 HVR 4.97E-04 6.30E-04 5.58E-04

ZDT6M GD 8.40E-03 2.14E-02 1.65E-02

 1–MS 6.62E-03 9.51E-03 6.46E-03
 HVR 1.14E-03 1.60E-03 1.12E-03
ZDT6H GD 1.34E-02 1.88E-02 3.07E-02

 1–MS 1.11E-02 1.39E-02 9.63E-03
 HVR 1.92E-03 2.39E-03 1.70E-03
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Figure 5. Average error between the true and sampled 
objectives of the solutions in the archive on ZDT1H
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sample size of all the solutions is kept constant although some 
works proposed methods of controlling the total sample size for 
each generation. The accumulative sampling does not have an 
explicit mechanism to control the total sample size, but it is 
implicitly controlled over genrations as shown in the figure. 

 

5. CONCLUSIONS 
We have seen that the elitism of NSGA-II decreases the 
convergence rate and the performance becomes worse than those 
of the non-elitistic algorithms for highly noisy problems. We have 
also seen that forgetting and accumulative sampling are both 
simple but powerful methods, which can exploit the advantage of 
elitism without serious reduction of the convergence rate. In this 
paper, we have proposed the accumulative sampling method as a 
better option to solve noisy MOPs. The accumulative sampling 
makes the estimated objectives of the solutions in the archive to 
become more accurate as generation goes on. We have also 
proposed a new ranking method which combines probabilistic 
Pareto rank and crowding distance into an aggregated value. The 
new method avoids the loss of diversity in the archive by making 
up the unique value problem of the probabilistic Pareto ranking. 
We have yet additionally proposed a parent selection strategy 
which is different from that of the archive selection in order to 
accelerate the convergence of the algorithm. Experiments using 
various benchmark problems have shown that the algorithm 
adopting all these features performs better than NSGA-II, non-
elitistic NSGA-II, and the forgetting method in various 
performance metrics. 
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Figure 7. Average sample size to estimate each objective of the 
solutions in the archive on ZDT1H 
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