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ABSTRACT
In this paper, a new Multi-Objective Evolutionary Algo-
rithm (MOEA) named RankMOEA is proposed. Innova-
tive niching and ranking-mutation procedures which avoid
the need of parameters definition are involved; such proce-
dures outperform traditional diversity-preservation mecha-
nisms under spread-hardness situations. RankMOEA per-
formance is compared with those of other state of the art
MOEAs: MOGA, NSGA-II and SPEA2, showing remark-
able improvements. RankMOEA is also applied to approxi-
mate the Pareto Front of a Dynamic Principal-Agent model
with Discrete Actions posed in a Multi-Objective Optimiza-
tion framework allowing to consider more powerful assump-
tions than those used in the traditional single-objective op-
timization approach. Within this new framework a set of
feasible contracts is described, while others similar studies
only focus on one single contract. The results achieved with
RankMOEA show better spread and minor error than those
obtained by already mentioned MOEAs, allowing to perform
better economic analysis in the contracts trade-off surface.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search

General Terms
Algorithms, Design, Performance

Keywords
Multi-objective optimization, Evolutionary Algorithms

1. INTRODUCTION
Innumerable situations in real world involve in a natu-

ral way problems with multiple objectives to be optimized;

Multi-Objective Optimization (MO) studies such kind of
problems. Since MO implies to optimize conflicting objec-
tives subject to certain constraints, most of the time it is
impossible to determine a unique solution. Thus, Multi-
Objective Optimization Problems (MOPs) are character-
ized by a set of alternative solutions that must be consid-
ered as equivalents given the lack of information about rel-
evance of one objective with regard to the others. In MO a
space for decision variables and a space for their objective
functions evaluation are considered. In real valued func-
tions, those two spaces are related by a mapping F : �n →
�k. It is assumed that a solution to the MOP can be de-
fined in terms of a decision vector −→x = [x1, x2, . . . , xn]

T

in the decision space �n. The set of imposed constraints
on F (−→x ) = [f1 (

−→x ) , f2 (
−→x ) , . . . fk (

−→x )] define a feasible re-
gion Ω ⊆ �n in the decision space along with its corre-
sponding image Λ ⊆ �k on the objective space. By defi-
nition, there is a possibly infinite set of optimal solutions
which are found at the frontier of Λ and are called the
Pareto Optimal Frontier (PF ∗), while their corresponding
decision variable values in Ω are called the Pareto Opti-
mal Set (PS). A solution −→x in PS is Pareto optimal (also
called nondominated with respect to Ω), which means that
there is no other solution −→y ∈ Ω for which F (−→y ) domi-
nates F (−→x ) (denoted by F (−→y ) ≺ F (−→x )). F (−→y ) is said to
dominateF (−→x ) if and only if −→y improves any objective to
optimize with respect to −→x without inducing some simul-
taneous deterioration in at least another objective, e.g. as-
suming only minimizationF (−→y ) is partially less than F (−→x ),
i.e., ∀fi ∈ F : fi (

−→y ) ≤ fi (
−→x ) ∧ ∃fi ∈ F : fi (

−→y ) < fi (
−→x ).

Evolutionary Algorithms (EAs) have shown to be a promis-
ing approach to deal with real MOPs [4]. They usually do
not guarantee to identify optimal trade-offs, but to find good
assessments, i.e., the set of solutions (Pareto Frontier ap-
proximation) whose objective vectors are not too far away
from the optimal objective vectors. One of the aspects in
EAs is its exploration mechanism (mutation), which should
be carefully adjusted in order to achieve good performance.
Several heuristics have been developed in an attempt to solve
this problem in single-objective problems, although no one
is successful for every case given that some are too general or
require an extremely fine-grained level of detail. A new rank
mutation concept [2] has shown to overcome the aforesaid
heuristics weaknesses by applying mutation such that differ-
ent individuals are characterized by different mutation rates,
each individual being assigned a particular mutation rate ac-

785

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’11, July 12–16, 2011, Dublin, Ireland.
Copyright 2011 ACM 978-1-4503-0557-0/11/07 ...$10.00.



cording to some rule. The rule will work where the mutation
rate is related to fitness rank [1]. A new EA which extends
this concept to the MO framework and involves and inno-
vative niching, called RankMOEA, is designed and tested
in this paper with some already well known MOEAs, show-
ing a good performance over spread-harness situations. In
addition, RankMOEA is used to numerically approximate
the PF ∗ of a Dynamic Principal-Agent model with Discrete
Actions, which is analyzed from a MO framework.

The remainder of this paper is organized as follows. In
Section 2, a detailed description of RankMOEA is given.
Section 3 presents some spread-hardness situations that are
used to compare the performance of RankMOEA with some
well-known MOEAs. The Dynamic Principal-Agent model
with Discrete Actions is presented and explained in Section
4. In Section 5, experimental results of applying RankMOEA
to the previous Principal-Agent model are reported and dis-
cussed. Finally, conclusions are drawn in Section 6.

2. A NEW MULTI-OBJECTIVE
EVOLUTIONARY ALGORITHM

2.1 Some Issues about Evolutionary MO
When using heuristics in MO, attaining good convergence

to PF ∗ and maintaining Pareto Front approximation (out-
come of an approximation algorithm, PF ∗

known) distribution
as diverse as possible are two desirable goals [19]. EAs have
shown to be a good heuristic in order to achieve such goals.
The main reason is that population approach is well suited to
find multiple solutions, besides niche-preservation methods
can be exploited to find diverse solutions at the same time
that implicit parallelism helps. Several MOEAs with good
performance [4] have been proposed through recent years fo-
cusing in some of the following elements: fitness assignment,
diversity-preservation mechanism and elitism.

• Fitness assignment has been conceived either as ag-
gregation based, or as objective based, or as Pareto
dominance based [4]. Aggregation based fitness as-
signment combines objectives to be optimized in one
single linear or nonlinear parameterized function. Ob-
jective based fitness assignment chooses the most suit-
able sequence of the objective(s) to optimize during se-
lection process, i.e., only one subset of objectives is op-
timized at the time [9, 15]. Finally, Pareto dominance
based fitness assignment ranks solutions according to
the Pareto dominance concept using distinctive rules
[8, 21, 12, 6, 20] .

• Diversity-preservation mechanisms impulse divergence
in tangential direction to the promising regions dis-
covered by the MOEA, this through probability se-
lection bias towards less conglomerated regions. The
most common mechanisms to maintain diversity are:
fitness sharing [10], mating restriction, reinitialization
[8], clustering [21], grid mapping [12], crowding [6] and
truncation [21]. Nevertheless, most of such mecha-
nisms require parameters specification.

• Elitism is extended to the concept of an offline popula-
tion PF ∗

known (t), which stores all nondominated solu-
tions found up to epoch t, PF ∗

known (t) can be interac-
tive or isolated, which means that can either cooperate

in the evolutionary process by selecting new parents
from it, or act only as a repository unit to store solu-
tions.

A new MOEA which extends Pareto dominance-based fit-
ness assignment strength to also promote diversity, avoids
the need for parameter specification, outperforms some well-
known diversity-preservation mechanisms and uses elitism
with interactive population is proposed in the next subsec-
tion.

2.2 RankMOEA
Three premises were considered to design the new pro-

posed algorithm called RankMOEA:

• Since Pareto dominance rules sort candidate solutions
in a certain order according to their proximity to the
frontier of �, some advantage can be taken from such
arrangement by intensifying exploration in candidate
solutions far from the frontier and reducing exploration
in candidate solutions close to the frontier. This as-
suming that the first type of solutions does not have
much information about PF ∗ structure and need more
effort to achieve a good performance.

• The structure of the search is defined by � and not
by �, thus, diversity preservation mechanisms should
work better in � if they are compliant with � struc-
ture. Hence, exploitation of the information could be
successful by mating nearby candidate solutions in �
since such process is less disruptive.

• In most of the cases, after a certain threshold in the
evolutionary process of MOEAs, the number of non-
dominated solutions grows rapidly, thus reduced mu-
tation in solutions closer to the frontier of � that are
less conglomerated in � should improve performance
by controlling exploration and preserving the empha-
sized exploitation in such regions.

RankMOEA extends the rank mutation presented in [1, 2]
to the MO framework, overcoming the mutation fine tun-
ing drawbacks and promoting a controlled diversity accord-
ing to Pareto dominance and the degree of conglomerate.
RankMOEA is described in Algorithm 1. First, a set of m
individuals are initialized as the early population −→x ∈ P (1)
and evaluated in the set of k objectives to be optimized
(lines 1 to 3). Then, Goldberg’s ranking [10] is used to sort
nondominated and dominated individuals (line 4):

rankg
(−→x , P (t)

)
={

1 iff�−→y ∈ P (t) |F (−→y ) ≺ F
(−→x )

max−→y ∈P (t)|F (−→y )≺F (−→x )
[
rankg

(−→y , P (t)
)]

+ 1 otherwise

(1)

By definition, nondominated individuals in P (t) have rank-
ing value of 1, thus individuals closer to such nondominated
inidividuals in � have lower ranking values. Goldberg’s
ranking was preferred since it allows smoother ranking land-
scapes of Pareto domination. RankMOEA uses an interac-
tive online file PF ∗

known (t) to store continuously its approx-
imation to PF ∗ (line 5). During the evolution process only
m/2 of the parents P (t) are chosen (line 7) by the selection
procedure.

Mates of the m�2 parents are chosen using a minimum
spanning tree niching which works over the phenotypic space
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Algorithm 1 RankMOEA

1 t← 1
2 random initialization of each individual −→x ∈ P (t)
3 ∀−→x ∈ P (t) evaluate fi

(−→x ) ∀fi ∈ F

4 ranking−→x∈P (t) ← rankg
(−→x , P (t)

)∀−→x ∈ P (t)

5 PF ∗
known (t)← nondominated (P (t))

6 do while t < stop criterion

7 P
′
(t)← selection (P (t))

8 P
′′
(t)← mst−niching

(
P

′
(t) , P (t)

)
9 P

′′′
(t)← rank−mutation

(
P

′′
(t)

)
10 ∀−→x ∈ P

′′′
(t) evaluate fi

(−→x ) ∀fi ∈ F

11 ranking−→x∈P
′′′

(t)
← rankg

(−→x , P
′′′

(t)
)
∀−→x ∈ P

′′′
(t)

12 PF ∗
known (t+ 1)← nondominated

({
PF ∗

known (t) ∪ P
′′′

(t)
})

13 if
∣∣PF ∗

known (t+ 1)
∣∣ > m

14 PF ∗
known (t+ 1)← truncation

(
PF ∗

known (t+ 1) ,m
)

15 P (t+ 1)← PF ∗
known (t+ 1)

16 else

17 sort
{
P

′′′
(t) − PF ∗

known (t+ 1)
}

by

ranking−→x∈
{
P

′′′
(t)−PF∗

known
(t+1)

}ascendant
18 P (t+ 1)←

{
PF ∗

known (t+ 1) ∪
{
P

′′′
(t)

}
[1 : m− |PF ∗

known (t+ 1)|]}
19 end if
20 t← t + 1

21 end do

(line 8). This mechanism builds a minimum spanning tree
in � including all individuals in P (t), distance in � is com-
puted normalizing every phenotypic feature which allows to
handle incommensurable variables. In this approach, niches
are not isolated elements, moreover they are elements par-
tially coupled by the tree structure (see left side of Figure 1).
Since each individual in the minimum spanning tree can be
connected with more than one individual, every −→x ∈ P (t)
is weighted with

mst
(−→x )

=
1

rankg
(−→y , P (t) , F

)− [
mst−arity

(−→x )]−1
+ 1

(2)

where mst−arity (−→x ) counts the number of individuals
connected to −→x in the minimum spanning tree. So indi-
viduals with lower Goldberg ranking value and lower ar-
ity (conglomerate measure) will accomplish a higher value
of mst(−→x ), a hierarchical preference of ranking over arity
is denoted. In order to select the mates of the m�2 par-
ents, a stochastic selection process (e.g. stochastic universal
selection) can be used with mst (−→x ) as the desirability of
selection, including all the neighbors of the parent in the
minimum spanning tree, then parents will be mated with
less conglomerated individuals that are closer to PF ∗. It
is important to observe that there is no need to define a
proximity value. This procedure can be performed using
Chazelle’s algorithm [3] which is based on the soft heap, the
most asymptotically efficient known structure to find the
minimum spanning tree. Its running time is O(��(�,m)),
where � is the number of edges and � is the classical func-
tional inverse of the Ackermann function. The function �
grows extremely slowly, so that for all practical purposes
it may be considered a constant no greater than 4; thus
Chazelle’s algorithm takes very close to linear time.

The proposed rank mutation considers pre-order, the in-
trinsic inconvenient of MOPs. Rank mutation (line 9) con-
sists of the definition of a mutation rate range and the assign-

Figure 1: Minimum spanning tree niching and rank-
ing mutation.

ment of a uniformly distributed mutation rate to individuals
according to their inherited mst (−→x ) value, i.e. individuals
with lower Goldberg ranking value and lower arity will get
a lower mutation rate and individuals with higher Goldberg
ranking value and higher arity will get a higher mutation
rate, denoting tight exploration in the neighborhood of in-
dividuals closer to PF ∗ and widespread exploration in the
neighborhood of individuals farther from PF ∗ (see right side
of Figure 1). When the entire population is nondominated,
tight exploration is performed in the neighborhood of indi-
viduals with lower arity and widespread exploration in the
neighborhood of individuals with higher arity. The mutation
rate range will be specified by a minimum and maximum
mutation rates, pmin and pmax respectively, and divided
into m steps to generate the deterministic rule of choos-
ing the mutation rate. So the mutation rate of the i-esim

individual in P
′′
(t) sorted in descendant order according to

mst (−→x ) is pmin + i · (pmax − pmin) / (m− 1). According to
[2] a natural range to cover any eventuality is pmin = 0 and
pmax = 1−1/l, where l is individual length, however if there
is knowledge of the vicinity of the optimum, and the popula-
tion is in the vicinity, then a lower pmax may be appropriate.
Mutation range remains fixed during entire evolution. Since
mutation only requires to sort individuals in order to assign
the mutation rate, this step has a complexity of O (m logm).

Thereafter, RankMOEA evaluates the offspring in the set
of k objectives and ranks them with Goldberg’s ranking
(lines 10 and 11). PF ∗

known (t) is updated with new non-
dominated solutions (line 12). Finally, if PF ∗

known (t) size is
larger than m, a truncation process proposed in [21] is used
to reduce its size (lines 14 and 15) and the P (t+ 1) is con-
stituted by such reduction; else P (t + 1) is constituted by
PF ∗

known (t) and a controlled insertion using ranking based
selection of the best offspring that were not already included
in PF ∗

known (t) (lines 17 and 18).
The speed performance of RankMOEA is ruled by the

mutation process, therefore its computational complexity
can be calculated as O (m logm), which makes it a fast
algorithm, worthy to compete with other state of the art
MOEAs.

3. TESTING RANKMOEA
In the following tests two well-known MOEAs (NSGA-

II [6] and SPEA2 [20]) were used to compare the perfor-
mance of RankMOEA. The three MOEAs used binary-coded
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chromosomes, one point crossover and bit-wise mutation.
RankMOEA was tested using the stochastic universal sam-
pling, while NSGA-II and SPEA2 were tested using their
tournament selection operator. NSGA-II’s crowding, SPEA2’s
k-nearest neighbor and RankMOEA’s minimum spanning
tree niching were implemented in the phenotypic space. The
mating rates used for NSGA-II, SPEA2 and RankMOEA
were: 70%, 80% and 90%. The mutation rates used for
NSGA-II and SPEA2 were 1%, 2%, 3%, 4%, 5% and 6%,
whereas for RankMOEA pmin was set to 0% and pmax to
6%. A precision of 0.001 was set for each variable in the phe-
notype. The three algorithms were run 30 times with each
mating-mutation configuration, the average behavior of each
configuration was assessed using a version of G−metric [14]
to work in �, a n-ary quality indicator that ranks PF ∗

knowns
based on the their attained dispersion and convergence.

3.1 Spread-hardness Test
The first test was designed to examine the robustness of

the diversity-preservation mechanisms of NSGA-II, SPEA2
and RankMOEA by finding a good diversity of the solutions
in �. A function with three reference points −→zi : i = 1, 2, 3
in a bidimensional � was defined; the idea is to minimize
the distance to such reference points, i.e., minF (−→x ) =
[f1 (

−→x ) , f2 (
−→x ) , f3 (

−→x )] with fi (
−→x ) =‖ −→zi − −→x ‖2, where−→z1 = (2, 1), −→z2 = (3, 5), −→z3 = (4, 1) and subject to xj ∈

[0, 6] : j = 1, 2. It is clear that PS is formed by all the
points located within the triangle constituted by the three
reference points. It is expected that a diversity-preservation
mechanism with good performance and compliant with �
structure will achieve a quasi-uniform spread. A population
and PF ∗

known (t) size of 50 individuals with 10,000 objective
function evaluations were considered. Figure 2 shows the
best approximation to PS achieved by the best run of the
best mating-mutation configuration of each MOEA accord-
ing to the average of G−metric over the 30 runs. The best
distribution is achieved by RankMOEA, followed by SPEA2
and finally by NSGA-II.

3.2 Complicated PS Test
The second test was performed using UF4 problem from

CEC’09 contest [18], a MOP with complicated PS which
demonstrated to be a very hard problem even for the best
algorithms that participated in MO contest in CEC’09. Fig-
ure 3 shows the best PF ∗

known achieved by the best run of
the best mating-mutation configuration of each MOEA ac-
cording to the average ofG−metric over the 30 runs. A pop-
ulation and PF ∗

known (t) size of 100 individuals with 300,000
objective function evaluations were considered. RankMOEA
shows the best spread and the lowest convergence error, fol-
lowed by NSGA-II with worse spread, and finally SPEA2
with the highest convergence error.

4. DYNAMIC PRINCIPAL-AGENT MODEL
WITH DISCRETE ACTIONS

The Principal-Agent problem is a political science and eco-
nomics well known problem, which analyzes a situation of
asymmetric information where a risk neutral Principal dele-
gates tasks to a risk averse Agent. Asymmetric information
arises because the Principal cannot observe the effort level
that the Agent chooses, and monitoring the Agent is too
costly for the Principal. Moreover, the existence of uncer-

tainty in the production process makes the design of the
Agent’s compensation plan a non-trivial problem.
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Figure 2: Best approximation of PS achived by
NSGA-II, SPEA2 and RankMOEA, minimizing the
distance to reference points in a bidimensional �.

A dynamic problem can be modeled when the Principal-
Agent relationship is recurrent, i.e., the relationship goes on
for infinite periods [16, 17]. In such context, the Agent’s
compensation plan has two components: present and future
compensation. Both components of the Agent’s compensa-
tion plan aim to link the Agent’s wealth with the Principal’s
wealth. In the Dynamic Principal-Agent problem, the Prin-
cipal maximizes his discounted expected utility subject to
two fundamental constraints: the participation constraint
(i.e. the contractual relationship should be accepted by the
Agent), and the incentive compatibility constraint (i.e. the
level of effort implemented by the Principal in every period
should be chosen by the Agent given the unobservability of
his effort).

788



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

f
1

f 2

 

 

SPEA2
NSGA−II
RankMOEA

Figure 3: Best PF ∗
known achived by NSGA-II, SPEA2

and RankMOEA in UF4-CEC’09.

The contractual arrangement between the Principal and
the Agent affects how the economic surplus is divided and
the sheer magnitude of such surplus. Hence, characterizing
a Pareto Front where the Principal and the Agent have dif-
ferent levels of bargaining power is an interesting exercise to
shed light into how the economic surplus is affected by those
different contractual arrangements.

4.1 A Multi-Objective Framework
Given that in MO, each Pareto optimal solution represents

a different compromise among objectives, finding different
Pareto optimal solutions implies finding the structure of the
trade-off surface involved in the problem. Thus, since the
Principal-Agent model represents a situation of conflict of
interests, modeling it as a MOP allows:

• to consider diverse contractual arrangements between
the Principal and the Agent in which they have dis-
similar levels of bargaining power,

• to achieve a better insight on how the creation of eco-
nomic surplus is affected by the diverse contractual
arrangements, and

• to obtain a better idea of how the conflict of interest
and asymmetry of information between the Principal
and the Agent affect the creation of economy surplus.

4.2 Mathematical Model
In order to reconceive the Dynamic Principal-Agent model

in a MO framework, two objectives are considered: maxi-
mize the Principal’s discounted expected utility U , and max-
imize the Agent’s discounted expected utility V . The Dy-
namic Principal-Agent model is about choosing an action
plan, a compensation plan for each level of production and
a future utility plan such that U and V are simultaneously
maximized. The Dynamic Principal-Agent model with Dis-
crete Actions can be stated as:

max
a(V ),w(y,V ),Ṽ (y,V )

{U, V } (3)

Ut =
∑
y∈Y

f (y; a (V ))ut
(
y, w

(
y, V

))
+ βUt+1

(
Ṽ

(
y, V

))
(4)

Vt =
∑
y∈Y

f (y; a (V )) vt
(
a (V ) , w

(
y, V

))
+ βṼt+1

(
y, V

)
(5)

where f (y; a (V )) is the probability function that asso-
ciates action a(V ) and output y, ut

(
y,w

(
y, V

))
is the Prin-

cipal’s expected utility at time t, vt
(
a (V ) , w

(
y, V

))
is the

Agent’s expected utility at time t, w
(
y, V

)
is the current

compensation, V is the Agent’s reservation utility, Ṽ
(
y, V

)
is the state variables for tomorrow on, and � is the discount
factor. This Dynamic Principal-Agent model with Discrete
Actions can be represented as a Bellman equation given [16]
methodology. This model is subject to the participation
constraint,

∑
y∈Y

f (y; a (V )) v
(
a (V ) , w

(
y, V

))
+ βṼ

(
y, V

)
= V (6)

to the fact that the actions are in the space of feasible
actions,

a
(
V
) ∈ A (7)

where A is the action set, to the inability of temporal
borrow,

0 ≤ w
(
y, V

) ≤ y ∀y ∈ Y (8)

where Y is the output set, and to the fact that the future
compensation is in the feasible space.

V (y, V ) ∈ V ∀y ∈ Y (9)

5. APPROXIMATING THE PRINCIPAL-
AGENT MODEL SOLUTION

Given the difficulty of obtaining analytical results with
Dynamic Principal-Agent models, close solution methods
are not applicable, hence it is common in the literature to nu-
merically approximate the optimal contracts, see e.g. Wang
[17] and Fernandes & Phelan [7].

5.1 Finding the Optimal Contract: a Numeri-
cal Example

The same functional forms and parameters of Wang [17]
are used. In particular, the Agent’s utility function is as-
sumed to be exponential because the Agent is risk averse, i.e.

vt
(
a (V ) , w

(
y, V

))
=eγ(a(V )−aw(y,V )) where � > 0 is the

coefficient of absolute risk aversion and � > 0 measures the
relative cost for the Agent of exercising an unit of effort. On
the other hand, the Principal’s utility is ut

(
y,w

(
y, V

))
=

y −w
(
y, V

)
because risk neutral is assumed.

For the standard model � = � = 1 and two feasible action
levels A = aL = 0.1, aH = 0.2 are assumed, i.e., the Agent
can choose either to shirk or to work. Hence, aH > aL

indicates that shirking is less costly than working. Also,
it is assumed that there are two levels of output: low or
high Y = yL = 0.4, yH = 0.8, and the probability function
that associates effort and output is defined as: f (yL; aL) =
f (yH ; aH) = 2/3 and f (yL; aH) = f (yH ; aL) = 1/3. These
probabilities capture the idea that the more diligently the
Agent works, the greater the likelihood of the realization of
the high output level. Finally, the Principal and the Agent’s
common discount factor was set to � = 0.96.

The numerical solution of the Bellman equation is
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{U, V, â (V ) , w
(
yH , V

)
, w

(
yL, V

)
, Ṽ

(
yH , V

)
, Ṽ

(
yL, V

)}
where â (V ) is the optimal action. Given a finite hori-

zon, the chromosome of the individuals in the population is
characterized by 3 substrings of length N , where N is the
number of periods of time an individual lives, i.e. the length
of each chromosome is 3N . The first substring indicates the
history of actions of the individual, the second and third one
show the history of compensations conditional on a high or
low output level respectively. Therefore, the phenotype of
an individual is defined as:⎡⎣ a1 (V ) , a2 (V ) , . . . aN (V ) ,

w1
(
yH , V

)
, w2

(
yH , V

)
, . . . wN

(
yH , V

)
,

w1

(
yL, V

)
, w2

(
yL, V

)
, . . . wN

(
yL, V

)
⎤⎦

In order to compute U and V a backward induction must
be used [11]. The number of periods in the Agent’s life-span
was set N = 70.

5.2 Experimental Results
In this test, besides NSGA-II, SPEA2 and RankMOEA, a

well-known MOEA called MOGA [8] was included as an in-
ferior bound. The same algorithmic specifications described
in Section 3 were used and extended to MOGA, which was
tested using the stochastic universal sampling. A precision
of 0.0001 was required for each variable in the phenotype,
thus binary chromosomes of 1820 bits were used, a popu-
lation and PF ∗

known (t) size of 200 individuals with 100,000
objective function evaluations were considered. The four al-
gorithms were run 50 times with different mating and muta-
tion rates combination, the average behavior of each config-
uration was computed using a set of MO quality indicators:
Iε [22, 13], Distribution of the Found Pareto Front (DFPF )
[19] and G−metric, this due to collectively, they fulfill the
following evaluation issues in MO:

• Convergence to PF ∗, how close PF ∗
known is from PF ∗.

This can be difficult for highly discontinuous land-
scapes where a search method can be trapped in local
minima. If in addition, the considered objectives have
complex interactions; this can yield difficult optimiza-
tion problems.

• Sample representatively PF ∗. This entails a diversi-
fication of the set of solutions along the entire PF ∗

and can be defined as: Uniformity, how appropriate
PF ∗

known distribution is, meaning the relative distance
among solutions; most of the time a homogeneous dis-
persion is ideal; and as Spread, how appropriate PF ∗

known

extension is; a wider PF ∗
known involves more options.

The mating rates used for MOGA, NSGA-II, SPEA2 and
RankMOEA were: 40%, 50%, 60%, 70%, 80% and 90%.
The mutation rates used for MOGA, NSGA-II and SPEA2
were 1%, 2%, 3%, 4%, 5%, 6%, 7% and 8%, whereas for
RankMOEA pmin was set to 0% and pmax to 8%. For the
four algorithms, constraints were handled with the idea of
superiority of feasible points proposed in [5].

In Evolutionary MO, how to evaluate PF ∗
known quality

that different MOEAs generate is still an open problem.
Detailed analysis in each of the used quality indicators is
possible; however discrimination among their measurements
constitutes itself a MOP. So we propose to combine the
three MO quality indicators in order to discriminate among

PF ∗
knowns quality. Since linear combination of the quality

indicators could smooth differences and hide trade-offs when
there is no an absolute winner-MOEA in all indicators, we
propose a lexicographic combination of their preference ac-
cording to expectations of the user, hence providing a suit-
able framework of analysis from the point of view of the
user.

First, for eachMOEAi ∈ Γ to be compared, we used its 50
runs to calculate the mean and variance of every indicator,
the reference set used to execute this task was formed as
the total Pareto Front taking in count all the runs from all
MOEAs. Then we ranked MO quality indicators using the

statistical measure �
′
presented in [2]:

ε
′
i,j = 10

⎛⎜⎝ μI,MOEAi
− μI,MOEAj√

σ2
I,MOEAi

+ σ2
I,MOEAj

⎞⎟⎠ (10)

where the numerator is the difference in average of indica-
tor I between MOEAi and MOEAj , and the denominator
is the variance difference. If we assume a normal distribution
then, ε

′
i,j > 2 corresponds to a 95% confidence interval which

will take to mean that it is statistically significant than the
MOEAj is leading to better I values than the MOEAi.
Next, we ranked every indicator I of every MOEA using:

rankI (MOEAi) ={
0 if�MOEAj ∈ Γ|ε′j,i > 2

max
MOEAj∈Γ|ε′j,i>2

[rankI (MOEAj)] + 1 otherwise
(11)

With this ranking, a landscape of dominance of every
quality indicator is achieved, differentiating which MOEA
outperforms others MOEAs with regard to a specific qual-
ity indicator with 95% of statistic confidence. Finally, we
lexicographically combined the ranking of the three quality
indicators using the following order: 1) Iε, 2) DFPF and
3) G − metric. It is easy to see that the MOEA with the
best performance according to the defined order of the MO
quality indicators will have the highest ranking value. The
performance of the four MOEAs in the Dynamic Principal-
Agent model with Discrete Actions using the comparison
process previously described is plotted in Figure 4.

MOEA’s configuration with performance ranking values
lower than 2 did not achieved feasible solutions by violating
some constraints. MOGA shows a bad performance, since
only four configurations achieved feasible solutions but with
very low ranking value, i.e. poor convergence and spread,
besides mutation percentage seems to affect the performance
of MOGA in an erratic way.

Mutation percentage seems to have an important role in
the performance of NSGA-II and SPEA2, since lower mu-
tations rates allow to achieve a better performance. In
NSGA-II higher values of mating rate seem to offer a bet-
ter PF ∗

known, while in SPEA2, medium values of mating
rate subjugated to a low mutation rate is clearly a key to
achieve better PF ∗

knowns. Both algorithms have analogous
average behavior over all the combinations of mutation and
mating rates. About performance of RankMOEA, lower val-
ues of mating rates allow to achieve a better performance,
even better than those obtained by NSGA-II and SPEA2.
A remarkable fact of RankMOEA’s behavior contrary to the
other three MOEAs, is that it always achieves feasible solu-
tions. Even worst approximations of RankMOEA are com-
parable to best approximations of NSGA-II and SPEA2.
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Figure 4: MOGA, NSGA-II, SPEA and
RankMOEA’s performance in Principal-Agent
model.
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Figure 5: Best PF ∗
known achieved by the best con-

figuration of every MOEA tested in the Dynamic
Principal-Agent model with Discrete Actions.

In order to have a better idea of MOEAs performance,
the best PF ∗

known achieved by every MOEA with its best
mutation-mating configuration is plotted in Figure 5. Pro-
posed comparison process success is confirmed by the correct
classification of the quality of the achieved MOEA’s out-
comes. RankMOEA clearly enhances the convergence and
spread achieved by MOGA, NSGA-II and SPEA2.

5.3 Analysis of the Achieved Approximation
of the Pareto Front

As a result, a concave PF ∗ is numerically approximated,
which is consequence of the information asymmetry between
the Principal and the Agent (Figure 5). As contracts vary
in the trade-off surface towards those that are more advan-
tageous to the Agent, it is observed the prevalence of com-
pensation plans in which the Principal assumes most of the
risk of the productive activity. When the Principal and the
Agent are more patient, both obtain higher values of their
discounted expected utilities, which generates a higher level
of economic surplus. The Agent faces lower variability in
future compensation when it is costlier for him to exert an
additional effort unit. In Figure 6 the current compensation
schedules of the most advantageous contract for the Princi-
pal (PC) and the most advantageous contract for the Agent
(AC) can be observed over the periods of time. Low and
high salaries of AC are higher than those of PC, moreover,
in most of the cases the low level of the salary for AC is
higher than the high level of the salary for PC. Note that the
low salary schedules of these two contracts do not vary, i.e.,
both PC and AC provide incentives to the Agent through
variability in the high levels of salary.

6. CONCLUSIONS
A RankMOEA is designated using minimum spanning

tree niching and ranking-mutation procedure, the compu-
tational complexity of the new algorithm is O (m logm).
The new diversity-preservation mechanism involved does not
need extra parameters to work. RankMOEA outperforms
traditional diversity-preservation mechanisms under spread-
hardness situations, showing good spread and lower conver-
gence error compared with other MOEAs. An alternative
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Figure 6: Agent’s current compensation for PC and
AC.

comparison process is proposed, where MOEAs performance
is discriminated by using MO quality indicators statistical
information and its lexicographical ranking combination.

In addition, RankMOEA is applied to approximate the
Pareto Front of the Dynamic Principal-Agent model with
Discrete Actions. The results achieved with RankMOEA
show better spread and minor error than those obtained
by some well-known MOEAs, allowing to perform better
economic analysis by characterizing contracts in the trade-
off surface. The achieved approximation of the Pareto Front
allows to observe different compensation plans at different
levels of bargaining power of the Agent and the Principal,
and how the different contractual arrangements affect the
generation of economic surplus.
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