
Population-ACO for the Automotive Deployment Problem

Irene Moser
Faculty of Information and Communication

Technologies
Swinburne University of Technology

Hawthorn, Vic, Australia
imoser@swin.edu.au

James Montgomery
Faculty of Information and Communication

Technologies
Swinburne University of Technology

Hawthorn, Vic, Australia
jmontgomery@swin.edu.au

ABSTRACT
The automotive deployment problem is a real-world con-
strained multiobjective assignment problem in which soft-
ware components must be allocated to processing units dis-
tributed around a car’s chassis. Prior work has shown that
evolutionary algorithms such as NSGA-II can produce good
quality solutions to this problem. This paper presents a
population-based ant colony optimisation (PACO) approach
that uses a single pheromone memory structure and a range
of local search operators. The PACO and prior NSGA-II are
compared on two realistic problem instances. Results indi-
cate that the PACO is generally competitive with NSGA-II
and performs more effectively as problem complexity—size
and number of objectives—is increased.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Heuristic methods

General Terms
Algorithms, Performance

Keywords
Ant colony optimisation, automotive deployment, constrained
problem, embedded systems, genetic algorithms, local search,
multiobjective problem, optimisation

1. INTRODUCTION
The hardware infrastructure of a contemporary car is an

embedded system with buses connecting groups of process-
ing units which can be used to host software components
performing related tasks. Passenger vehicles tend to be
equipped with system and multimedia buses which connect
hardware hosts for distributed software components which
collectively perform tasks pertaining to these functions. A
bus can have up to 60 attached processing units.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’11, July 12–16, 2011, Dublin, Ireland.
Copyright 2011 ACM 978-1-4503-0557-0/11/07 ...$10.00.

Car manufacturers continue to develop new value-adding
features for integration into cars, such as parking assistance
and traffic guidance systems. Consequently, the number of
software components to accommodate continues to grow,
while the embedded infrastructure of any given car model
remains the same until a new series is launched. Gener-
ally, depending on the processing and memory capacities,
hardware units can accommodate up to four software com-
ponents. Usually, however, 1–2 component assignments are
the norm.

The automotive deployment problem (ADP) is that of as-
signing software components to hardware units such that the
solution obtained is the best possible option to implement.
Several objectives ought to be optimised for an ideal deploy-
ment. For example, data communication should be reliable,
which puts demands on the proximity of components which
have a need to communicate. Also, components can com-
municate most reliably when they are located on the same
hardware unit, but waiting times may be incurred when too
many components are allocated to the same processing unit.

The ADP has previously been optimised using an im-
plementation of NSGA-II [13, 18]. This work adapts the
population-based niching Ant Colony Optimisation (PACO)
devised by Guntsch and Middendorf [9] to the ADP. Vari-
ous local search moves are combined with this technique and
the experimental evaluation compares the outcomes with the
help of the hypervolume indicator as a quality measure.

2. SOFTWARE DEPLOYMENT IN AN
AUTOMOTIVE SETTING

The automotive deployment problem described here rep-
resents one aspect of the optimisation task of allocating
the software components that provide the control logic for
contemporary vehicles (e.g., ABS and airbag control func-
tions) to processing units distributed around the vehicle.
The necessary software functionality is represented by a pre-
defined set of software components, which have to be de-
ployed to the hardware units. A solution to the automo-
tive deployment problem is a mapping of all available soft-
ware components C to all or a subset of hardware units
U : di = {(c1, ui1), (c2, ui2), . . . , (cn, uim)}, where i1 to in
are integers in [1,m]. The set of all possible solutions is
D = {d | d : C → U}. For ease of notation, the set of
indices of components assigned to hardware units uj is de-
noted Cuj . More in-depth description of the problem and
its aspects is found in [2, 7, 8].

777

2.1 Hardware Infrastructure
Hardware units are connected to different data buses and

vary in memory capacity, processing power and failure propen-
sity. Data buses are characterised by different data rates and
degrees of reliability. The speed and reliability of commu-
nication between two hardware units therefore depends on
the data buses to which they are connected. More formally,
the hardware architecture is defined in the following terms:

• The set of available hardware units U = {u1, u2, ..., um},
m ∈ N;

• capacity of a unit, cp : U → N;

• processing speed, ps : U → N, being how many million
machine instructions are processed per second;

• failure rate, fr : U → R;

• data rate of the preferred bus, dr : U × U → N;

• network delay, nd : U × U → R;

• reliability of the preferred bus, rel : U × U → R.

2.2 Software
The optimisation task is to deploy a number of predefined

software components to the hardware units in the existing
hardware infrastructure. Each software component fulfils a
predefined function in the vehicle. Components have the
following properties:

• The set of components, C = {c1, c2, ..., cn}, n ∈ N;

• component size in memory, sz : C → N;

• estimated execution length, expressed as a fraction of
one million machine instructions, mi ∈ R;

• location restriction, lr : C → P(U);

• colocation restriction, coloc : C × C → 1,−1;

• data size sent over a link, ds : C × C → R;

• frequency of communication between two components,
freq : C × C → R;

• the communication link between two components i and
j, lij = (ci, cj).

In reality, a component may spend different portions of its
processing time supporting various services. However, in the
present work this has been simplified to the single execution
length, mi.

2.3 Objective Functions
As this is a practical problem faced by car manufactur-

ers and their engineers, the conceivable set of objectives is
large. The availability of objectives depends on investigative
work undertaken by researchers in the field of ADP [2] who
interview engineers and formalise the objectives.

Data Transmission Reliability (DTR) follows the defini-
tion of Malek [11]. Reliability of the data transmission is
a crucial quality attribute in a real-time embedded system,
where important decisions are taken based on the data trans-
mitted through the communication links. The Data Trans-
mission Reliability (DTR) formulation we use has first been
defined by Malek [11].

fDTR(d) =

n∑
i=1

n∑
j=1

freq(ci, cj) · rel(d(ci), d(cj)) (1)

In embedded systems, with their constrained hardware
resources, repeated transmissions between software compo-
nents are discouraged. The Communication Overhead (CO)
objective [12] attempts to enforce minimal data communica-
tion for a given set of components and system parameters.
As a network- and deployment-dependent metric, the overall
communication overhead of the system is used to quantify
this aspect. It was first formalised by Medvidovic and Malek
[12].

fCO(d) =
n∑

i=1

n∑
j=1

freq(ci, cj) · nd(d(ci), d(cj))+

+

n∑
i=1

n∑
j=1

freq(ci, cj) · ds(ci, cj)
dr(d(ci), d(cj)) · rel(d(ci), d(cj))

(2)

Component responsiveness is an important aspect of an
embedded system, and is affected by the number and na-
ture of other components with which hardware processing
time must be shared. This aspect of a deployment is mea-
sured by taking the average processing time required for a
hardware unit to execute all of its allocated components in a
round-robin fashion. This minimisation objective, denoted
Scheduling Time (ST), is given by

fST (d) =
1

m
·

m∑
j=1

(∑
i∈Cuj

mii

psj

)
. (3)

2.4 Constraints
The ADP is subject to several hard constraints which,

when violated, render a system solution worthless as an al-
ternative for implementation. They are therefore considered
separately from the objectives and enforced during the op-
timisation.

The number of components to be placed on a single hard-
ware unit is restricted by the memory size of the unit and
the memory requirements of the component. In analogy with
the traditional bin packing problem, the memory constraint
Ωmem is defined as follows:

Ωmem(d) = ∀u ∈ U :
∑

i∈Cuj

sz(ci) ≤ cp(uj) (4)

The location constraint Ωloc allows only a subset of the
available hardware units to be considered as allocation al-
ternatives. More recent exchanges with industry partners
lead us to believe that at least for some car manufacturers,
this constraint reflects the necessity of confining groups of
interacting components to hardware on the same bus.1 De-
pending on the manufacturer, cars may have a bus reserved
for multimedia application components and a bus for the
control functions of the vehicle.

Ωloc(d) = ∀c ∈ C : u ∈ lr(c) ⇒ d(c) �= u (5)

1M. Scott, personal communication, 8 July 2010

778

c1

c4

c5 c1

c6 c8

c7 c2

u1 u2 u3 u4 u5

Figure 1: Data structure used by all algorithms

The colocation constraint Ωcoloc excludes certain compo-
nents from residing on particular hardware units. Compo-
nents responsible for mission-critical functions must not be
at risk of failing at the same time.

Ωcoloc(d) = ∀c ∈ C : ci, cj ∈ coloc−1 ⇒ d(ci) �= d(cj) (6)

3. ALGORITHMS

3.1 Data Structure
All algorithms use a data structure that represents the

assignment of one or more components to a hardware unit.
The data structure is illustrated in Figure 1, a mapping from
hardware units to a set of assigned components.

3.2 NSGA-II
The improved form NSGA-II of the Nondominated Sort-

ing Genetic Algorithm (NSGA) by Srinivas and Deb [4] is
considered one of the most successful state-of-the-art mul-
tiobjective problem solvers. The NSGA uses the mutation
and recombination mechanisms typical of GA implementa-
tions in combination with a nondominated sorting mecha-
nism which divides the existing population into successive
approximation sets. The sets are ranked from best to worst.
The ranking is subsequently used as a means of compari-
son for individuals when performing tournament selection
for the mating pool.

The NSGA-II used for comparison here has previously
been used to solve the ADP [13, 18] and has thus been
customised for this particular constrained assignment prob-
lem. Three genetic operators are used: a point mutation
operator, which reassigns a single component to another
hardware unit; a swap mutation operator, which swaps two
component/host assignments subject to compatibility; and
a customised crossover operator. The recombination (i.e.,
crossover) procedure initially combines two individuals by
combining the lists of components for each hardware unit.
At this stage, each hardware unit has, on average, double the
assignments it would usually have. Duplicate assignments
are possible, because two identical sets of components, orig-
inating from two solutions, are assigned to the hardware
units. In the next step, two individuals are formed again by
dividing the hardware-specific lists into two component lists
to be allocated to the same hardware unit in offspring 1 and
offspring 2 respectively. Further details are available in the
previous works [13, 18].

3.3 Population-ACO
Ant Colony Optimisation (ACO) is a constructive search

algorithm which, similarly to Population-Based Incremen-
tal Learning (PBIL), uses probabilities to choose among op-
tions during the constructive steps. The probabilities are
encoded as pheromone values. In the case of an assign-
ment problem, it is most effective to assign the probability

values to a component–hardware unit pair [15, 16]. Thus,
when a new deployment is constructed component by com-
ponent, the ‘pheromone’ values bias the choice of hardware
unit for the respective component. Conceivably the most
successful adaptation of the ACO paradigm to multiobjec-
tive optimisation is Population-ACO (PACO) devised by
Guntsch and Middendorf [9]. Unlike typical single-objective
ACO algorithms, the pheromone values are created anew
at each iteration based on selected members of the popula-
tion. PACO uses an implicit niching mechanism in that it
chooses the k nearest neighbours of a randomly selected in-
dividual as a basis for the pheromone values corresponding
to the component–hardware unit associations used in those
individuals. In our implementation, the neighbourhood is
defined in objective space using an ordering by a randomly
chosen objective.

Unlike Guntsch and Middendorf [9], the PACO algorithm
described here uses a single set of pheromone values instead
of one for each objective. It also uses a fixed pheromone
addition value, which removes the effect of weightings.

The PACO algorithm in this work incorporates a rela-
tively greedy choice of next assignment, the pseudo-random
proportional rule [5], which chooses the assignment with the
maximal pheromone value with a probability of q0. With
probability 1−q0 the assignment is chosen randomly in pro-
portion to the pheromone value. This mechanism is most
effective when good solutions are located in the immediate
vicinity of an existing solution.

3.4 Stochastic Local Search
ACO researchers generally agree that the ACO paradigm

will perform competitively only in combination with a local
search (LS) [6]. If the problem is of limited complexity with a
fitness landscape comprising long gradients, the local search
itself may prove very effective as a method in its own right.
Hence the purpose of implementing a local search for this
work is twofold: by itself, the local search or hill climber
can be seen as a baseline comparison; in combination with
PACO it adds a local search component that complements
the global search performed by ACO.

The local search move is similar to mutation in that it
moves a uniformly randomly chosen component to a differ-
ent, uniformly randomly chosen hardware unit. In a single-
objective environment, the definition of ‘better’ is usually
understood as surpassing the fitness of the original solution
to which the local search step was applied. In a multiobjec-
tive environment, this acceptance criterion is too restrictive—
the more objectives exist, the less likely it is for the new
individual to dominate the original.

Basseur and Burke [3] built on the work of Zitzler et
al. [21] and compared the use of different binary indicators
which can quantify the improvement of one solution over an-
other, or indeed of a set of solutions over another set. Thus,
their indicator-based multiobjective local search is capable
of establishing whether a solution is ‘good enough’ to be
added to a set of existing solutions.

As in the case of the ADP, there is no necessity for a
crowding mechanism and all solutions that are not domi-
nated by the current approximation set may be added to it.
Hence, the local search acceptance criterion is whether the
newly created solution qualifies as part of the nondominated
set.

Three local search moves were explored in the course of

779

these experiments. The simple move is analogous to the
mutation operator used by the NSGA-II: a simple move re-
assigns one single component to a different hardware unit.
NSGA-II’s swap move proved less useful for hill climbing, as
it dislodges good assignments when the overall fitness of the
solution is already high. Therefore, only the simple move
was used for hill climbing. In addition, a ‘flexible’ local
search move (referred to as LS shift) was implemented for
this purpose. The shift move chooses a random component
to relocate, then picks a random hardware unit to reassign
the component to. If this hardware unit has too many as-
signments (with respect to the memory capacity) already,
or is already hosting incompatible components, these are
shifted to other hardware units.

4. EXPERIMENTS

4.1 Trial Parameters
Each trial was repeated 30 times to ensure statistical sig-

nificance. Regardless of algorithm, each of the 30 trials was
allowed an equal number of 100 000 function evaluations.
The results were recorded as the objective function values
for final approximation set for each trial.

For the final approximation set, the hypervolume metric,
recommended by Zitzler et al. [22], was reported. The de-
velopment of the hypervolume of the approximation set was
also recorded for every 500th function evaluation. These val-
ues were collected throughout the 30 trials and averaged.

4.2 Problem Instances
Two problem instances were used in these experiments.

Both have an infrastructure of 60 hardware units on a single
bus. According to one manufacturer, software components
do not cooperate across buses, therefore the component al-
locations along each bus can be treated as an individual
problem.2 In contemporary passenger vehicles, we cannot
expect to encounter infrastructures with more than 60 hard-
ware units residing on a single bus. Therefore, the difficulty
of the instances is sufficient to tax the capability of the solver
to the full satisfaction of contemporary car manufacturers.

One of the problem instances (H60C120) used has 120
software components which are to be deployed on the 60
hardware units, the other (H60C220) has 220. Due to their
memory capacities, the hardware units can accommodate
four components on average. Thus the larger problem is
close to the limits of feasibility.

4.3 Algorithmic Adaptations

4.3.1 NSGA-II
The parameter values in Table 1 were used for the tri-

als with NSGA-II. Previous experience has shown that the
approximation set, the first front found by the nondomi-
nated sorting algorithm, never exceeds a population size of
50. Hence there is no danger of discarding valuable informa-
tion and no need for a crowding mechanism as implemented
in the original NSGA-II [4]. The mating pool size of 100%
of the population is selected for reproduction using binary
tournament (t = 2). Reproduction creates 45 new individu-
als (g = 0.9, i.e. 90% of the population size.) Crossover is

2M. Scott, personal communication, 8 July 2010

Table 1: Parameters used for NSGA-II
Attribute Value Explanation

n 50 population size
m 1 mating pool ratio
g 0.9 regeneration rate
rc 1 crossover rate
rm 0.5 mutation rate
q0 0.9 Proportion of greedy choices
t 2 tournament size

Table 2: Parameters used for PACO
Attribute Value Explanation

n 50 solutions per cycle
k 3 solutions for pheromone update
τ0 0.01 initial pheromone value
Δ 0.9

k
pheromone addition

q0 0.9 Proportion of greedy choices

always performed and in 50% of the cases, both point and
swap mutations ensue.

4.3.2 PACO
The parameter settings in Table 2 produced the best out-

comes in preliminary trials. At every iteration, the algo-
rithm produces 50 solutions. The process starts with the
pheromone update. All possible assignment combinations
are set to τ0. The existing approximation set is ordered by
one randomly chosen objective. One random individual is
chosen as well as its k − 1 nearest neighbours in the sorted
list. The amount Δ of pheromone is added to a compo-
nent/hardware unit assignment for each occurrence in one
of the k solutions. Then, n solutions are constructed by
traversing a list of components and assigning them to hard-
ware units. With probability q0, the assignment with the
highest pheromone value is chosen. The choice is made ran-
domly with the given pheromone distribution with proba-
bility 1 − q0. The newly constructed individuals which are
not dominated by the existing approximation set are added
to the set. If local search is used, these solutions are then
submitted to the local search phase.

The LS used by PACO employs the same changes as the
Hill Climber (HC), but it only applies a single LS step to
each solution in the nondominated set once in each itera-
tion after the ACO algorithm has created n new solutions
according to the pheromone distribution.

In constrained assignment problems the order in which
items—components in this instance—are assigned can affect
the likelihood of completing a feasible solution, as previous
assignments can leave no viable options for later items [14,
19]. A common high-level heuristic is to assign constrained
items early. Thus, initial tests were conducted with a several
different assignment orders: the default order in which soft-
ware components are described in the problem; a dynam-
ically randomised order for each new solution; and by or-
dering components by non-increasing memory requirement.
These tests revealed that, while the ADP is constrained,
the ACO algorithm was generally able to produce feasi-
ble solutions without the assistance of the heuristic assign-
ment order, and indeed was able to produce improved re-
sults using the dynamically randomised order. This sug-

780

H
yp

er
vo

lu
m

e

9.9200

9.9175

9.9150

9.9125

9.9100

PACO LS shift
PACO LS swap

PACO LS simple
PACO no LS

NSGA-II

H60C120 2 Objectives

H
yp

er
vo

lu
m

e

8.4500

8.4000

8.3500

8.3000

8.2500

8.2000

PACO LS shift
PACO LS swap

PACO LS simple
PACO no LS

NSGA-II

H60C120 3 Objectives
H

yp
er

vo
lu

m
e

9.8650

9.8600

9.8550

9.8500

9.8450

PACO LS shift
PACO LS swap

PACO LS simple
PACO no LS

NSGA-II

H60C220 2 Objectives

H
yp

er
vo

lu
m

e

3.4000

3.3000

3.2000

3.1000

3.0000

PACO LS shift
PACO LS swap

PACO LS simple
PACO no LS

NSGA-II

H60C220 3 Objectives

Figure 2: Hypervolumes of the result sets of all algorithms from the four experiments. The mean, interquartile
range and minimum/maximum values are shown. Disconnected items are outliers.

gests that, if heuristically determined assignment orders are
to be used with this problem, then the heuristic should at-
tempt to encourage good placement of related components
rather than attempting to encourage merely feasible solu-
tions. Such assignment orders will be investigated in future
work. All PACO results reported here used the dynamically
randomised assignment order.

4.3.3 Hill Climbing
The stochastic local search algorithm is used in combina-

tion with a solution generator which constructs initial solu-
tions by assigning components to randomly selected hard-
ware units. The assignments are made subject to the prob-
lem’s constraints, and the hill climbing algorithm receives
feasible solutions. Unlike the LS combined with PACO, the
HC attempts to improve each solution until no further im-
provement is possible.

The only parameter required by the local search is the
‘stop criterion’, which determines when a solution can no
longer be improved. The stop criterion was set to 30 consec-

utive failed attempts. Whenever an improvement is found,
the counting for the stop criterion restarts.

5. RESULTS
The results shown in Figure 2 describe the result sets

of trials with NSGA-II, the PACO algorithm without a lo-
cal search, the PACO algorithm with ‘simple’ LS, with the
swapping LS and with the flexible LS. The results of the HC
trials were not included in the box plots. The mean qualities
achieved by the HC are significantly lower than even those
of the PACO solver when no LS is used. Table 3 also shows
that the shift move lends itself to hill climbing and produces
even better results than the simple move.

Given these results, we conclude that the problem is too
complex to be solved well by a stochastic hill climber. We
assume the fitness function is linear only in small sections at
a time, which offers no gradient for hill climbing moves. Im-
plementing stochastic instead of deterministic LS, i.e. ran-
domly choosing components to move and accepting the first
improvement instead of trialling all moves and choosing the

781

9.883

9.888

9.893

9.898

9.903

9.908

9.913

9.918

0 20000 40000 60000 80000 100000

H
yp

er
vo

lu
m

e

Function evaluations

H60C120 2 objectives

NSGA-II PACO

PACO LS simple PACO LS swap

PACO LS shift Hill Climbing
7.550

7.650

7.750

7.850

7.950

8.050

8.150

8.250

8.350

8.450

0 20000 40000 60000 80000 100000

H
yp

er
vo

lu
m

e

Function evaluations

H60C120 3 objectives

NSGA-II PACO

PACO LS simple PACO LS swap

PACO LS shift Hill Climbing

9.800

9.810

9.820

9.830

9.840

9.850

9.860

9.870

0 20000 40000 60000 80000 100000

H
yp

er
vo

lu
m

e

Function evaluations

H60C220 2 objectives

NSGA-II PACO

PACO LS simple PACO LS swap

PACO LS shift Hill Climbing
2.600

2.700

2.800

2.900

3.000

3.100

3.200

3.300

3.400

0 20000 40000 60000 80000 100000

H
yp

er
vo

lu
m

e

Function evaluations

H60C220 3 objectives

NSGA-II PACO

PACO LS simple PACO LS swap

PACO LS shift Hill Climbing

Figure 3: Hypervolume developments.

Table 3: Mean Results for HC Approaches, Com-
pared to PACO without LS

HC simple HC shift PACO, no LS
H60C120/2 9.8939 9.8937 9.9125
H60C120/3 7.8595 7.8616 8.2657
H60C220/2 9.8211 9.8206 9.8474
H60C220/3 2.8878 2.8909 3.1162

largest improvement, could not alleviate this problem. Too
many moves (>85%) are unsuccessful according to our ob-
servations. Consequently, we dismissed the HC as a viable
optimiser and did not subject it to statistical testing.

The most successful approaches in all four experimental
settings are NSGA-II, PACO with the flexible LS move and
PACO with the simple LS move. The swap move performs
consistently worse. This becomes more evident with grow-
ing numbers of function evaluations and growing numbers of
components in the problem. When the overall solution qual-
ity is very high, a successful swap move seems to dislodge
advantageous assignments at the same time as it finds new
favourable assignments. Hence, shifting two components at
a time seems counterproductive.

Interestingly, the flexible LS performs slightly better than
even the simple LS move when combined with PACO. The
difference between the swap and flexible moves is that the
flexible move will only move a component out of a relocating

component’s way if constraints prevent both from residing
on the same hardware.

Another interesting discovery is the fact that when com-
bined with flexible or simple LS, PACO can outperform
NSGA-II, which is considered one of the most successful
solvers for multi-objective problems. The difference in per-
formance grows significantly with the number of objectives,
even more so than with the complexity of the problem. How-
ever, as assumed in the literature, PACO only produces com-
petitive results when paired with a LS.

ACO implementations have been observed to outperform
Genetic Algorithms (GA) before in single-objective [10] and
multiobjective environments [1, 17, 20]. We can confirm
these findings.

The hypervolume development in Figure 3 pertaining to
the same trials shows that within the first 20 000 function
evaluations, NSGA-II produces poor results compared to all
LS-enhanced PACO approaches. This is a clear disadvan-
tage when function evaluations are expensive.

The Kolmogorov-Smirnov test for normality confirms that
not all result sets are normally distributed. Some algo-
rithms’ result sets have a normal distribution, but not for all
experiments. Hence, we applied the nonparametric Mann-
Whitney U test for pairwise comparisons of the NSGA and
the two most successful PACO implementations, one of which
uses simple LS, the other flexible LS. For the three best-
performing approaches, we would like to establish whether
the groups are significantly different. The pairwise compar-

782

Table 4: Mann-Whitney U Test
NSGA / NSGA / PACO,simple /

PACO,simple PACO, shift PACO,shift
H60C120/2 .00 .53 .00
H60C120/3 .01 .00 .00
H60C220/2 .81 .00 .00
H60C220/3 .00 .00 .00

isons are shown in Table 4. There is a significant difference
between all pairs except NSGA-II and PACO using flexi-
ble LS when solving the smaller problem with two objec-
tives and NSGA-II and PACO with simple LS applied to
the larger two-objective problem. All other combinations
perform differently on a significance level <1%. Regarding
the comparison between PACO using flexible move and sim-
ple move, the significant difference is always in favour of the
approach with the flexible move. When NSGA-II is com-
pared to the PACO implementations, NSGA-II only wins
when fewer objectives are optimised, preferably on a smaller
problem. The box plots illustrate the ‘draw’ represented by
the significance level of 0.81 (not significant); the problem is
larger but there are only two objectives to optimise, which
puts NSGA-II on a par with PACO and simple LS.

6. CONCLUSIONS
The Population-ACO approach with its inherent niching

mechanism outperforms the state-of-the art NSGA-II when
combined with a suitable LS that makes small moves. The
difference in performance increases with the number of ob-
jectives and the size of the problem. The PACO approaches
with LS provide vastly superior quality at a very early stage
of the search. However, the development of the approxima-
tion sets’ hypervolumes seems to suggest that even though
solution quality improvement is possible even after 200 000
function evaluations, the solvers seem to improve their solu-
tion fitness in the same proportion.

For future work we also plan to investigate the correlation
between the number of objectives and the relative perfor-
mance of the ACO algorithm compared to other methods.

7. REFERENCES
[1] I. Alaya, C. Solnon, and K. Ghedira. Ant colony

optimization for multi-objective optimization
problems. In IEEE International Conference on Tools
with Artificial Intelligence, pages 450–457, 2007.

[2] A. Aleti, S. Björnander, L. Grunske, and
I. Meedeniya. ArcheOpterix: An extendable tool for
architecture optimization of AADL models. In
Model-based Methodologies for Pervasive and
Embedded Software (MOMPES), pages 61–71, 2009.

[3] M. Basseur and E. Burke. Indicator-based
multi-objective local search. In 2007 IEEE Congress
on Evolutionary Computation (CEC 2007), pages
3100–3107, 2007.

[4] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A
fast elitist multi-objective genetic algorithm:
NSGA-II. IEEE Transactions on Evolutionary
Computation, 6:182–197, 2002.

[5] M. Dorigo and L. Gambardella. Ant colony system: a
cooperative learning approach to the traveling

salesman problem. IEEE Transactions on
Evolutionary Computation, 1(1):53–66, 1997.

[6] M. Dorigo and T. Stützle. Ant Colony Optimization.
MIT Press, 2004.

[7] L. Grunske. Identifying “good” architectural design
alternatives with multi-objective optimization
strategies. In International Conference on Software
Engineering, ICSE, pages 849–852, 2006.

[8] L. Grunske. Early quality prediction of
component-based systems — A generic framework.
Journal of Systems and Software, 80(5):678–686, 2007.

[9] M. Guntsch and M. Middendorf. Solving multi-criteria
optimization problems with population-based ACO. In
C. Fonseca, P. Fleming, E. Zitzler, L. Thiele, and
K. Deb, editors, Evolutionary Multi-Criterion
Optimization, volume 2632 of Lecture Notes in
Computer Science, pages 464–478. Springer, 2003.

[10] F. Luna, C. Blum, E. Alba, and A. J. Nebro. ACO vs
EAs for solving a real-world frequency assignment
problem in gsm networks. In Proceedings of the 9th
Annual Conference on Genetic and evolutionary
computation, GECCO ’07, pages 94–101, New York,
NY, USA, 2007. ACM.

[11] S. Malek. A User-Centric Approach For Improving A
Distributed Software System’s Deployment
Architecture. PhD dissertation, University of Southern
California, 2007.

[12] N. Medvidovic and S. Malek. Software deployment
architecture and quality-of-service in pervasive
environments. In Workshop on the Engineering of
Software Services for Pervasive Environments,
ESSPE, pages 47–51. ACM, 2007.

[13] J. Montgomery and I. Moser. Parallel constraint
handling in a multiobjective evolutionary algorithm
for the automotive deployment problem. In 2010
IEEE International Conference on e-Science
Workshops, pages 104–109, Brisbane, Australia, 2010.

[14] J. Montgomery, M. Randall, and T. Hendtlass. Search
bias in constructive metaheuristics and implications
for ant colony optimisation. In M. Dorigo,
M. Birattari, C. Blum, L. M. Gambardella,
F. Mondada, and T. Stützle, editors, 4th International
Workshop on Ant Colony Optimization and Swarm
Intelligence, ANTS 2004, volume 3172 of Lecture
Notes in Computer Science, pages 390–397, Brussels,
Belgium, 2004. Springer-Verlag.

[15] J. Montgomery, M. Randall, and T. Hendtlass.
Automated selection of appropriate pheromone
representations in ant colony optimisation. Artificial
Life, 11(3):269–291, 2005.

[16] J. Montgomery, M. Randall, and T. Hendtlass.
Solution bias in ant colony optimisation: Lessons for
selecting pheromone models. Computers & Operations
Research, 35(9):2728–2749, 2008.

[17] N. Mortazavi, G. Kuczera, and L. Cui. Comparison of
genetic algorithm and ant colony optimization
methods for optimization of short-term drought
mitigation strategies. In Hydroinformatics in
hydrology, hydrogeology and water resources. Springer,
2009.

[18] I. Moser and S. Mostaghim. The automotive
deployment problem: A practical application for

783

constrained multiobjective evolutionary optimisation.
In 2010 IEEE Congress on Evolutionary Computation
(CEC 2010), pages 4272–4279. IEEE, 2010.

[19] M. Randall. Heuristics for ant colony optimisation
using the generalised assignment problem. In 2004
Congress on Evolutionary Computing, pages
1916–1923, Portland, OR, USA, 2004.

[20] Y. Yang, G. Wu, J. Chen, and W. Dai. Multi-objective
optimization based on ant colony optimization in grid
over optical burst switching networks. Expert Systems
with Applications, 37(2):1769–1775, 2010.

[21] E. Zitzler and S. Künzli. Indicator-based selection in
multiobjective search. In X. Yao et al., editors,
Parallel Problem Solving from Nature, PPSN VIII,
volume 3242 of Lecture Notes in Computer Science,
pages 832–842. Springer, 2004.

[22] E. Zitzler, L. Thiele, M. Laumanns, C. M.Fonseca,
and da V. G. Fonseca. Performance assessment of
multiobjective optimizers: an analysis and review.
IEEE Transactions on Evolutionary Computation,
7:117–132, 2002.

784

