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ABSTRACT

Particle Swarm Optimisation (PSO) is an intelligent search
method based on swarm intelligence and has been widely
used in many fields. However it is also easily trapped in
local optima. In order to find a global optimum, some evo-
lutionary search operators used in multi-agent genetic algo-
rithms are integrated into a novel hybrid PSO, with the ex-
pectation of effectively escaping from local optima. Particles
share their history information and then update their posi-
tions using the latest and best history information. Some
benchmark high-dimensional functions (from 20 to 10000
dimensions) are used to test the performance of the hybrid
algorithms. The results demonstrate that the algorithm can
solve high-dimensional nonlinear optimisation problems and
that the number of function evaluations required to do so
increases with function dimension at a sublinear rate.

Categories and Subject Descriptors

D.2.2 [Software Engineering]: Design Tools and Tech-
niques Evolutionary prototyping; D.2.8 [Software Engi-
neering]: Metrics—complexity measures, performance mea-
sures

General Terms

Theory

Keywords

Particle Swarm Optimisation, Multi-Agent, Local Search,
Function Optimisation

1. INTRODUCTION
Particle Swarm Optimisation (PSO) is a stochastic global

optimisation method which originated from the simulation
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of the social behaviour of birds within a flock, as developed
by Kennedy and Eberhart in 1995 [5]. As PSO is simple
and fast, it is widely used in nonlinear function optimisation
[3][4], object detection [10], coverage maximisation and en-
ergy conservation in wireless sensor networks [2], and many
other applications [7][8].

The global optimisation of functions is an important topic
in scientific and engineering research since many real situa-
tions can be modelled as nonlinear optimisation problems,
and they are often required to be solved accurately within a
limited number of function evaluations. Standard PSO [11]
has a problem in that it rapidly converges to local optima, es-
pecially for high-dimensional functions. To protect particles
from becoming trapped in local optima, many researchers
have tried different strategies, integrating local search [1],
differential evolution [16][18][4][9] and tabu restrictions [14]
into PSO. All these hybrid PSO algorithms update particle
velocities based on their best positions (including personal
best positions and the global best position) and employ other
operators to the particles directly. They can obtain improve-
ment for some functions, but still cannot find a global op-
timum for some difficult functions such as the Generalized
Rosenbrock function. The ability to find a global optimum
is still not sufficiently good and the number of function eval-
uations increases sharply with function dimension.

1.1 Goals
The overall goal is to find optimal solutions for high-

dimensional functions, i.e., up to 10000 dimensions. High-
dimensional function optimisation is a challenge for many
optimisation algorithms because function evaluations usu-
ally are increasing fast and more local optima exist when the
dimension grows. In the literature, 30 dimensional functions
are often employed to test algorithm performance. However,
this is really not sufficient and more dimensions are required
to test algorithm performance, such as the ability to actu-
ally find a global optimum and the complexity of function
evaluations.

The goals of this paper are to develop and investigate
a new hybrid PSO technique for finding global optima of
high-dimensional functions, and to analyse the relationship
between function evaluations and function dimension. In-
stead of using the standard PSO method, we develop a hy-
brid PSO technique in which a particle updates its velocity
not only from its own history information, but also from the
history information of other particles. Local-search opera-
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tors are also applied. For evaluating the novel hybrid PSO
technique performance, it is compared with some existing
PSO-based methods and other algorithms on ten benchmark
high-dimensional functions. We focus on whether the new
approach can find the global optima of functions ranging
from 20 to 10000 dimensions, and on how many function
evaluations are used to find a global optimum. Specifically,
we investigate the following objectives.

• Whether the proposed hybrid PSO can find a global
optimum of the test functions as their dimension in-
creases.

• Whether the proposed hybrid PSO can reduce function
evaluations, compared with existing methods, if they
can find a global optimum.

• What relationship exists between function dimension
and number of function evaluations to find a global op-
timum, namely algorithm complexity, for the proposed
hybrid PSO, compared to existing methods.

• Whether population size affects the number of function
evaluations needed to find a global optimum.

1.2 Organisation
In the remainder of the paper, Section 2 briefly describes

the background of PSO and strategies for sharing informa-
tion. Section 3 develops the hybrid PSO algorithm. After
the experimental design is presented in Section 4, Section 5
discusses the experimental results. Section 6 gives conclu-
sions and future work directions.

2. BACKGROUND
This section briefly describes background on Particle Swarm

Optimisation (PSO) and the evolutionary operators in Multi-
Agent Genetic Algorithm (MAGA) [19].

2.1 Particle Swarm Optimisation
PSO is a stochastic global optimisation algorithm which

does not require explicit knowledge of the gradient of the
problem’s objective function. PSO maintains a population
of candidate solutions (called particles) and moves these par-
ticles around in a D-dimensional search space. Each particle
moves according to the historical experiences of its own and
those of its colleagues. Each particle has its own position
and velocity, and updates its position using its current ve-
locity.

The“standard PSO”(SPSO) is defined by (1) and (2) [11]:

vt+1

ik = ω × vtik + φ1 × rand()× (ptik − xt
ik)

+φ2 × rand()× (gtid − xt
ik) (1)

xt+1

ik = xt
ik + vt+1

ik (2)

where ω is inertia weight, φ1 and φ2 are acceleration con-
stants, rand() are random values between 0 and 1, vti =
[vti1, v

t
i2, . . . , v

t
iD] is the ith particle’s velocity in generation

t, xt
i = [xt

i1, x
t
i2, . . . , x

t
iD] is the ith particle’s position in gen-

eration t, pti = [pti1, p
t
i2, . . . , p

t
iD] is the best position of the

ith particle up to generation t, and gti = [gti1, g
t
i2, . . . , g

t
iD] is

the best position found (the leader) in the neighbourhood
of particle i up to generation t. The leader of a particle is
specified by a connected neighbourhood topology, e.g., ring,
lattice or complete graph. When termination criteria are

satisfied, such as t being equal to the maximum generation,
the global best position is taken as the solution to the prob-
lem.

2.2 Evolutionary Operators in Multi-Agent Ge-
netic Algorithm

The Multi-Agent Genetic Algorithm (MAGA) [19] is an
agent-based real-valued evolutionary algorithm for function
optimisation. Agents are arranged in a square toroidal lat-
tice topology, and work together in order to achieve the goals
for a particular problem. Agents share information only with
their four neighbours in the lattice through competition and
crossover. It is different from PSO in that an agent can im-
prove itself without interaction between agents, and it may
be replaced by other better agents. MAGA has successfully
solved 10 benchmark high-dimensional functions (from 20 to
10000 dimensions) [19]. But for the Generalized Rosenbrock
function (formula (17) in Appendix A), it is hard to find a
global optimum.

In MAGA, four evolutionary operators are employed (neigh-
bourhood competition, neighbourhood orthogonal crossover,
mutation and self-learning) which are briefly described here
(see [19] for details). The neighbourhood competition op-
erator replaces the position of an agent by an elementwise
combination of its current position and the position of best
agent in its neighbourhood. The neighbourhood orthogonal
crossover operator replaces the position of an agent by the
best candidate from a regular sample taken from the hyper-
rectangle with corners at the agent’s current position and
the position of the best agent in its neighbourhood. The
mutation operator adds some Gaussian noise to elements of
the agent’s position with some probability which decreases
with generation of evolution. The self-learning operator per-
forms an intensive search in the local neighbourhood of the
agent’s current location using another population of agents
arranged in a lattice.

2.3 Complexity of Function Evaluations With
Respect to Function Dimension

For approximating the complexity of function evaluations,
we use the function dimension as input and the average func-
tion evaluations as output, following [19]. We fit a power law
curve (y = kDn) for these points in one function optimisa-
tion problem, where y is the function evaluations, D is the
function dimension, k and n are the estimated parameters.
The complexity of function evaluations for one function is
then O(Dn).

For most genetic algorithms or particle swarm optimisa-
tion techniques, it is difficult to determine the complexity
of function evaluations directly. An adaptive evolutionary
algorithm (AEA) [6] has tested some functions with dimen-
sions up to 10000. Also, MAGA [19] has optimised functions
with dimensions from 20 to 10000.

3. A NEW HYBRID PSO ALGORITHM
Since particles often get trapped in a local optimum, main-

taining particle diversity is a way to protect particles from all
falling into local optima, at the potential expense of slower
convergence. The aim here is to improve diversity of particle
locations by encouraging particles to learn from the history
of particles in their neighbourhood (with respect to prede-
fined topology rather than current position), following [19],
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Algorithm 1 Inversion Operator

1: Select the dimension(s).
2: Update these values by formula (3) and (4).
3: Select the best position to replace the particle position.

and by weakening the influence of the current best global
position, following [3].

We propose a hybrid PSO approach using six different
operators, each with a different purpose. Note that it is
not our goal to determine the relative importance of each
operator; this is left for future work.

Firstly, the neighbourhood competition operator (from
MAGA) is slightly adapted to combine the particle’s best
position with the current position of its best neighbour.
Secondly, the neighbourhood orthogonal crossover operator
from MAGA is used as is. Thirdly, the self-learning operator
from MAGA is adapted to use the slightly modified neigh-
bourhood competition operator and the MAGA mutation
operator on a lower-level population. Since the self-learning
operator requires a large number of additional function eval-
uations, it is only triggered after a given number of genera-
tions during which the search progress is stagnating.

Fourthly, an inversion operator is adapted from opposition-
based PSO [13]. This is a local-search operator that takes
advantage of any natural symmetry in the problem. In [13],
an exhaustive search is made of all “opposition” solutions
in each dimension about the current position of a particle
and the number of function evaluations used is the number
of function dimensions. We propose to randomly select a
small subset of dimensions of a particle and invert these el-
ement using (4), where [xmin, xmax] is the domain of that
dimension in the function search-space. We also introduce
perturbation into the inversion operator (3). For the se-
lected dimension, we use (4) and (3) to generate candidates
and then select the best one, where δ is a small value for
perturbation, rsign is a random value either −1 or 1. The
algorithm is described in Algorithm 1.

xi ← xi + δ or xi − δ (3)

xi ← xmax + xmin − xi + rsign × δ

or xmax + xmin − xi (4)

Fifthly, the single dimension step operator is another local-
search operator, which we only apply to the global best par-
ticle. We search a random dimension by a small initial step.
If the new position is better than the original, it will move
to the new position; otherwise, the step size will be changed
to search for a better position until a new better position
is found. The algorithm is described in Algorithm 2, where
rc is a parameter to control the step, nstag is the number
of consecutive generations of stagnation. If there is no stag-
nation, nstag = 0. Tsys is the tolerance value for the step.
When the absolute value of step (step can be negative) is
small enough, the operator is not worth using it to search for
a better position because they are too close. As the operator
requires additional function evaluations, we only apply it to
the global best particle with a low probability.

Finally, the velocity operator applies the strategy of strength-
ening the influence from the neighbourhood and weakening
the influence of the current best global position following
[3]. The operator for updating particle velocity simplifies
the parameters about the personal position and the global

Algorithm 2 Single Dimension Step Operator

1: Set step = rc/log(2.0 + nstag), randomly select one di-
mension.

2: If | step | < Tsys, go to step 8.
3: Add value step to the selected dimension of position.
4: If the new position is better than the previous one, move

to the new position and go to step 8.
5: Subtract 2step from the position in the selected dimen-

sion.
6: If the new position is better than the previous one, move

to the new position and go to step 8.
7: Add value step to the selected dimension of position,

and set step = step/10; go to step 3.
8: Finish the local search.

Algorithm 3 Velocity Operator

1: Update one particle’s dummy velocity by formula (5)
2: Obtain the particle’s velocity by formula (6).

position. The velocity is mainly affected by the neighbour-
hood history information but it may learn from itself or the
global best position. The related operator is described as in
Algorithm 3, where, in (5), ptrid and ptlid are the dth dimen-
sion of the particle i neighbourhood personal best position
(the right and left particles in the ring topology) at genera-
tion t, and in (6), rv is a random value between 0 and 1, pv
is the probability for selecting the personal best position or
global best position.

v
t+ 1

2

id = ω × vtid + rr × ptrid + (1− rr)× ptlid − xt
id (5)

vt+1

id =







v
t+ 1

2

id + ptid − xt
id, rv < pv

v
t+ 1

2

id + gtid − xt
id, otherwise

(6)

The whole hybrid PSO is described in Algorithm 4, where
pcross and pinvert are the probabilities to select particles for
the neighbourhood orthogonal crossover operator and the
inversion operator, nminstag is the minimum value for the
consecutive generations of stagnation, pstep is the probabil-
ity for selecting the single dimension step operator, rstep is
a random value from 0 to 1, and the global best particle is
the best position known at the current generation.

4. EXPERIMENTAL DESIGN
This section describes the test functions and parameter

settings for our experiments.

4.1 Multi-Modal and High-Dimensional Func-
tions

Ten benchmark functions are drawn from [17] and we
modify Generalized Schwefel’s Problem 2.26 (formula (7) in
Appendix A) so that the minimum value is 0. The modified
function is f ′

1 (formula (8) in Appendix A) in Table 1. In this
paper, we do not distinguish between the function f1 and f ′

1

because they have the same solution and the only difference
is the minimum value. Function f1 to f6 are multi-modal
functions, f7 to f9 are unimodal functions, and f10 (D ≥ 4)
is a multi-modal function. We aim at minimum values for all
functions and the minimum values are all 0. For calculating
the number of function evaluations for each function optimi-
sation problem, we used the termination criteria |g− f | < ǫ,
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Algorithm 4 Hybrid PSO (HPSO)

1: Initialise the particles, the local best positions and the
global best position.

2: Apply the neighbourhood competition operator to all par-
ticles’ history information.

3: Select particles with probability pcross to use the neigh-
bourhood orthogonal crossover operator.

4: Select particles with probability pinvert to use the inver-
sion operator.

5: Update all particle velocities by the velocity operator.
6: Particles move to new positions by the latest velocities.
7: Check the progress, if it is stagnating, nstag = nstag +1,

otherwise nstag = 0.
8: If nstag < nminstag , go to step 10.
9: Use the self-learning operator to the global best “parti-

cle”.
10: If rstep ≥ pstep, go to step 12.
11: The single dimension step operator is employed to the

global best particle.
12: Check whether the current generation is less than max-

imum generation, if true go to step 2.
13: Output the global best particle as the solution.

where ǫ is a very small positive number given by the user,
g is the minimum value found by the proposed hybrid PSO,
and f is the minimum value of each function’s solution. If
this condition is satisfied, we consider the global minimum
of a given function has been successfully found by HPSO.

4.2 Parameter Settings
For comparison with MAGA, we use population sizes which

are squares, i.e., {25, 36, 49, 100}. Population size 100 is only
used for a t-test to check whether the population size affects
the number of function evaluations with low dimension, i.e.,
D ∈ {30, 60, 100, 500, 1000} (see Section 5.3). Initial parti-
cle locations are uniformly randomly generated within the
domain, and particle locations are subsequently restricted
to the domain by clipping if necessary, i.e., a particle which
flies out of the domain has its location set to the nearest
point on the domain boundary. For calculating the function
evaluations, ǫ = 0.0001 is used in the proposed hybrid PSO.
Each test is run 100 times independently. Since f9 is very
time consuming (for one function evaluation, the complexity
is O(D2)), we do not run all of high dimension experiments.
For function f10, it is extremely difficult to find a global op-
timum when its dimension is 10000; in fact, many existing
algorithms cannot find the global optimum even at a dimen-
sion of 30. Therefore, we only analyse the complexities of
function evaluations for functions f1 to f8 from dimension
20 to 10000 (namely 20, 30, 40, 60, 100, 300, 500, 1000, 1500,
2000, 2500, 3000, . . ., 9500, 10000). The other parameters in
the proposed PSO are nminstag = 5, pv = 0.5, pcross = 0.5,
pinvert = 0.05 and pstep = 0.05. These values are chosen
based on common settings and initial experiments via em-
pirical search.

5. EXPERIMENTAL RESULTS AND DISCUS-

SION
This section describes the experimental results and com-

pares them with several typical existing algorithms.

Table 1: Test Functions

Test function Space

f ′
1 = D × 418.983 −∑D

i=1
xi sin(

√

|xi|) [−500, 500]D

f2 =
∑D

i=1
{x2

i − 10 cos(2πxi) + 10} [−5.12, 5.12]D

f3 = −20 exp
{

−0.2
√

1

D

∑D

i=1
x2
i

}

[−32, 32]D

− exp
{

1

D

∑D

i=1
cos(2πxi)

}

+ 20 + e

f4 = 1

4000

∑D

i=1
x2
i −

∏D

i=1
cos(xi√

i
) + 1 [−600, 600]D

f5 = π

D
{10 sin2(πy1)+ [−50, 50]D

∑D−1

i=1
{1 + 10 sin2(πyi+1}+ (yd − 1)2}

+
∑D

i=1
µ(xi, 10, 100, 4)

f6 = 0.1{10 sin2(3πx1) [−50, 50]D

+
∑D−1

i=1
(xi − 1)2{1 + 10 sin2(3πxi+1)}+

(xd − 1)2{1 + sin2(2πxD)}} +
∑D

i=1
µ(xi, 5, 100, 4)

f7 =
∑D

i=1
x2
i [−100, 100]D

f8 =
∑D

i=1
| xi | +

∏D

i=1
| xi | [−10, 10]D

f9 =
∑D

i=1
(
∑i

j=1
xj)

2 [−100, 100]D

f10 =
∑D−1

i=1
{100(xi+1−x2

i )
2+(xi−1)2} [−30, 30]D

Note: More details can be seen in Appendix A, f ′
1 is the

modified Generalized Schwefel’s Problem 2.26, D is the
number of dimensions.

5.1 30-Dimensional Function Optimisation
Table 2 shows the comparison of average number of func-

tion evaluations among the hybrid PSO (HPSO), MAGA
and other methods with ten 30-dimension function optimisa-
tion problems. The table is a compilation of results reported
in the cited papers. Here both HPSO and MAGA uses pop-
ulation size 25; HPSO uses a ring topology and MAGA uses
a square lattice. HPSO clearly takes the least number of
function evaluations for functions f1 to f8 than the others.
For function f10, only HPSO can find a global optimum. For
function f9, HPSO is only slightly worse than MAGA, but
better than other existing algorithms presented in Table 2.

HPSO vs MAGA: Compared with MAGA, the function
evaluations of HPSO almost is only a quarter of MAGA
for function f1. For functions f2, f4, f5, f6 and f7, they are
about a half of function evaluations of MAGA. For functions
f3 and f8, the function evaluations of HPSO are obviously
less than MAGA. Except for function f9 , HPSO evidently
decreases the function evaluations for the others. MAGA
cannot find the global solution of function f10. This indi-
cates that HPSO not only inherits good performance from
MAGA, but also extends the particles’ ability of search-
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Table 2: Average Function Evaluations of HPSO, MAGA and Other Methods on 30 Dimensional Problems

Function HPSO MAGA [19] SPSO [3] PSO-DR M3 [3] FORL [15] ATM-PSO [14]

f1 2,871± 76 10, 862 × × 150, 000 ×
f2 4,454± 42 11, 427 × × 150, 000 15, 187
f3 8,232± 122 9, 656 × 248, 160 150, 000 9, 664
f4 4,955± 69 9, 777 × 70, 348 × 14, 530
f5 5,528± 79 10, 545 × 95, 810 130, 000 14, 030
f6 5,674± 104 11, 269 × 92, 416 130, 000 15, 433
f7 5,492± 223 9, 502 46, 897 75, 810 60, 000 10, 254
f8 7,380± 48 9, 591 − − 100, 000 8, 349
f9 11, 832± 550 9,479 297, 800 × × 69, 029
f10 141, 726± 739 × × × × ×

ATM-PSO used the termination criteria ǫ = 100 for f10 and ǫ = 10 for f2, ǫ = 2000 for f1, ǫ = 0.1 for
f3, f4, and ǫ = 0.01 for the others; in this paper, ǫ = 0.0001. Here ‘×’ means the related algorithm
cannot find the solution and ‘−’ means there is no experiment. For HPSO, average ± standard
deviation is reported from 100 runs.

ing for a global optimum and conquers possible failure in
MAGA.

HPSO vs FORL: Function Optimisation by Reinforce-
ment Learning (FORL [15]), based on dimensional search
in sequence, failed to find global solutions of function f4, f9,
f10 for 30 dimensions. From Table 2, the number of func-
tion evaluations of FORL are more than HPSO (and in fact
also MAGA), therefore, HPSO is better than FORL in these
function optimisation problems.

HPSO vs Other PSOs: Compared with the new HPSO
method, the other two PSO methods, ATM-PSO [14] and
PSO-DR M3 [3], took more function evaluations, and ATM-
PSO failed to find the global solutions for functions f1 and
f10. PSO-DR M3 failed to find the global solutions of func-
tions f1, f2, f9 and f10. There is no experiment on function
f8 for PSO-DR M3. The SPSO performed even worse; it did
not find a global optimum for most of the functions except
for f7 and f9, where an extremely large number of function
evaluations were required. These results show that HPSO
has evidently better performance than SPSO, ATM-PSO
and PSO-DR M3 reported in [3] for the ten 30-dimensional
function optimisation problems.

5.2 Function Evaluation Complexity
Table 3 shows the complexities (O(Dn)), estimated by log

regression, for f1 to f8 of HPSO, MAGA and AEA. From Ta-
ble 3, HPSO has lowest complexities of function evaluations
for function f1, f2, f4 and f6 when the population size is 25,
and the others belong to MAGA. However, for function f2
in MAGA, the function evaluations are almost random and
there are no suitable curves from which to estimate the com-
plexity of function evaluations. Although the complexities of
functions f3, f5, f7 and f8 for MAGA are lower than HPSO,
from the Table 2, it shows that the function evaluations for
these functions with 30-dimension by HPSO are fewer than
MAGA. Therefore, in an appropriate dimension range, the
function evaluation cost for these functions by HPSO is still
less than that by MAGA. Figure 1 shows the details of the
relationship between function evaluations and dimension for
HPSO. The horizontal axis gives the function dimension and

Table 3: Complexity (O(Dn)) of HPSO, MAGA and
AEA for Function f1 to f8

FunctionHPSO25 HPSO36 HPSO49 MAGA AEA

f1 0.72 0.57 0.61 0.78 1.03
f2 0.49 0.47 0.47 × 1.62
f3 0.36 0.34 0.35 0.06 0.78
f4 0.18 0.15 0.15 0.41 1.35
f5 0.47 0.40 0.43 0.39 1.01
f6 0.63 0.52 0.55 0.8 1.04
f7 0.42 0.40 0.41 0.11 1.08
f8 0.43 0.39 0.41 0.15 1.12

HPSO25,HPSO36,HPSO49 mean the hybrid PSO uses
population size 25, 36 and 49 separately. For fairness,
only HPSO25 is used to compare with the others
methods because MAGA only used population size 25.
The data of MAGA and AEA come from [19].

the vertical axis gives the function evaluations. Each verti-
cal interval plots the average value of the number of function
evaluations ± its standard deviation. The mid curve in each
subfigure is the approximation of the average value in dif-
ferent dimensions. The boundary curves are the margins for
all function evaluations based on these points’ standard de-
viations. Figure 1 shows that the function evaluations are
increasing when the dimension of functions grows, but the
complexities are lower than linear.

5.3 Analysis of the Relationship between Pop-
ulation Size and Function Evaluations

Is there a relationship between population size and func-
tion evaluations for the proposal hybrid PSO? Table 3 shows
the complexities of function evaluations for HPSO with pop-
ulation sizes 25, 36 and 49. Except for functions f1 and f6,
the complexity O(Dn) is not changed very much. Figure
2 shows the function evaluations with different population
sizes from dimensions 20 to 10000 for functions f1 to f8,
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Figure 1: Function evaluations (vertical axis) for f ′
1

to f8 with different dimensions (horizontal axis) by
the hybrid PSO using population size 25.

where the horizontal axis gives the dimension and the verti-
cal axis gives function evaluations, and each curve shows the
mean ± standard deviation of function evaluations at differ-
ent dimensions for one population size. Function evaluations
increase with population size, except possibly for function f1
with high dimension. However, from these curves, the com-
plexities of function evaluations are not markedly increasing.

Table 4 gives a comparison of function evaluations for dif-
ferent population sizes (36, 49 and 100) in low dimensions
(D ≤ 1000). In Table 4, we perform a t-test comparing
population size 36, 49, 100 to population size 25 in order to
find whether the same distribution exists in function evalua-
tions for different populations size in HPSO. In Table 4, ‘×’
means the comparison from one pair is significantly differ-
ent, ‘

√
’ means that there is no significant difference between

the pair. So the pair (25, 36) means that comparison oc-
curs for population sizes 25 and 36 for function evaluations
with different dimensions. One pair (25, 36) for dimension
1000 in function f1 is “×” in Table 4, which means that
the number of function evaluations by HPSO with popu-
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Figure 2: Function evaluations (vertical axis) for f ′
1

to f8 with different dimensions (horizontal axis) by
the hybrid PSO using population size 25, 36 and 49.

lations size 25 for 1000-dimensional function f2 is signifi-
cantly different from that by HPSO with population size
36. There are only five significantly different pairs, namely
(25, 36), (25, 49) in 1000-dimensional function f1, (25, 36)
in 500-dimensional and 1000-dimensional function f2, and
(25, 36) in 30-dimensional function f4. Since the number of
function evaluations for the three functions in this dimen-
sion range is low, it is a potential reason for these differences.
As can be seen, when dimension is not large than 1000 and
when the population size is located in this range, function
evaluations in HPSO belong to the same distribution with a
high probability. Namely, the population size in a rational
range does not affect the function evaluation very much, and
HPSO is stable with the population size.

6. CONCLUSIONS
The goals of this paper were to investigate a novel hy-

brid PSO approach to solving high-dimensional function op-
timisation problems and to analyse the function evaluation
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Table 4: Comparison of Function Evaluations in Population Size 36, 49, 100 with Population Size 25

36 49 100

Function 30 60 100 500 1000 30 60 100 500 1000 30 60 100 500

f1
√ √ √ √ × √ √ √ √ × √ √ √ √

f2
√ √ √ × × √ √ √ √ √ √ √ √ √

f3
√ √ √ √ √ √ √ √ √ √ √ √ √ √

f4
√ √ √ √ √ × √ √ √ √ √ √ √ √

f5
√ √ √ √ √ √ √ √ √ √ √ √ √ √

f6
√ √ √ √ √ √ √ √ √ √ √ √ √ √

f7
√ √ √ √ √ √ √ √ √ √ √ √ √ √

f8
√ √ √ √ √ √ √ √ √ √ √ √ √ √

t-test is used and ‘×′ means significant difference with significance level 0.05, ‘
√′ means insignificant

difference. The first row is population size and the second is the function dimension.

complexity with respect to function dimension. By using the
strategy of particles sharing history information, integrating
three operators of MAGA together with an inversion opera-
tor and two local search operators, the proposed hybrid PSO
approach was used to solve ten benchmark function optimi-
sation problems. It successfully solved all ten optimisation
functions with 30 dimensions, and also successfully found a
global optimum for eight functions with dimension ranging
from 20 to 10000. Compared with existing PSO-based and
non-PSO algorithms examined in this paper, the new hybrid
PSO approach can reduce function evaluations remarkably.
We analysed the complexity of function evaluations against
function dimension for eight function optimisation problems
and determined that the relationships are sublinear; the av-
erage is lower than O(D0.5). In low dimensions (less than
1000), small changes in population size do not have signifi-
cant or obvious effect on function evaluations in the hybrid
PSO method.

For future work we will analyse the interaction between
the six operators integrated into the proposed approach.
Relative importance and sensitivity of their parameters in
the algorithm will be investigated. A potential framework
for hybrid PSO techniques based on information sharing will
be proposed, based on existing work and this paper, intro-
ducing different methods for updating velocity from stan-
dard PSO or its variants. We will try to apply the hybrid
PSO method to large real-world applications to further ex-
amine its ability to find global solutions. It is likely that
the inversion operator, designed to take advantage of sym-
metry, unfairly exploits the particular test problems consid-
ered in this paper. Hence we intend to apply HPSO to the
CEC’2010 benchmark functions [12] which include shifted
and rotated test problems.
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APPENDIX

A. BENCHMARK FUNCTIONS

1. Generalised Schwefel 2.6

f1 = −
D
∑

i=1

xi sin(
√

|xi|) x ∈ [−500, 500]D (7)

min f1 = f1(420.9687, . . . , 420.9687) = −D × 418.983.

The modified Generalised Schwefel 2.6

f ′
1 = D× 418.983−

D
∑

i=1

xi sin(
√

|xi|) x ∈ [−500, 500]D

(8)
min f ′

1 = f ′
1(420.9687, . . . , 420.9687) = 0.

2. Generalised Rastrigin

f2 =
D
∑

i=1

{x2
i − 10 cos(2πxi) + 10} x ∈ [−5.12, 5.12]D

(9)
min f2 = f2(0, . . . , 0) = 0.

3. Ackley

f3 = −20 exp{−0.2

√

√

√

√

1

D

D
∑

i=1

x2
i }

− exp{ 1
D

D
∑

i=1

cos(2πxi)}

+20 + e x ∈ [−32, 32]D (10)

min f3 = f3(0, . . . , 0) = 0.

4. Generalized Griewank

f4 =
1

4000

D
∑

i=1

x2
i −

D
∏

i=1

cos(
xi√
i
) + 1 x ∈ [−600, 600]D

(11)
min f4 = f4(0, . . . , 0) = 0.

5. Penalized function P8

f5 =
π

D
{10 sin2(πy1) +

D−1
∑

i=1

{1 + 10 sin2(πyi+1}

+(yd − 1)2}+
D
∑

i=1

µ(xi, 10, 100, 4)

where yi = 1 +
1

4
(xi + 1) x ∈ [−50, 50]D (12)

min f5 = f5(0, . . . , 0) = 0.

6. Penalized function P16

f6 = 0.1{10 sin2(3πx1) +
D−1
∑

i=1

(xi − 1)2{1 +

10 sin2(3πxi+1)}+ (xd − 1)2{1 + sin2(2πxD)}}

+
D
∑

i=1

µ(xi, 5, 100, 4) x ∈ [−50, 50]D (13)

where

µ(xi, a, k,m) =











k(xi − a)m xi > a

0 −a ≤ xi ≤ a

k(−xi − a)m xi < a

min f6 = f6(1, . . . , 1) = 0.

7. Sphere/parabola

f7 =

D
∑

i=1

x2
i x ∈ [−100, 100]D (14)

min f7 = f7(0, . . . , 0) = 0.

8. Schwefel’s Problem 1.2

f8 =
D
∑

i=1

| xi | +
D
∏

i=1

| xi | x ∈ [−10, 10]D (15)

min f8 = f8(0, . . . , 0) = 0.

9. Schwefel 1.2

f9 =
D
∑

i=1

(
i

∑

j=1

xj)
2 x ∈ [−100, 100]D (16)

min f9 = f9(0, . . . , 0) = 0.

10. Generalized Rosenbrock

f10 =
D−1
∑

i=1

{100(xi+1 − x2
i )

2 + (xi − 1)2} x ∈ [−30, 30]

(17)
min f10 = f10(1, . . . , 1) = 0.
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