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ABSTRACT
In ideal multiobjective optimization, the result produced by
an optimizer is a set of nondominated solutions approximat-
ing the Pareto optimal front. Visualization of this approx-
imation set can help assess its quality as well as present
various features of the problem. Most often, scatter plots
are used to visualize 2D and 3D approximation sets, while
no scatter plot equivalent exists for visualization in higher
dimensions. This paper presents a method for visualizing 4D
approximation sets which performs dimension reduction us-
ing prosections (projections of a section). The method yields
a prosection matrix—a matrix of intuitive 3D scatter plots
that well reproduce the shape, range and distribution of vec-
tors in the observed approximation set. The performance of
visualization with prosections is analyzed theoretically and
demonstrated on two examples with approximation sets of
state-of-the-art test optimization problems.

Categories and Subject Descriptors
G.1.6 [Numerical Analysis]: Optimization

General Terms
Performance

Keywords
Multiobjective optimization, Visualization, Dimension Re-
duction

1. INTRODUCTION
In multiobjective optimization we wish to simultaneously

optimize several (possibly conflicting) objectives. This can
be achieved by means of a multiobjective optimizer—an al-
gorithm that finds an approximation of the Pareto optimal
front, called approximation set. An approximation set con-
sists of objective vectors that are nondominated with regard
to each other, each representing a different trade-off between
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the objectives. There exist many measures to assess the
quality of an approximation set (i.e. how well it approxi-
mates the Pareto optimal front in terms of distance, spread
and distribution of objective vectors). However, no measure
is as effective as the visualization of the approximation set,
especially if the Pareto optimal front is known and can be
visualized as well.

Visualization in multiobjective optimization is essential
in many aspects—it can be used to [8]: present various fea-
tures of the problem, estimate the location, range and shape
of the Pareto optimal front, assess conflicts and trade-offs
between objectives, select preferred solutions, monitor the
progress or convergence of an optimization run, or assess
the relative performance of different optimizers. When tack-
ling optimization problems with two or three objectives, the
most straightforward (as well as the most often used) way
to visualize an approximation set is by plotting its vectors
on a scatter plot. However, when the number of objectives
m ≥ 4, a simple and intuitive visualization of approximation
sets is much harder to achieve.

In this paper we present a method that can visualize 4D
approximation sets in 3D in an intuitive way using prosec-
tion (projection of a section [7]). The method is simple and
yet powerful—the resulting 3D visualization can be used for
all purposes mentioned in the previous paragraph. In partic-
ular, it reproduces well the shape, range and distribution of
vectors in the observed approximation set thus facilitating
comparison between different optimizers. The method is an-
alyzed in theory and presented in practice on approximation
sets of state-of-the-art test optimization problems.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews the related work, while visualization using
prosections is described in Section 3 and illustrated with
two examples in Section 4. The paper concludes with a dis-
cussion in Section 5 and final remarks in Section 6.

2. RELATED WORK

2.1 Visualizing Approximation Sets
Existing techniques for visualization of high dimensional

approximation sets can be divided in two groups. The first
group consists of methods that use dimension reduction to
map approximation sets to 2D or 3D, like for example, scat-
ter plot matrix, distance and distribution charts [2], self-
organizing maps [11], interactive decision maps [10], neu-
roscale [5], virtual reality [15], two-stage mapping by Köp-
pen [9], level diagrams [3], and most recently, Pareto shells
[17]. These methods are very different from one another,
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Figure 1: Graphical presentation of: (a) prosection, (b) rotation and (c) a prosection alternative.

each trying to emphasize a different aspect of the visualized
approximation set. For example, level diagrams try to retain
the vectors’ proximity to the ideal point, while the two-stage
mapping by Köppen preserves as many Pareto dominance
relations among the vectors as possible. Although successful
in their intent and scalable to many objectives, these meth-
ods do not provide an intuitive visualization, which could
be used, for example, to assess the relative performance of
different optimizers.

The second group comprises methods such as parallel co-
ordinates [6], scatter plots with addition of size or color (also
called bubble charts) [12], heatmaps [13] and hyper-space di-
agonal counting [1]. These methods try to retain and visu-
alize all the information at once. Unfortunately, in this way
the achieved presentations usually loose clarity and compre-
hensibility.

2.2 Slices and Sections
More than the visualization methods used in multiobjec-

tive optimization, our method resembles two methods for
visualization from other domains. These are the HyperSlice
for visualizing scalar functions of many variables [16] and the
prosection matrix, which is used for externalizing abstract
mathematical models [14].

With HyperSlice, a multi-dimensional function is present-
ed with a matrix of slices. When a point of interest in the
mD space is selected, the function can be represented as a
matrix of orthogonal 2D slices of fixed width. This represen-
tation facilitates interactive navigation, location of optima
and marking of the explored path.

The prosection matrix is basically a scatter plot matrix
with the exception that only a portion (section) of the space
is used in the orthogonal projection to the corresponding
2D plane. The ranges of the section can be adjusted inter-
actively and color coding is used for distinguishing between
feasible and infeasible solutions.

3. VISUALIZATION WITH PROSECTIONS
Although there are many techniques for visualizing 4D ap-

proximation sets, none of them can be regarded as a scaled
scatter plot with all of its benefits—a clear and informative
presentation of the shape, range and distribution of vectors
in the observed approximation set. Moreover, despite all
these new visualization possibilities, most researchers in the
field of multiobjective optimization still resort to parallel co-

ordinates when a 4D (or higher) approximation set is to be
shown. This was our motivation for presenting a new visu-
alization method that reduces one dimension of the approx-
imation set using prosection (projection of a section) and
rotation. Although it is currently suitable only for 3D and
4D approximation sets, it trades-off generality for simplicity
and clarity.

Let us first present the assumptions for this method. We
assume (without loss of generality) that all the objectives
of the multiobjective optimization problem need to be min-
imized. Furthermore, the approximation set must be nor-
malized to the interval [0, 1]m. Both assumptions are needed
only to facilitate the presentation. In particular, we will see
how to work around the second assumption in the examples
(see Subsection 4.2).

3.1 Prosection
As mentioned before, a prosection is a projection of a

section (the term was introduced in [7]). Here, the section on
the 2D plane f1f2 is defined by the angle ϕ and width d (see
Figure 1 (a)). Each vector within the section is orthogonally
projected to the line crossing the origin and intersecting the
f1-axis at angle ϕ using:

p : (f1, f2) �→ (f ′
1, f

′
2),

where

f ′
1 = cosϕ(f1 cosϕ+ f2 sinϕ),

f ′
2 = sinϕ(f1 cosϕ+ f2 sinϕ).

Prosection projects all the vectors in the section to the cho-
sen line, while all other vectors are ignored. This prosection
can be uniquely denoted as a 3-tuple

mD(f1f2, ϕ, d),

where m is the number of objectives of the original approxi-
mation set, f1f2 indicates the plane on which the prosection
takes place, ϕ denotes the chosen angle, and d is the width
of the section.

3.2 Rotation
After prosection, the line with projected vectors needs to

be rotated so that this truly becomes a reduction in dimen-
sion (see Figure 1 (b)):

r : (f ′
1, f

′
2) �→

√
(f ′

1)
2 + (f ′

2)
2.
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Figure 2: Three spherical approximation sets in 3D.

3.3 Method Features
When composing prosection and rotation, the transforma-

tion simplifies to:

r(p(f1, f2)) = f1 cosϕ+ f2 sinϕ.

This yields a very simple algorithm for visualizing approxi-
mation sets with prosections:

1. Choose the angle ϕ and section width d. These pa-
rameters define the section.

2. All vectors within the section are projected using one
of the following functions:

3D case: (f1, f2, f3) �→ (f1 cosϕ+ f2 sinϕ, f3)

4D case: (f1, f2, f3, f4) �→ (f1 cosϕ+f2 sinϕ, f3, f4)

3. All vectors outside the section are ignored.

Note that prosection and rotation influence only two objec-
tives (f1 and f2), while all the others remain intact. More-
over, for arbitrary angle ϕ and section width d, the following
holds:

mD(f2f1, ϕ, d) ≡ mD(f1f2, (π/2− ϕ), d),

which means, for example, that the prosection on the plane
f1f2 with angle 30◦ is equivalent to the prosection on the
plane f2f1 with angle 60◦.

Let us demonstrate how this method works when project-
ing 3D approximation sets to 2D on the example of three
spherical approximation sets from Figure 2. Plots (a), (b)
and (c) in Figure 3 show the spherical approximation sets
after prosection and before rotation for three different val-
ues of section width d. As expected, a wider section includes
more vectors than a thiner one. To enable a good visualiza-
tion of the approximation set, the selection width d should
be chosen with care.

Essentially, what the method does is slicing through the
approximation set at an angle ϕ and looking at this slice in
one less dimension. In the upper plots in Figure 3, rotation
has not been performed yet to show how the prosection with
the angle of 45◦ cuts the plane f1f2 in the middle. The basic
difference between this method and the slices and sections
presented in Subsection 2.2 is in the angle ϕ, which was
either 0 or π/2 in previous work. The fact that an angle ϕ
different from 0 and π/2 can be used, leads to an important
property of this method:

Theorem 1. If the angle ϕ ∈ (0, π/2) and the vector
(fA

1 , fA
2 ) dominates the vector (fB

1 , fB
2 ), then the projected

vector r(p(fA
1 , fA

2 )) dominates r(p(fB
1 , fB

2 )).

Proof. Suppose the vector (fA
1 , fA

2 ) dominates the vec-
tor (fB

1 , fB
2 ). This means that fA

1 ≤ fB
1 , fA

2 ≤ fB
2 and

(fA
1 , fA

2 ) �= (fB
1 , fB

2 ). Also, suppose that ϕ ∈ (0, π/2). Then
sinϕ > 0 and cosϕ > 0.

r(p(fB
1 , fB

2 ))− r(p(fA
1 , fA

2 )) =

= (fB
1 − fA

1 )︸ ︷︷ ︸
≥0

cosϕ︸ ︷︷ ︸
>0

+(fB
2 − fA

2 )︸ ︷︷ ︸
≥0

sinϕ︸ ︷︷ ︸
>0

Since (fB
1 − fA

1 ) and (fB
2 − fA

2 ) cannot both be equal to 0,

r(p(fB
1 , fB

2 ))− r(p(fA
1 , fA

2 )) > 0,

which means that r(p(fA
1 , fA

2 )) < r(p(fB
1 , fB

2 )), or in other
words, r(p(fA

1 , fA
2 )) dominates r(p(fB

1 , fB
2 )).

 0  0.2  0.4  0.6  0.8  1
 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 0.2

 0.4

 0.6

 0.8

 1

f1

f2f3f3

 0  0.2  0.4  0.6  0.8  1
 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 0.2

 0.4

 0.6

 0.8

 1

f1

f2f3f3

 0  0.2  0.4  0.6  0.8  1
 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 0.2

 0.4

 0.6

 0.8

 1

f1

f2f3f3

(a) 3D(f1f2, 45
◦, 0.25) (b) 3D(f1f2, 45

◦, 0.05) (c) 3D(f1f2, 45
◦, 0.005)

 0
 0.2

 0.4
 0.6

 0.8
 1  0

 0.2

 0.4

 0.6

 0.8

 1

 0

 0.2

 0.4

 0.6

 0.8

 1

f1f2

f3

f4f4

 0
 0.2

 0.4
 0.6

 0.8
 1  0

 0.2

 0.4

 0.6

 0.8

 1

 0

 0.2

 0.4

 0.6

 0.8

 1

f1f2

f3

f4f4

 0
 0.2

 0.4
 0.6

 0.8
 1  0

 0.2

 0.4

 0.6

 0.8

 1

 0

 0.2

 0.4

 0.6

 0.8

 1

f1f2

f3

f4f4

(d) 4D(f1f2, 45
◦, 0.25) (e) 4D(f1f2, 45

◦, 0.05) (f) 4D(f1f2, 45
◦, 0.005)

Figure 3: Prosections of the three spherical approximation sets with different section width.
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This means that if one vector dominates the other, the
dominance relation is retained after prosection and rotation.
However, this is not the case for nondominance: if two vec-
tors are nondominated with regard to each other, after the
transformation one vector can dominate the other. Note
that the new ‘objective’ f1f2 that is formed in the prosec-
tion still needs to be minimized.

Now, let us focus on the 4D case. Plots (d), (e) and (f)
in Figure 3 show 3D prosections of three 4D spherical ap-
proximation sets. Note that they resemble very much the
3D spherical approximation sets, thus showing that using
prosections we can achieve an intuitive visualization of high
dimensional approximation sets. It is again obvious how
the width of the section influences the number of vectors
included in the visualization.

In both examples (prosection of the 3D and 4D spheri-
cal approximation sets), the value of d = 0.05 found good
results—it gives just enough projected vectors for represent-
ing the shape of the approximation set without overcrowding
it with redundant vectors. Therefore, we will use a fixed d
of 0.05 in the rest of the experiments.

3.4 Prosection Matrix
So far we always predefined the plane in which the pro-

section takes place to f1f2. Since in general other planes
might be of interest, it is sensible to show a prosection ma-
trix where all possible planes are taken into account. For
this purpose, half of the prosection matrix suffices. How-
ever, by using the whole matrix we can explore two different
angles ϕ at the same time. Such prosection matrices will be
presented in Section 4.

3.5 Section Variants
When defining the section, two alternatives can be used

in place of the fixed width d.
The section can be defined using the number of vectors

N to be included in the projection. In this way, only the
N vectors that are closest to the chosen line are projected
using the function p, while all other vectors are ignored.
This alternative can be denoted with

mD(f1f2, ϕ,N).

The section can be bounded by the angle δ (see Figure 1
(c)). The function p is the same as before. Note that this al-
ternative is biased since the section gets wider further away
from the origin. This means that close to the origin, the pro-
jection would capture less vectors than further away. This
alternative can be denoted with

mD(f1f2, ϕ, δ).

Throughout this paper, only the original definition of the
section with width d (see Subsection 3.1) is used.

4. EXAMPLES
Visualization of approximation sets using prosections is

further investigated using two examples.

4.1 Two Approximation Sets
In the first example, we use two approximation sets of

different shapes (see Figure 4): one linear and one spheri-
cal (following the shapes of fronts of DTLZ test problems
[4]). The two approximation sets are intertwined—in some
regions the spherical approximation set dominates the linear

one and vice versa. With this example we want to show that
this method can be used to visually compare two (or more)
approximation sets at the same time.
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Figure 4: A linear and a spherical approximation set
in 3D.

Note that the approximation sets are not normalized to
the [0, 1]m interval. Since all objectives have the same range,
there is no need to alter the prosection and rotation func-
tions. With the help of the prosection matrix, we can explore
many views at once: all possible planes are used for pros-
ection and since the whole matrix is used, two angles ϕ are
explored: 10◦ and 45◦. The width of the section d is set to
0.05. Figures 5 and 6 present prosections matrices of the 3D
and 4D approximation sets, respectively.

The prosection matrix of the 3D approximation sets shows
three important things. First, since the shapes of both ap-
proximation sets are symmetrical, there is virtually no dif-
ference among the plots with different chosen planes. Sec-
ond, when the angle ϕ = 10◦ for the line is chosen, the
approximation set of linear shape crosses this line at a small
angle, producing a prosection with more spread out vectors
than when the angle ϕ = 45◦. This indicates that for some
approximation sets, the section definition influences the out-
come of the projection. This influence will be investigated
in more detail in further work. Finally, the plots are very
clear and informative and can easily be used for comparing
the two approximation sets.

Similar conclusions can be drawn for the 4D case. The
plots are very similar independently of the plane used for
prosection and even the choice of a different angle does not
produce much different plots. Correspondingly to the 3D
approximation sets, the plots are very explanatory. Because
it is easy to see in which regions one approximation set dom-
inates the other, such prosections can help in a comparison
analysis.

4.2 A Discontinuous Approximation Set
In the second example, a single approximation set of dis-

continuous shape (as in the DTLZ test suite) is visualized.
We use colors to help differentiate between its regions (see
Figure 7). In 3D the approximation set consists of four dis-
continuous regions (with vectors in black, green, blue and
red full circles).

Moreover, the objectives in this example are dispropor-
tionate. In 3D, f1, f2 ∈ [0, 0.9], while f3 ∈ [2.6, 6], and in
4D, f1, f2, f3 ∈ [0, 1] and f4 ∈ [2.9, 8]. To show the versatil-
ity of this method, we move the origin of the observed plot
a to [0, 0, 2.6] in 3D and [0, 0, 0, 2.9] in 4D. This entails the
following altering of the transformation:

r(p(f1, f2)) = (f1 − ai) cosϕ+ (f2 − aj) sinϕ,
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Figure 5: Prosection matrix for the 3D linear and spherical approximation sets.
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Figure 6: Prosection matrix for the 4D linear and spherical approximation sets.
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Figure 7: A discontinuous approximation set in 3D.
The regions are colored for facilitating comprehen-
sion of the prosections.

where i, j = 1, . . . ,m and i �= j. Because the last objective
has a different range than the others, when the last objective
is included in the prosection, a line at 45◦ does not cut
the plane in the middle. Therefore, the angles need to be
adjusted. In this example, instead of the 10◦ and 45◦ angles,
we use 33.7◦ and 75.2◦ in the 3D case and 42◦ and 78.9◦ in
the 4D case, so that the new angles correspond to 10◦ and
45◦ if the approximation sets would have been normalized
to [0, 1]m.

Again, we use a prosection matrix to display the results of
the transformation (see Figures 8 and 9). Let us first focus
on the 3D case. The prosection matrix enables a clear and
understandable insight into the way the method works. For
example, take the prosection 3D(f1f3, 75.2

◦, 0.05) shown in
the left plot in the third row of the matrix. The line at angle
75.2◦ cuts the plane f1f3 in the middle and intersects the
green and red regions. If the smaller angle of 33.7◦ is used
(see the right plot in the first row of the matrix), only the
red region is caught in the prosection. The approximation
set is not symmetric as in the first example, therefore the
prosections are very different from each other.

In the 4D case, the approximation set consists of eight
regions. They are distinguished using vectors of different
colors and marks (black, green, blue and red full and empty
circles). While all the prosections without the fourth objec-
tive cut through four regions, with the help of colors and
marks it is clear that these are not always the same regions.
Although it is still hard to imagine how the approximation
set looks in 4D, this visualization method makes it possible
to view the range, spread and distribution of vectors in the
approximation set in a straightforward way.

5. DISCUSSION
To discuss the proposed visualization method, let us look

at its advantages and disadvantages.

5.1 Advantages
First of all, the visualization is simple, intuitive and in-

formative. If we lean on the purposes of visualization in
multiobjective optimization that were presented in the Intro-
duction, we can see that the presented visualization serves
them all. It can be used to: present various features of
the problem, estimate the location, range and shape of the
Pareto optimal front, assess conflicts and trade-offs between
objectives, select preferred solutions, monitor the progress

or convergence of an optimization run, and assess the rela-
tive performance of different optimizers.

While we focused mainly on the section with fixed width,
two other alternatives for defining the section were pre-
sented. The second alternative, which uses the angle δ to
bound the section is biased and should probably not be used.
However, the first alternative with the fixed number of vec-
tors in the section can be very useful, especially if the num-
ber of vectors to be visualized is known in advance.

The method is very fast. For an approximation set of n
vectors, the prosection and rotation can be achieved with
computational complexity of O(n).

Instead of using a static prosection matrix, the visual-
ization can be made even more effective with the use of a
computer program that enables interactively changing the
angle and section width1.

5.2 Disadvantages
Some existing visualization methods, such as parallel co-

ordinates [6] and heatmaps [13], can be used to visualize the
decision space as well as the objective space. This is not
the case with visualization using prosections as it can be
reasonably applied only in the objective space.

So far, the method can only be used to visualize up to
4D approximation sets. While it is clear that a 5D approx-
imation set can be visualized by applying prosection twice,
further work is needed to analyze how to do this so that
the simplicity and versatility of the method are not com-
promised. Although currently applicable only up to 4D, we
believe the method gives a new insight into this space, which
is an important contribution by itself.

Because we are visualizing only a slice of an mD approxi-
mation set, a lot of information is disregarded when looking
at a single prosection plot. To get a complete picture, it is
important to view the whole prosection matrix under many
angles. Also, as seen from the example of two approxima-
tion sets (Subsection 4.1), for some approximation sets the
visualization result depends on how the section is chosen.
Further work is needed to gain additional knowledge on this
issue. Moreover, when using the section of a fixed width, the
width must be determined. On the basis of the performed
experiments, we suggest to first try with a width of 0.1 and
then adjust it according to the results.

As Tweedie et al. stated in [14]: ‘there is a trade-off be-
tween the amount of information, simplicity and accuracy’.
When conceiving this method, we willingly sacrificed some
information to get a simple and accurate visualization.

6. CONCLUSION
Visualization in multiobjective optimization is very im-

portant. It can be used to present various features of the
problem or to reveal information about the multiobjective
optimizer being used. While it is easy to visualize 2D and
3D approximation sets, an intuitive representation for ap-
proximation sets in higher dimensions is harder to achieve.
Although there are many techniques for visualizing 4D ap-
proximation sets, none of them can be regarded as a scaled
scatter plot with all of its benefits—a clear and informative

1See http://dis.ijs.si/tea/GECCO2011/prosection.htm
for additional visualizations of the approximation sets used
in this paper, which include animation using gnuplot.
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Figure 8: Prosection matrix for the 3D discontinuous approximation set.

f1
 0

 0.1
 0.2

 0.3
 0.4

 0.5
 0.6

 0.7
 0.8

 0.9
 1  0

 0.2
 0.4

 0.6
 0.8

 1

 3

 4

 5

 6

 7

 8

f1f2 f3

f4f4

 0
 0.1

 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0.8
 0.9

 1  0
 0.2

 0.4
 0.6

 0.8
 1

 3

 4

 5

 6

 7

 8

f1f3 f2

f4f4

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2
 1.4  0

 0.2
 0.4

 0.6
 0.8

 1

 0

 0.2

 0.4

 0.6

 0.8

 1

f1f4 f2

f3f3

4D(f1f2, 10
◦, 0.05) 4D(f1f3, 10

◦, 0.05) 4D(f1f4, 42
◦, 0.05)

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2
 1.4  0

 0.2
 0.4

 0.6
 0.8

 1

 3

 4

 5

 6

 7

 8

f1f2 f3

f4f4

f2
 0

 0.1
 0.2

 0.3
 0.4

 0.5
 0.6

 0.7
 0.8

 0.9
 1  0

 0.2
 0.4

 0.6
 0.8

 1

 3

 4

 5

 6

 7

 8

f2f3 f1

f4f4

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2
 1.4  0

 0.2
 0.4

 0.6
 0.8

 1

 0

 0.2

 0.4

 0.6

 0.8

 1

f2f4 f1

f3f3

4D(f1f2, 45
◦, 0.05) 4D(f2f3, 10

◦, 0.05) 4D(f2f4, 42
◦, 0.05)

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2
 1.4  0

 0.2
 0.4

 0.6
 0.8

 1

 3

 4

 5

 6

 7

 8

f1f3 f2

f4f4

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2
 1.4  0

 0.2
 0.4

 0.6
 0.8

 1

 3

 4

 5

 6

 7

 8

f2f3 f1

f4f4

f3
 0

 0.2
 0.4

 0.6
 0.8

 1
 1.2

 1.4  0
 0.2

 0.4
 0.6

 0.8
 1

 0

 0.2

 0.4

 0.6

 0.8

 1

f3f4 f1

f2f2

4D(f1f3, 45
◦, 0.05) 4D(f2f3, 45

◦, 0.05) 4D(f3f4, 42
◦, 0.05)

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4  0
 0.2

 0.4
 0.6

 0.8
 1

 0

 0.2

 0.4

 0.6

 0.8

 1

f1f4 f2

f3f3

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5  0

 0.2
 0.4

 0.6
 0.8

 1

 0

 0.2

 0.4

 0.6

 0.8

 1

f2f4 f1

f3f3

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4  0
 0.2

 0.4
 0.6

 0.8
 1

 0

 0.2

 0.4

 0.6

 0.8

 1

f3f4 f1

f2f2

f4

4D(f1f4, 78.9
◦, 0.05) 4D(f2f4, 78.9

◦, 0.05) 4D(f3f4, 78.9
◦, 0.05)

Figure 9: Prosection matrix for the 4D discontinuous approximation set.
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presentation of the shape, range and distribution of vectors
in the observed approximation set.

We presented a new method for visualizing 4D approxi-
mation sets that trades wholeness for clarity. Using pros-
ections to a line that is not necessarily parallel to any of
the coordinates the method reduces one dimension of the
approximation set while keeping many of its features intact.
Specifically, if this line intersects the coordinates with an
angle ϕ ∈ (0, π/2), the prosection preserves the dominance
relation between all pairs of vectors where one vector domi-
nates the other.

Experiments on approximation sets of different shapes
have shown that the method can effectively visualize the
shape, range and distribution of vectors in the observed ap-
proximation sets. It can be used for analyzing the perfor-
mance of a single multiobjective optimizer as well for com-
parison of two or more multiobjective optimizers.

Since the research on this method is still in an early stage,
further work in several directions is needed. Most impor-
tantly, the best way to employ prosections to efficiently
tackle problems in more than 4D has to be investigated.
Also, an analysis of the influence of section definition on vi-
sualization results for differently shaped approximation sets
is needed. Furthermore, the presented alternatives for sec-
tion definition as well as guidelines for suggested parameter
settings should be studied in greater detail. Finally, the
practical use of this method would benefit from an accom-
panying software supporting exploration of the entire ap-
proximation set by simply scrolling through the prosections
from angle 0 to π/2.
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