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ABSTRACT 
Multi-objective optimization (MOO) problems with interval 
parameters are popular and important in real-world applications. 
Previous evolutionary optimization methods aim to find a set of 
well-converged and evenly-distributed Pareto-optimal solutions. 
We present a novel evolutionary algorithm (EA) that interacts 
with a decision maker (DM) during the optimization process to 
obtain the DMÊs most preferred solution. First, the theory of a 
preference polyhedron for an optimization problem with interval 
parameters is built up. Then, an interactive evolutionary algorithm 
(IEA) for MOO problems with interval parameters based on the 
above preference polyhedron is developed. The algorithm 
periodically provides a part of non-dominated solutions to the DM, 
and a preference polyhedron, based on which optimal solutions 
are ranked, is constructed with the worst solution chosen by the 
DM as the vertex. Finally, our method is tested on two bi-
objective optimization problems with interval parameters using 
two different value function types to emulate the DMÊs responses. 
The experimental results show its simplicity and superiority to the 
posteriori method.  

Categories and Subject Descriptors 
I.2 [Artificial Intelligence]: Learning; H.1.2 [Models and 
Principles]: User/Machine systems- human information 
processing 

General Terms 
Algorithms 

Keywords 
evolutionary algorithm, interaction, multi-objective optimization, 
interval, preference polyhedron 

 

1. INTRODUCTION 
When handling optimization problems in real-world applications, 
it is usually necessary to consider several conflicting objectives 
simultaneously. Furthermore, due to many objective and/or 
subjective factors, these objectives and/or constraints frequently 
contain uncertain parameters, e.g., fuzzy numbers, random 
variables, and intervals. These problems are called uncertain 
MOO problems. 

Existing methods of solving uncertain optimization problems can 
mainly be classified into three categories, i.e., random 
programming [3, 8], fuzzy programming [13, 21] and interval 
programming [4, 10, 14], according to the types of uncertain 
parameters [4]. Uncertain parameters of optimization problems 
solved with interval programming are intervals, and the upper and 
the lower limits or the midpoints and the radius of these intervals 
should be known beforehand. It is usually easy to acquire the 
values of these parameters. In addition, random variables or fuzzy 
numbers can be transformed into intervals by the confidence level 
[7] or the α -cut [21], thus, optimization problems with random 
parameters or fuzzy parameters can be transformed into the ones 
with interval parameters. Therefore, studying optimization 
problems with interval parameters is of theoretical significance 
and practical application values. We focus on the MOO problems 
with interval parameters in this study. 

EAs are a kind of globally stochastic optimization methods 
inspired by nature evolution and heredity mechanisms. Since EAs 
can simultaneously search for several Pareto-optimal solutions in 
one run, they become efficient methods of solving MOO problems, 
such as VEGA [17] and NSGA-II [5]. 

EAs for MOO problems with interval parameters [10, 14] aim to 
find a set of well-converged and evenly-distributed Pareto-optimal 
solutions. However, in practice, it is necessary to arrive at the 
DM's most preferred solution. Thus, compared with single-
objective optimization problems, in MOO, there are at least two 
equally important tasks: an optimization task for finding Pareto-
optimal solutions and a decision-making task for choosing one 
most preferred solution [2]. The relationship between the two 
tasks causes three different methods: the first one is making 
decision before optimization, called a priori methods; the second 
one is making decision after optimization, called a posteriori 
methods; and the last one is making decision during optimization, 
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called interactive methods, which are very promising and 
specifically suitable for interactively solving hard MOO problems. 

Recent work, which will be elaborated in section 2, shows that 
eliciting the DM's preference information during the optimization 
process and constructing the DM's preference model are hot topics. 
Related methods can be grouped into the following three 
categories, i.e., machine learning based [1, 12], fit based [6, 19] 
and preference convex cone/polyhedron cone based [9, 18] 
methods. For the first two methods, pairwise comparisons of all 
alternatives are conducted. For the last one, it is necessary to 
choose the best and/or the worst solutions/solution from all 
alternatives, which alleviates the DM's burden in evaluations and 
avoids selecting a suitable explicit value function. 

There exist many interactive multi-objective evolutionary 
algorithms (MOEAs) for deterministic MOO problems. But 
hitherto, to the best of our knowledge, there have been no 
interactive methods for MOO problems with interval parameters. 
Therefore, we think that seeking the DM's most preferred solution 
for a MOO problem with interval parameters is challenging and 
meaningful. 

In this study, we propose a preference-based EA for MOO 
problems with interval parameters by employing the framework 
of NSGA-II, which incorporates an optimization-cum-decision-
making procedure. In order to alleviate the DM's burden in 
evaluations, a preference polyhedron is created to approximate the 
DM's value function in term of the idea of convex cone [11], and 
used to guide the search toward the DM's preferred region. Our 
method's outstanding feature is that we need not know the exact 
form of the value function, but only assume that it is quasi-
concave and non-decreasing. 

The remaining of this paper is structured as follows. In section 2, 
the related work is reviewed. Section 3 presents the theories of 
preference polyhedron in the context of uncertainties. In section 4, 
the framework of our algorithm is expounded. The applications of 
our method in typical bi-objective optimization problems with 
interval parameters and the analysis are given in section 5. Section 
6 outlines the main conclusions of our work and suggests possible 
opportunities to be further researched. 

2. RELATED WORK 
Consider the following MOO problem: 

( ) [ ]

1 2

1 2

max   ( , ) ( ( , ), ( , ), , ( , ))

s.t .   

        , , , , , , 1,2, ,       

m

n

T
l k k k

f f f f

S R

c c c c c c k l

=

∈ ⊆

= = =

x c x c x c x c

x

c

"

" "

           (1) 

where 

x  is an n -dimensional decision variable, 

S  is a decision space of x , 

( , )if x c  is the i -th objective function with interval parameters, 

1,2, ,i m= " ,  

c  is an interval vector parameter, where kc  is the k -th 

component of c  with kc  and kc  being its lower and upper limits, 

respectively. 

Each objective value in problem (1) is an interval due to its 

interval parameters, denoted as ( , ) [ ( , ), ( , )]i i if f fx c x c x c� . If the 

scale of different objective values in problem (1) is different, they 

need to be normalized [22]. Therefore, we assume that the scale of 
all objective values in problem (1) is identical.  

Krettek et al. proposed a novel interactive MOEA, which 
combines an EA with an instance based supervised online 
learning scheme for the DM's preferences [12]. Battiti and 
Passerini adopted the methodology of reactive search optimization 
for interactive MOEA. The aim of the learning is to construct the 
approximation function of the DM's preferences [1]. The above 
two methods progressively acquire the DM's preference 
information during the optimization process. The DM's value 
function is approximately constructed by machine learning 
techniques to learn the DM's preferences, and guides subsequent 
evolutions of the population. 

Deb et al. suggested an interactive MOEA based on preference. A 
strictly increasing value function is modeled by using the 
preference information progressively from the DM after every few 
generations of a MOEA. A preference based dominance principle 
and termination criterion are used to direct the search toward the 
more preferred solution [6]. Sinha et al. proposed a generalized 
polynomial value function to fit the DM's preference information. 
The number of product terms in this polynomial function is 
variable. This makes the algorithm more efficiently eliminates 
cases where the value function cannot be fitted to the DM's 
preferences [19]. These two methods fit the DM's preferences by 
an optimization procedure based on the preference information 
periodically provided by the DM. Explicit value functions can be 
obtained by these methods, while the type of functions should be 
chosen a priori. 

Fowler et al. focused on multi-objective knapsack problems. They 
presented an interactive MOEA for quasi-concave preference 
functions based on the theory of [11]. In this algorithm, the 
solutions are periodically sent to the DM for his/her evaluation, 
and the resulting preference information is used to form 
preference cones consisting of inferior solutions. The cones 
implicitly rank solutions that the DM has not considered and 
direct the search to the DM's preferred region [9]. 

Sinha et al. proposed a preference based methodology, where the 
information provided by the DM in the intermediate runs of a 
MOEA is used to construct a polyhedral cone. This polyhedral 
cone is used to eliminate a part of search space and conduct a 
more focused search. The dominance principle is modified to look 
for better solutions lying in the preferred region [18]. 

The advantages of the above two methods is as follows. It is not 
necessary to know the explicit type of the DM's value function. 
The worst/the best solution chosen from alternatives and other 
alternatives are used to form a convex cone/polyhedral cone 
reflecting the DM's preferences. The dominance relation is 
modified on the basis of this implicit value function, and the 
search is focused on the preferred region. 

The above methods effectively solve practical MOO problems to 
find the DM's most preferred solution, and numerical experiments 
confirm their superior capabilities in solving many-objective 
optimization problems as well. Nevertheless, they solely apply to 
deterministic MOO problems. 

In this study, we progressively acquire the DM's preference 
information during the optimization process to construct the DM's 
preference model. The objective values are intervals for MOO 
problems with interval parameters considered here, and no 
approaches, which assist the DM making decision by convex cone 
in case of the values of alternatives being intervals, exist so far. 
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Therefore, we should build up the fundamental theory of the DM's 
preference model, i.e. preference polyhedron, in the objective 
space where the objective values are intervals. The construction 
and application of the preference polyhedron are also our core 
techniques. 

3. PREFERENCE POLYHEDRAL FOR IN-
TERVAL MOO PROBLEMS 
For the basic knowledge of interval arithmetic, please refer to [15]. 

Denote the set of all closed intervals on R  as ( )I R  and a sub-

space on nR  as 1 2
n

nD D D D R= × × × ⊆" , then the set of all n -

dimensional interval vectors on D  can be denoted as 

{ }( ) ( ), , 1,2, ,n
i iI D A A I R a D i n= ∈ ⊆ = … . 

The definitions of the convex set and the quasi-concave function 
based on intervals are given in the next subsection based on the 
definitions in [16]. 

3.1 Convex Set and Quasi-concave Function 
for Interval 
Definition 1  For , ( )A B I D∀ ∈ , if  

(1 ) ( ), [0,1]A B I Dλ λ λ+ − ∈ ∈                         (2) 

is held, ( )I D  is called a convex interval set on ( )nI R . 

Definition 2 If 1 2, , , mA A A…  are n -dimensional interval vectors 

in ( )I D , then 

1

, 1, 0
m

i i i i
i

E A A Aμ μ μ
=

⎧ ⎫
= = = ≥⎨ ⎬
⎩ ⎭

∑ ∑                      (3) 

is called a convex polyhedron generated by 1 2, , , mA A A… .   

 
 

 

Figure 1 illustrates a convex polyhedron generated by two-
dimensional interval vectors 1 2 5, , ,A A A… . 

Definition 3  Let ( )F Θ  be an interval function defined on a 

convex interval set ( )I D . For ,A B D∀ ∈  and [0,1]λ ∈ , if  

( (1 ) ) min{ ( ), ( )}INF A B F A F Bλ λ+ − ≥  is held, ( )F Θ  is called a 

quasi-concave interval function. 

A quasi-concave interval function can be obtained by replacing 
real arguments of a quasi-concave real function with intervals. 

3.2 Preference Polyhedron 
THEOREM 1 Assume a quasi-concave interval function ( )F Θ  
is defined in an n -dimensional metric space. Consider the 

distinct alternative solution points ( ), 1,2, ,n
ig I R i m∈ = … , 

where m  is the number of solution points, and the convex 
polyhedron E  is generated by these points. Assume that  

( ) min ( )k ii
F g F g= , if y E⊂ , it follows that ( ) ( )IN kF y F g≥ . 

THEOREM 2 Assume the conditions are the same as the above 
theorem, and ( ) ( )i IN kF g F g> , i k≠ , if z Z⊂  and kz g≠ ,  

where 
1,

( ), 0
m

i k i i
i i k

Z z z g gμ μ
= ≠

⎧ ⎫⎪ ⎪= = − ≥⎨ ⎬
⎪ ⎪⎩ ⎭

∑ , it follows that  

( ) ( )k INF g F z≥ . 

The proofs of these theorems are omitted for brevity. 

 

 

Figure 2 illustrates the application of the theorems with a simple 
bi-criterion example. For three solutions, say 1g , 2g  and 3g , if 

3g  is the worst solution in Figure 2, it follows that any solution 

lying in the light grey region is at least as preferred as 3g  

according to theorem 1, and any solution lying in the dark grey 
region is not preferred to 3g  from theorem 2. Further, any 

solution lying in the black region is not preferred to 3g . Then, we 

can draw the following conclusion: any solution lying in either the 
dark grey region or the black region is not preferred to 3g . So, 

when a decision is made among many solutions, all solutions 
lying in the dark grey and the black regions may be eliminated 
and need never be evaluated. Consequently, the number of 
evaluations can be greatly reduced. 

It can be observed from Figure 2 that all solutions can be divided 
into three categories, i.e., the preferred, the non-preferred and the 
uncertain preference solutions. This means that a solution can be 
ranked based on the convex polyhedron in Figure 2, called the 
preference polyhedron in this study. Accordingly, the regions in 
which three kinds of solutions lie are called the preferred, the non-
preferred and the uncertain preference regions, respectively. 

4. IEA WITH PREFERENCE POLYHEDR-
ON 
We propose an IEA for MOO problems with interval parameters 
based on the preference polyhedron in this section. Having 
evolved τ  generations by an EA for MOO problems with interval 
parameters, we provide the DM with 2η ≥  sparse optimal 
solutions from the non-dominated solutions every τ  generations, 
and request the DM to choose the worst one from them and the 
best one from them and the recent best solution. With these 
optimal solutions sent to the DM, we create a preference 
polyhedron in the objective space, expounded in subsection 4.1.  

Figure 2. Application of theorems.

Figure 1. Convex polyhedron generated by 
two-dimensional interval vectors. 
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Till the next τ  generations, we use the constructed preference 
polyhedron to sort individuals, described in subsection 4.2. When 
the termination criterion is met, the DM is asked to select the most 
preferred one from non-dominated and the recent best solutions. 
The detailed steps are as follows: 

Step 1 Initialize a population 0P（ ） of size N ; let 0t =  and an 
EA for MOO problems with interval parameters is executed for τ  
generations; the value of t  is incremented by one after each 
generation; 

Step 2 If ( -1)mod 0t τ = , and the number of non-dominated 
solutions is not less than 2, choose η  sparse optimal solutions; 
otherwise, go to step 4; 

Step 3 Select the worst and the best solutions, and construct a 
preference polyhedron with the worst solution as the vertex; 

Step 4 Employ the tournament selection of size 2, and perform 
crossover and mutation operations to create an offspring ( )Q t  of 

size N ; 

Step 5 Combine ( )P t  and ( )Q t , and denote the combination as 

( )R t ; 

Step 6 Rank optimal solutions based on the preference polyhedron, 
and select the first N  superior individuals to form ( 1)P t + ; 

Step 7 Judge whether the algorithm's termination criterion is met. 
If yes, choose the most preferred solution; otherwise, let 1t t= + , 
and go to step 2. 

Remark: IP-MOEA is employed to evolve the initial population 
for τ  generations in this study. 

4.1 Constructing Preference Polyhedron 
Given the complexity of constructing the preference polyhedron 
in a high-dimensional objective space where the values are 
intervals, we only discuss the case of a two-dimensional space. 
The construction of the preference polyhedron and the ranking 
method based on the above polyhedron, however, are suitable for 
any multi-objective optimization problem as well. 

We simplify the DM's preferred and non-preferred regions as 
follows: 

(1) For the preferred region, we extend it to the light grey region 
in Figure 3, suggesting that we regard a part of uncertain reference 
individuals as the preferred ones; 

 

 

(2) For the non-preferred region, we reduce it to the black region, 
shown as Figure 3(b) and Figure 3(c), or the dark grey and the 
black regions, shown as Figure 3(a), indicating that a part of non-
preferred individuals are considered as the uncertain preference 
ones. 

The detailed steps of constructing a preference polyhedron are as 
follows: 

First, select the worst value, denoted as ( )1 1 2 2, , ,k k k k kg g g g g⎡ ⎤ ⎡ ⎤= ⎣ ⎦ ⎣ ⎦ , 

from η  objectives, i.e. 1 2, , ,g g gη" . The location of kg  in the 

objective space may be one of the following cases: (1) kg  has the 

minimal value in the first objective among η  objectives, as 1g  of 

Figure 3 (b); (2) kg  has the minimal value in the second objective, 

as 3g  of Figure 3 (a); (3) kg  has no minimal value in any 

objective, as 2g  of Figure 3 (c). 

Then, calculate the slopes of lines 1L  and 2L  in Figure 3 

according to the above three cases. For the first case, calculate 
2 2

1 1 1
i k

i
i k

g g
k

g g
−

=
−

 and 
2 2

2 1 1
i k

i

i k

g gK
g g

−
=

−
, and then the slops of lines 1L  

and 2L  are 1 1{1, , }
min ii

i k

K K
η∈

≠

=
"

 and 2 2{1, , }
max ii

i k

K K
η∈

≠

=
"

, respectively. 

The slopes for the other two cases can be calculated in a similar 
way; 

Finally, construct an open convex polygon, i.e. preference 
polyhedron, by taking kg  and lines 1L  as well as 2L  as the 

vertex and edges, respectively. 

4.2 Ranking Optimal Solutions Based on Pre-
ference Polyhedron 
The detailed method is as follows: first, the dominance relation 
based on intervals [14] is used to sort ( )R t ; then, the individuals 
with the same rank are classified into three categories, i.e. the 
preferred, the uncertain preference and the non-preferred 
individuals; finally, the individuals with both the same rank and 
category are further ranked based on the crowding metric [14]. 

We sort the individuals with the same rank using the constructed 
preference polyhedron in subsection 4.1. The individuals in the 
objective space have three possible locations relative to the 
polyhedron: (1) inside the polyhedron, which are placed first 
when sorting, denoted as S; (2) below the polyhedron, which are 
placed last, denoted as NS; (3) outside the polyhedron, i.e.,  

 Figure 3(a)                                     Figure 3(b)                                   Figure 3(c) 

Figure 3. Locations of kg in objective space.
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outside the region formed by lines 1L  and 2L , which are placed in 

the middle, denoted as U. It can be observed from Figure 3 that no 
matter what the situation of kg , the region formed by these two 

lines includes the interior and the bottom of the polyhedron.  

Consider the second case, shown as Figure 3(a). If the lower left 
and the upper right vertices of individual g  lies above line 1L  

and below 2L , respectively, or the lower left and the upper right 

vertices of g  lies above 2L  and below 1L , respectively, then g  

is in the interior or the bottom of the polyhedron. To be more 
specific, if g  lies above the worst solution, i.e., 2 2

kg g> , then g  

is in the interior of the polyhedron; while lies below, i.e., 2 2
kg g≤ , 

then g  is in the bottom of the polyhedron. Otherwise, g  lies 
outside the polyhedron. 

The other two cases can be analogously discussed, and the 
detailed analysis is omitted here for brevity. 

The above ranking method is suitable to select individuals in step 
4. The detailed process is as follows. Randomly select two 
individuals from the population, first, compare them using the 
non-dominated sorting, and select the one with a lower rank. If 
their ranks are same, compare them by the preference polyhedron, 
and select the one according to the preferred, the uncertain 
preference and the non-preferred orders. If they have the same 
preference, select the one with a larger crowding metric; 
otherwise, randomly choose one. 

5. APPLICATIONS IN INTERVAL MOO 
PROBLEMS 
The proposed algorithm's performances are confirmed by 
optimizing two benchmark bi-objective optimization problems 
and comparing with an a posteriori method. The implementation 
environment is as follows: Pentium(R) Dual-Core CPU, 2G RAM, 
and Matlab7.0.1. Each algorithm is run for 20 times independently, 
and the averages of these results are calculated. We choose two 
bi-objective optimization problems with interval parameters, i.e. 
ZDT1′  and ZDT2′ , from [14] as benchmark problems. 

5.1 Value Function 
For ZDT1′ and ZDT2′ , the following quasi-concave increasing 
value function  

2 2
1 1 2 1 2( , ) ( 0.4) ( 5.5)V f f f f= + + +                       (4) 

and linear value function 

 

 

 

2 1 2 1 2( , ) 1.25 1.50V f f f f= +                          (5) 

are used to emulate the DM to make decision, respectively. 

5.2 Parameter Settings 
Our algorithm is run for 200 generations with the population size 
of 40. Simulated binary crossover (SBX) operator and polynomial 
mutation [5] are employed, and the crossover and mutation 
probabilities are set to 0.9 and 1 30 , respectively. In addition, the 

distribution indices for crossover and mutation operators with 
20cη =  and 20mη =  are adopted, respectively. The number of 

decision variables, in the range of [0,1] , is 30 for the two test 
problems. 

There are another two parameters in our algorithm: the number of 
generations between two consecutive decision-making, τ , and the 
number of individuals provided to the DM for evaluation, η . The 
human fatigue problem is inherent to IEAs, and the algorithm 
leads to a rapid convergence for a small population [20]. In order 
to actually simulate the DMÊs interaction, the minimal value of τ  
and the maximal one of η  are 8 and 10, respectively, in our 
experiments. 

5.3 Performance Measures 
The following three measures are employed to investigate the 
performance of our algorithm in our experiments: 

(1) The best value of the preference function (V metric, for short). 
This index measures the degree of the DMÊs satisfaction with the 
optimal solution. The larger the value of V metric, the higher the 
DMÊs satisfaction with the optimal solution is.    

(2) The number of uncertain preference individuals (U metric, for 
short). This index reflects the degree of the DMÊs cognition on the 
evaluated individuals. The smaller the value of U metric, the 
clearer the DMÊs preference is. 

(3) The angle between lines 1L  and 2L  ( A metric, for short). 

This index reflects the degree of the DMÊs cognition on the 
evaluated individuals as well. The larger the value of A metric, 
the clearer the DMÊs preference is, and the easier the DMÊs 
preferred solution is to be found. 

5.4 Results and Analysis 
Our experiments are divided into four groups. The first and the 
second ones investigate two properties of our algorithm, including 
the construction of the preference polyhedron and the 
convergence in the objective space. The third and the forth ones 
examine the influences of different values of τ  and η  on the 
performance of our algorithm, respectively. We also compare the 

Figure 4. Three types of preference. 

Figure 4(a)                                              Figure 4(b)                                                Figure 4(c) 
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proposed method with the posteriori one, i.e., the value of τ  is 
200, and the decision-making is executed at the end of the 
algorithm, in the third group. 

5.4.1 Constructing Preference Polyhedron 
The value of τ  is set to be 10 in the first group of experiments. 
Figure  4 depicts three types of preference polyhedrons 
constructed at the 51st generation, indicating that all three cases 
discussed in subsection 4.1 may appear during the evolution. 

Different types of preference polyhedrons represent different 
directions and ranges of the search. For instance, the first type, 
shown as Figure 4 (a), shows the upper left direction is the DMÊs 
preference direction, and the upper left part of the region formed 
by two dotted lines is the DMÊs preferred region. 

5.4.2 Convergence of Our Algorithm 
The values of τ  and η  are set to be 20 and 8, respectively, in the 
second group of experiments. In Figure 5, the asterisk, the fork, 
the box and the diamond represent the best point of 41st, 81st, 
121st and 161st generation, respectively, the circle and the plush 
sigh represent the DMÊs most preferred point and the Pareto front, 
respectively, and dotted lines are the contours of the value 
function. Figure 5 illustrates the course of searching for the most 
preferred point. 

It can be easily observed from Figure 5 that: 

(1) The value of the best point increases along with the evolution 
of a population, indicating that the best point is more and more 
suitable to the DMÊs preferences. 

(2) The best point converges to the most preferred point, which 
suggests that our algorithm is convergent and the DM can surely 
arrive at his/her most preferred solution.  

 

(3) The search direction constantly changes along with the 
evolution of a population, which implies that specifying the search 
direction a priori is unpractical, and interaction with the DM 
during the optimization process is necessary to obtain his/her most 
preferred solution. 

5.4.3 Influence of τ  on Our Algorithm's Perfor-
mance 
The value of η  is set to be 8 in the third group of experiments. 
Figure 6 shows the curves of V metrics w.r.t. the number of 
generations for different values of τ . It can be observed from 
Figure 6 that: 

(1) For the same value of τ , the value of V metric increases along 
with the evolution of a population, indicating that the obtained 
solution is more and more suitable to the DMÊs preferences. 

(2) For the same generation, the value of V metric increases along 
with the decrease of the value of τ , or equivalently the increase 
of the interaction frequency, suggesting that the more frequent the 
interaction, the better the most preferred solution is. The 
interactive method thus obviously outperforms the posteriori 
method. 

Figure 7 illustrates the curves of U metrics w.r.t. the number of 
generations for different values of τ . It can be observed from 
Figure 7 that for the same generation, the value of U metric has no 
relationship with the interaction frequency in early stage of the 
evolution, and its value obviously decreases along with the 
increase of the interaction frequency in later stage. This implies 
that the interaction frequency seldom affects the evolution in early 
stage, whereas the increase of the interaction frequency can make 
the DM's preferences clearer in later stage. 

Figure 5. Course of searching for most preferred point. 

Figure 6. Curves of V metrics w.r.t. number of generations when 8η = .  
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5.4.4 Influence of η  on Our Algorithm's Perfor-
mance 
The value of τ  is set to be 10 in the last group of experiments. 
Figure 8 shows the curves of V metrics w.r.t the number of 
generations for different values of η . 

As it can be observed from Figure 8 that: 

(1) For the same value of η , the value of V metric increases 
along with the number of generations, indicating that the obtained 
optimal solution is more and more suitable for the DMÊs 
preferences.  

(2) For the same generation, the value of V metric increases along 
with the increase of the value of η , suggesting that the larger the 
value of η , the easier the DM finds the most preferred solution. 

Table 1. U and A metrics w.r.t. different value of τ  

ZDT1′  ZDT2′   

U 
metric 

A 
metric 

U 
metric 

A 
metric 

3η =  21.88 17.12 24.71 16.63 

6η =  12.71 19.32 9.78 25.89 

8η =  10.90 22.26 5.80 27.12 

Figure 9 shows the curves of U metrics w.r.t. the number of 
generations for different values of η . We can observe from 
Figure 9 that for the same generation, the value of U metric 
decreases along with the increase of the value of η , which 
implies that the larger the value of η , the clearer the DMÊs 
preference is. 

 

 

 

Table 1 lists the averages of U and A metrics w.r.t. the number of 
generations for different values of η . It can be observed from 
Table 1 that the larger the value of η , the bigger the average of A 
metrics is, whereas the smaller the average of U metrics is, which  
further indicates that the larger the value of η , the clearer the 
DMÊs preference is. 

Based on the above experimental results and analysis, we draw 
the following conclusions: (1) our method outperforms the 
posteriori method; (2) if both the interaction frequency of the DM 
and the value of η  increase, our algorithmÊs performance will be 
significantly improved, while the DMÊs burden in evaluations is 
also increased. 

6. CONCLUSIONS 
MOO problems with interval parameters are popular and 
important, few effective methods of solving them, however, exist 
as a result of their complexity. 

We focus on these problems and present an interactive 
evolutionary method of solving MOO problems with interval 
parameters. The preference polyhedron is employed to sort 
optimal solutions, and guide the search to the DMÊs preferred 
region to finally obtain his/her most preferred solution. The key 
techniques of our algorithm are constructing the preference 
polyhedron and sorting individuals using the above polyhedron. 

As analyzed earlier, the interaction frequency seldom affects the 
evolution in the early stage of the evolution, and the increase of 
the interaction frequency can evidently improve our algorithmÊs 
performance in the later stage. The DMÊs burden in evaluations, 
however, is increased. If the interaction frequency is appropriately 
adjusted along with different stages of the evolution, not only can 
our algorithm alleviate the DMÊs burden in evaluations, but also    

Figure 7. Curves of U metrics w.r.t. number of generations when 8η = . 

Figure 8. Curves of V metrics w.r.t number of generations when =10τ . 
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has good performance. Therefore, determining a proper 
interaction frequency according to the stage of the evolution is our 
future research topic. 
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Figure 9 Curves of U metrics w.r.t. number of generations when =10τ . 
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