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ABSTRACT 
In this paper, an interactive version of the decomposition based 
multiobjective evolutionary algorithm (iMOEA/D) is proposed for 
interaction between the decision maker (DM) and the algorithm. 
In MOEA/D, a multi-objective problem (MOP) can be 
decomposed into several single-objective sub-problems. Thus, the 
preference incorporation mechanism in our algorithm is 
implemented by selecting the preferred sub-problems rather than 
the preferred region in the objective space. At each interaction, 
iMOEA/D offers a set of current solutions and asks the DM to 
choose the most preferred one. Then, the search will be guided to 
the neighborhood of the selected. iMOEA/D is tested on some 
benchmark problems, and various utility functions are used to 
simulate the DM’s responses. The experimental studies show that 
iMOEA/D can handle the preference information very well and 
successfully converge to the expected preferred regions.  

Categories and Subject Descriptors 
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods, 
and Search-Heuristic Methods 

General Terms 
Algorithms, Experimentation 

Keywords 
Multi-objective optimization, evolutionary algorithm, decision 
making, preference incorporation, decision maker, interaction 

1. INTRODUCTION 
Multi-objective optimization problems (MOPs) arise in many 
engineering areas. There is no single optimal solution which can 
optimize all the objectives at the same time. Since Schaffer’s 
seminal work published in 1985 [1], numerous multi-objective 
evolutionary algorithms (MOEAs) have been proposed [2]-[6].  

Most MOEAs approximate the entire Pareto-optimal frontier (PF). 
However, multiobjective optimization, by nature, is to help a 
human decision maker (DM) to find her preferred solutions [7].  
Approximation of the whole PF is not very computationally 
economic in some application. Preference information from the 
DM can be used for guiding the search to a PF part of interest. 

Several preference-based algorithms are proposed in many 
literatures [8]-[13]. The DM’s preference can be obtained and 
refined via interaction between the DM and algorithms. Some 
effort has been made to design interactive MOEAs [14]-[18]. 

MOEA/D (multiobjective evolutionary algorithm based on 
decomposition) [5] is a recent MOEA framework with many 
successful applications. In this paper, we propose an interactive 
version of MOEA/D, called iMOEA/D. In iMOEA/D, the MOP in 
question is converted into a number of scalar optimization 
problems by the Tchebycheff approach [19] with even spread 
weight vectors. During optimization process, the DMs are asked to 
compare some current solutions and select ones which please them 
most at each interactive stage. The weights of selected solutions 
will be used to guide the following optimization for finding the 
finial preferred region. 

The remainder of this paper is organized as follows: Section 2 
presents the related background. In section 3, the structure of 
iMOEA/D is given. The experimental studies are presented in 
section 4.  Section 5 concludes the paper. 

2. BACKGROUND  
2.1 Multi-objective Optimization 
The minimized multi-objective is broadly involved in our study, 
and can be stated as follows:  
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where x=(x1,x2,…,xk) is decision vector and continuous in 
search space. m2 is the number of objective functions and p is the 
number of constraints. 

Very often, the objective functions in (1) contradict one another. It 
is impossible for one single solution in  to minimize all these 
objectives simultaneously. One has to make a trade-off among 
them. 

The best trade-off candidate solutions can be defined based on 
dominance.  xA is said to dominance  xB iff:  
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If there is no vector x such that F(x)>F(x*), x* is called a 
Pareto optimal solution. The Pareto set (PS), is the set of all the 
Pareto solutions, which is denoted as P* in this paper, its image in 
the objective function space is called the Pareto front (PF). 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
GECCO’11, July 12–16, 2011, Dublin, Ireland. 
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2.2 Tchebycheff Approach 
MOEA/D requires a decomposition (aggregation) approach to 
transform the MOP into N sub-problems. We use the Tchebycheff 
approach in this paper. Each sub-problem is as follows [5][19]:  

* *

1
min ( | , ) max{ | ( ) |}te

i i i
i m

g x z f x z

subject to x

 
 
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               (3) 

where z* is the reference point and zi* =min{fi(x)|x}, i=1,…,m. 
λ=(λ1,…,λm) is the weight vector. Different sub-problems in 
MOEA/D have different weight vectors. Their optimal solutions 
can collectively approximate the PF.  

2.3 Utility Function 
Modeling the DM’s preferences is a challenging task in interactive 
algorithms. Several mathematical models have been proposed 
[20][21]. The generic polynomial utility function [21] can be 
described as:  
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                     (4) 

where fi is the i-th objective value; and w is the parameter to 
control the preference weights of DM on different combination of 
objectives. This paper uses (4) as utility functions.  

3. PROPOSED ALGORITHM 
3.1 Interactive Model 
iMOEA/D involves the DM in the process of optimization for 
investigating the problem and offering feedbacks to the search.  

Interaction

iMOEA/DBrain

MOP

Input

Preferred Solutions

?

Interaction

iMOEA/DiMOEA/DBrainBrain

MOP

Input

Preferred SolutionsPreferred Solutions

??

 

Figure 1. Interactive model in this study. 

Figure 1 shows the structure of interactive model used in our 
approach, and a similar structure has been proposed in [22]. In this 
model, the MOP is the input to iMOEA/D, which exchanges 

information with DMs in each interactive stage. During the 
optimization process, iMOEA/D provides the current best optimal 
solutions to the DM, which contains information about the MOP. 
The DM plays a role like a brain in this model. Analyzing the 
solutions, the DM (brain) can provide some feedbacks to 
iMOEA/D for guiding its search.  

This basic idea of interaction can accommodate many multi-
objective optimization algorithms.  

3.2 Interactive MOEA/D 
The details of iMOEA/D are given as follows: 

Algorithm 1: iMOEA/D
Require: uniformly generate N weight vectors of sub-problems 
and generation t=0
1. initialize the population D0 and the reference point z*
2. while termination criterion not fulfilled do 
3.     if the DM needs to interact then 
4.         present P current individuals to the DM 
5.         obtain the DM’s preferred solution y* in these

            individual solutions 
6.         renew the preferred weight region based on y* 
7.         renew the distribution of N weight vectors 
8.     for i=1,…,N do 
9.         generate new individual using genetic operators 
10.         update the i-th sub-problem of D0 
11.         update the reference point z* 
12.     t++ 
Return: population Dt

In algorithm 1, the uniformly spread weight vectors are obtained 
for decomposing the MOP.  t is the generation counter.  

The process of interacting with DMs will happen periodically. In 
our implementation, it happens once every H generations.  At each 
interaction, P individuals are presented to DMs. After estimating 
the utility function values of these individual solutions, the best 
solution y* will be selected as the center of the new preferred 
region. 

3.3 Dynamic Preference Renewing 
The information feedback from the DM is used in the process of 
renewing the preferred weight region in every interactive stage. In 
iMOEA/D, the idea of favorable weights will be employed to 
identify the location of solutions.  

Assuming the weight vector of the favorite solution y* is 
w*=(w1*,w2*,…,wm*), and indicate the preferred weight region Sh 
as a sphere (or a hyper-sphere with more than 3 objectives) in this 
paper, denoted as (wc, rh) at the interaction stage h. According to 
this, the center of the weight region is just the w*, and the radius 
rh can be obtained by calculating Rh/2. R is a reduction factor 
which can control the shrinking rate of the boundary of the 
preferred weight region. The higher the R is, the faster the 
boundary shrinks. Based on [23], R should meet:  

1
1m R

P
                                       (5) 

where m is the number of objectives; P is the number of the 
individuals presented to the DM, and P>m. 
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3.4 Preference Incorporation Mechanism 
In MOEA/D, the solutions in each generation are the current best 
one of corresponding sub-problems. Therefore, guiding solutions 
converging to DM’s preference can be realized by changing the 
density of the spread weight vectors. Figure 2 illustrates how the 
weight vectors are renewed based on preferred weight region 
Sh=(w*,rh) in the biobjective problem . 

1f

2f

* *
1 2( , )w w

1 2( , )i iw w

hr

Insert weight

 
Figure 2. Weight vectors are renewed in the case of two 

objectives. 

The detailed steps of this process are as follows:  

Algorithm 2: Preference Incorporation 
Input: N current weight vectors of sub-problems and preferred 
center weight w*  
1. Calculate preferred radius r= Rh/2 
2. Set I=Ø and O= Ø 
3. for i=1,…,N do 
4.     if weight vector wi inside the preferred region then 
5.         put wi in  I 
6.         u++ 
7.     else then 
8.         put wi in O 
9.         v ++ 
10.     calculate the interval distance di between the i-th and 

        the (i+1)-th weight 
11. for j=1,…,v/2 do 
12.     find out the weight w* with maximum interval distance 

        d* in the set O 
13.     find out the weight w’ with minimum interval distance 

        d’ in the set I 
14.     insert the w* between the weight w’ and the following

        weight of w’ 
Return: N new weight vectors 

4. EXPERIMENTAL STUDY 
In this section, the simulation runs are conducted to demonstrate 
the performance of the new algorithm. Two 2-objecive tests of 
ZDT problem and two 3-objecive tests of DTLZ problem will be 
discussed respectively. And all the simulations were run on a 
personal computer with P-IV 2.33G CPU and 2G RAM.  

4.1 Parameter Settings  
In all these experimental studies, the parameter settings are as 
follows: the total number of interaction stage H=4; the reduction 
factor R=0.6; the number of solutions to be presented to the DM in 
each interaction stage P=10. In addition, the population size N is 
set to be 100 for 2-objective test instances and 300 for 3-objecive 
test instances. The algorithm will stop after 500 generations and the 
results are based on 30 independent runs. 

4.2 Results on 2-objective MOPs 
First, the 2-objective test problems ZDT1 and ZDT2 with 30 
variables developed by Zitzler et al. in 2000 [24] will be used to 
test this interactive algorithm. Four different utility functions are 
used in each problem for demonstrate the performance. 

4.2.1 Results on ZDT1 
This problem has a concave Pareto-optimal frontier spanning 
continuously in f1[0,1] and follows a function relationship: f2=1-
(f1)

0.5. To sufficiently verify the ability of converging to the PF 
guided by simple or complicated utility functions, we establish 
four cases with different combination of relative weight of 
objectives. However, all these function are coming from (4). 

Case 1: In the first case, the first objective holds a higher relative 
weight; and a simple utility function is adopted described as:  

1minU f                                       (6) 

Case 2: On the contrary of the first test, the supposed DM favors 
the second objective more than the first one; so this simple utility 
function can be described as:  

2minU f                                       (7) 

Case 3: In this case, the supposed DM prefers almost the center of 
the PF; and a more complicated utility function is designed as:  

2 2
1 2 1 2min( 0.8 0.8 0.32)U f f f f                  (8) 

Restricted by the real PF of ZDT1, the theoretical minimum value 
(f1=0.4, f2=0.4) may not be reached. The final obtained solutions 
are always inside a region approximating to PF and possess 
smaller value of (8). 

Case 4: In case four, a more complicated utility function is used to 
guide the optimization process with the following formula:  

2 2
1 1 2 2 1min(0.28 0.29 0.38 0.05 )U f f f f f           (9) 

This utility function is proposed in [21] for dealing with DTLZ1 
problem with only two objectives and the exact minimum value of 
(9) is (f1=-0.111, f2=0.042), which will be used to compare the 
result in the following experiment. 

Take case 1 as an example; we display the gradually changed 
process of interactive in Figure 3. The first interaction occurs after 
100 generations when H=4 and the maximal generation equal to 
500. Sub figure (a) is just the result after the first interaction and 
the current generation is 200. It clearly shows that more solutions 
have already begun to be partial to the first objective, but it still 
has a gap with expectation. Sub figure (b) shows the result after 
the second interaction and the current generation is 300. In this 
stage, more and more solutions have moved near the top of the PF; 
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and a part of these solutions almost arrive the expectation. After 
the third interaction, current solutions in generation 400 can 
almost satisfy the utility function shown in sub figure (c). And sub 
figure (d) depicts the finial solutions with preference of the first 
objective. Shown by Figure 3, we can prove the feasibility of this 
new approach initially. 
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Figure 3. Obtained solutions in different interactive stages of 
ZDT1 about case 1: (a) 1st interaction; (b) 2nd interaction; (c) 

3rd interaction; (d) 4th interaction. 

Figure 4 displays the plots of all these four kinds of cases 
separately in sub figure (a) (b) (c) and (d). These plots are shown 
the final preferred solutions guided by their own utility function. 
All of these results show that the algorithm not only can converge 
to the Pareto-optimal frontier, but also can find the preferred 
region or preferred objective decided by DMs. 
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(c)                                                (d) 

Figure 4. Front obtained against theoretical PF of ZDT1 
problem: (a) case 1; (b) case 2; (c) case 3; (d) case 4. 

4.2.2 Results on ZDT2 
ZDT2 has a convex PF spanning continuously in f1 [0,1] and 
follows a function relationship: f2=1-(f1

2)0.5. Similar with tests of 
ZDT1 problem, we adopt four different kinds of utility functions 
to guide the optimization. Owning to the convex characteristic of 
ZDT2 problem, the utility function of case 4 will be changed a 
little. 

Case 1: Supposed DMs are preferred the first objective more than 
the second one; and the utility function are also described as (6). 

Case 2: The second objective gets more preferences. So (7) will be 
used as the utility function. 

Case 3: The center of the PF is preferred by supposed DMs; and 
the complicated utility function similar as (8) can be described as:  

2 2
1 2 1 2min( 1.1 1.3025)U f f f f                  (10) 

In order to compare the result in the following experiment, the 
theoretical minimum value in each objective has been calculated 
as (f1=0.5, f2=0.55). 

Case 4: In this case, we continue to use the utility function 
proposed in [21]. However, due to the convex characteristic, small 
changes are need.  

2 2
1 1 2 2 1max(0.28 0.29 0.38 0.05 )U f f f f f          (11) 

As we know, the theoretical minimum value of (9) is (f1=-0.111, 
f2=0.042), so the maximizing the function can provide another 
perspective to help DMs finding the region in the middle part of 
the whole PF when encounter a convex problem as ZDT2.  

Sub figures (a) (b) (c) (d) of Figure 5 display the final obtained 
solutions of all these cases. We can see clearly that the interactive 
method can well dispose the convex problems with well 
converged preferred solutions, no matter guided by simple or 
complicated utility functions. 
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Figure 5. Front obtained against theoretical PF of ZDT2 
problem: (a) case 1; (b) case 2; (c) case 3; (d) case 4. 
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4.3 Results on 3-objective MOPs 
In this part, some 3-objective test problems will be used to test the 
new approach. The widely used benchmark problems DTLZ1 and 
DTLZ2 denoted as 3-DTLZ1 and 3- DTLZ2 are proposed by Deb 
in 1999 [25]. Similar to the tests of 2-objective problems, four 
utility functions with different complexity will be used for guiding 
the evolving process. 

4.3.1 Results on DTLZ1 
The PF of DTLZ1 is ∑i∈[1,m] fi=0.5, which just is a geometric 
plane with 0.5 as the maximum value in each objective; and 
DTLZ1 discussed here contains 7 variables. As for 3-objective 
problem, we make a small change of simple utility functions, 
which will be discussed in the following case1 and case 2. 

Case 1: Supposed DMs always hold a high probability for 
favoring more than one objective in 3-objective problem. So, in 
the first case, both first and second objectives are set an equal 
higher relative weight. And the utility function can be easily 
described as:  

1 2min( )U f f                                  (12) 

Case 2: Similar with the first case, another two objectives are 
preferred in this case: the first and the third one.  

1 3min( )U f f                                  (13) 

Case 3: The center of the PF is preferred by supposed DM. 
Therefore, a more complicated utility function can be described as 
follows:  

2 2 2
1 2 3 1 2 3min( 0.4 0.4 0.4 0.12)U f f f f f f            (14) 

In this case, solutions with smaller value of (14) are preferred. 

 However, the real PF may not reach the theoretical minimum, so 
the exact minimum value (f1=0.2, f2=0.2, f3=0.2) is only used to 
estimate the finial preferred region.  

2 2 2
1 2 3 1 2 3min( 0.2 0.2 0.6 0.11)U f f f f f f             (15) 

Case 4: In the last case, another region is preferred by DM, which 
is also in the middle part of the PF with a complicated utility 
function: 

According to (15), the first and the second objective are preferred 
morn than the third one. And the finial preferred region is partial 
to the top of the PF. The theoretical minimum value (f1=0.1, 
f2=0.1, f3=0.3) is also pointed out for estimate the result obtained 
by iMOEA/D. 

Take the complicated case 4 as an example, the gradually changed 
solutions at all four interactive stages are shown in Figure 6. It can 
be seen clearly that more and more solutions are focusing on the 
very preferred region with the time of interaction increased. In 
addition, before the finial interaction, solutions always maintain 
certain diversity for offering the possibility to correct errors. 

 
(a)                                                 (b) 

 
(c)                                                 (d) 

Figure 6. Obtained solutions in different interactive stages of 
DTLZ1 about case 1: (a) 1st interaction; (b) 2nd interactti-
on;(c) 3rd interaction; (d) 4th interaction. 

The final results of these four cases are shown in Figure 7. In 3-
objective problems, our algorithm also can well converge to the PF 
within the preferred region. Sub figure (a) and (b) demonstrate the 
situation in which two objectives are equally preferred. The obtained 
solutions are nearly the bisector of these two objectives and maintain 
a good diversity. The shape of obtained solutions shown by sub 
figure (c) is almost a circle in the center of PF, which just display the 
mechanism of setting the boundary of preferred weights. However, 
the shape displayed in sub figure (d) is almost an ellipse. That is 
because the preferred region is linked to the boundary of weights 
which not directing to the center of the PF. 

4.3.2 Results on DTLZ2 
The PF of DTLZ2 with 12 variables satisfy ∑i∈[1,m] fi

2=1. And two 
simple and two complicated utility functions can be set as follows. 

 
(a)                                                 (b) 

 
(c)                                                 (d) 

Figure 7. Front obtained against theoretical PF of DTLZ1 
problem: (a) case 1; (b) case 2; (c) case 3; (d) case 4. 
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(a) (b) 

 

 
(c)                                                 (d) 

Figure 8. Front obtained against theoretical PF of DTLZ2 
problem: (a) case 1; (b) case 2; (c) case 3; (d) case 4. 

Case 1: Similar with DTLZ1, in this case, both first and second 
objective are preferred more than the third one. So the utility 
function is equal to (12). 
Case 2: The utility function is as same as (13), when the first and 
the third objective are preferred. 

Case 3: The center of PF is preferred in this case, and the 
complicated utility function is similar as (14).  

2 2 2
1 2 3 1 2 3min( 1.2 1.2 1.2 1.08)U f f f f f f              (16) 

The center of the real PF are preferred in this case, all three 
objectives hold an equal preferred weight; and the exact 
theoretical minimum value is (f1=0.6, f2=0.6, f3=0.6). 

Case 4: In case four, the third objective is preferred more, but the 

other two objectives still maintain their own relative weights.  

2 2 2
1 2 3 1 2 3min( 0.4 0.4 1.6 0.72)U f f f f f f             (17) 

Utility function (17) slightly leads the preferred region close to the 
top of the PF. The theoretical minimum value (f1=0.2, f2=0.2, 
f3=0.8) will be used to compare the finial preferred region of 
iMOEA/D. 

Figure 8 has displayed the front obtained against theoretical PF 
within the preferred region. Sub figure (a) (b) (c) and (d) 
correspond to different four utility functions, which can well 
demonstrate the well performance of our interactive mechanism. 
As for the specific of the final solutions are as same as the results 
of  DTLZ1. 

4.4 Results on Welded Beam Design Problem 
The welded beam design problem (WBDP) is a typical multi-
objective problem in the real world [26]. It has four real parameter 
variables denoted as x=(h, l, t, b), four non-linear constraints and 
two objective functions. One objective is about minimizing the 
cost of fabrication, while the other one is about minimizing the 

end deflection of the welded beam. The specific expression is 
shown as follows:  

1 2
2

1
3

2

1
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3

4

min ( ) ( ( ), ( ))
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          (18) 

The specific illustration of the constraint can refer to [26]. One 
thing we should know is that a violation of any four constraints 
will make the design unacceptable. Furthermore, the related stress 
and buckling term also illustrated in [26].  

These objectives are confliction in nature, and iMOEA/D is 
applied to find the trade-off solutions within the preferred region 
decided by DM. Here, DM supposed prefers both objectives in an 
almost equivalent rate. So the utility function is designed as 
follows:  

2 2
1 2 1 2min( 10 0.006 25.000009)U f f f f                (19) 

Figure 9 shows the obtained solutions after each interaction. And 
the total interactive time is four and the maximal generation equal 
to 500. So sub figure (a) shows the result after the first interaction 
and the current generation is 200. By analogy, sub figure (b) (c) 
and (d) just depict the obtained solutions in the 300-th, 400-th and 
500-th generation respectively. Seeing from sub figure (d), the 
finial preferred solution successfully converge to the region which 
can well balance two objectives. 
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Figure 9. Obtained solutions in different stages of interaction 
of WBDP: (a) 1st interaction; (b) 2nd interaction; (c) 3rd 
interaction; (d) 4th interaction. 
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For better demonstrating the performance, four different utility 
functions are used in this part, and the finial results are shown in 
Figure 10 respectively.  

Case 1: Let the first objective hold higher priority. The simple 
utility function can be described as (6). 

Case 2: Similar as (7), DM prefers the second objective more than 
the first one in this case. 

Case 3: In the third case, a more complicated utility function is 
designed, which has already shown in (19). 

Case 4: In the last case, another complicated utility function is 
used to guide the optimization process, described as:  

2 2
1 2 1 2min( 24 0.004 144.000004)U f f f f            (20) 

Sub figure (a) (b) (c) and (d) of Figure 10 correspond to different 
cases; and we can see clearly that, iMOEA/D holds a good 
performance for all these four cases. For both simple and 
complicated utility functions, the algorithm can obtain the most 
reasonable results which exactly near the preferred region made 
by DM. Furthermore, another important phenomenon should be 
paid more attention. When only one objective is preferred, such as 
case1 and case 2, the obtained solutions may hold a larger 
boundary. That means the solutions can reach a smaller value for 
the preferred objective. In such cases, the search intensity is 
enhanced to some extent; and the search purpose may not be 
satisfied until meet a more rigorous evaluation criteria.  

5. SUMMARY AND CONCLUSIONS  
In this paper, decomposition based interactive evolutionary 
algorithm named iMOEA/D for interacting with DMs has been 
proposed. Inspired by MOEA/D, the decomposition method is 
used in the beginning of proposed algorithm for decomposing the 
MOP into several sub-problems with uniform weight vectors. In 
addition, each individual solution belongs to different correspon-
ding sub-problem. 
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Figure 10. Front obtained of WBDP: (a) case 1; (b) case 2; (c) 
case 3; (d) case 4.  

By dealing with the sub-problem, the computational complexity 
has been saved in a great extent. 

During the stage of interactive, P current solutions are randomly 
presented to DM for choosing their favorite one; and the selected 
solution becomes the center of preferred weight region in the 
following optimization process. One thing should be emphasized 
which is all the operators facing to renew preference region are 
based on weight vectors. With this kind of information 
exchanging process, DMs will learn more direct and precise 
knowledge about the possible PF of MOP, and better determine 
the optimizing direction for converging. 

With the interactive process, the algorithm can better imitate the 
pattern of decision-making process of human brain. The proposed 
algorithm holds the ability of providing feedbacks and correcting 
error decisions in some extent. The utility function is used for 
representing the human DM in this paper. And both two and three 
objectives MOPs are adopted to test the performance of iMOEA/D 
with different utility functions. According to the result of 
experimental study, iMOEA/D can successfully converge to 
different regions of all the problems guided by utility function 
with varying difficulties. 

As we known, the research on imitating the human brain is still in 
its infancy. And iMOEA/D just provides a novel angle of solving 
preference based MOPs by exchange information during 
interactive stages. There are still many aspects worth further 
exploration. Such as a comprehensive way for estimating the 
performance, operable utility function for imitating the human 
DM, and so on. 
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