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ABSTRACT
Plans and decisions in many real-world scenarios are made
under uncertainty and to satisfy multiple, possibly conflict-
ing, objectives. In this work, we contribute the multi-reward
partially-observable Markov decision process (MR-POMDP)
as a general modelling framework. To solve MR-POMDPs,
we present two hybrid (memetic) multi-objective evolution-
ary algorithms that generate non-dominated sets of policies
(in the form of stochastic finite state controllers). Perfor-
mance comparisons between the methods on multi-objective
problems in robotics (with 2, 3 and 5 objectives), web-
advertising (with 3, 4 and 5 objectives) and infectious dis-
ease control (with 3 objectives), revealed that memetic vari-
ants outperformed their original counterparts. We antici-
pate that the MR-POMDP along with multi-objective evo-
lutionary solvers will prove useful in a variety of theoretical
and real-world applications.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search; G.1.6 [Optimization]: Stochastic
programming

General Terms
Algorithms

1. INTRODUCTION
Plans and decisions in many real-world scenarios are made

under uncertainty and to satisfy multiple, possibly conflict-
ing, objectives. For example, consider an autonomous rover
exploring Mars; it has to develop a plan that maximises the
area surveyed while minimising power consumption and en-
suring safety. Furthermore, the robot has to cope with noisy
sensors and slipping wheels. This example is illustrative of
the difficulties caused by multiple-objectives, incomplete in-
formation and ineffective actions, common across many do-
mains from inventory management to health-care.
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For modelling uncertain environments, the partially ob-
servable Markov decision process (POMDP) has emerged as
a popular solution framework; a POMDP models an agent
interacting with a (stochastic) system where the underlying
state cannot be directly perceived. Depending on the ac-
tions taken and the underlying state, the agent receives a
reward (or penalty). In our Mars rover example, the state
space is the possible robot configurations on the Mars land-
scape and a reward is given for each newly explored sector.
But what about the other objectives of power and safety,
particularly in the presence of far/high-risk sectors?

Despite its generality, a given POMDP is still limited to
a single reward function, inconsistent with situations where
multiple objectives have to be considered. When faced with
multiple objectives, POMDP modellers either have to dis-
regard objectives or combine the different objectives into a
single reward function. This has undesirable effects; for ex-
ample, a change in one cost/reward component can have a
significant impact on the resulting optimal policy. Further-
more, using the POMDP formulation does not permit the
study of trade-offs between different goals. These limitations
provide the main motivations for this work.

First, we contribute a generalisation of the POMDP frame-
work to multiple-objectives, i.e., the multi-reward partially-
observable Markov decision process (MR-POMDP). The MR-
POMDP is a convenient framework for modellers who no
longer have to combine objectives into a single reward struc-
ture (a potentially difficult and sometimes infeasible proce-
dure). The solution for a MR-POMDP is not a single policy
but a set of “best” policies that maximise objectives to vary-
ing degrees: the Pareto policy set. For regular POMDPs,
there are two main classes of solvers: value-iteration and
policy-search. Because value-iteration is generally slow, we
focus on searching the policy space of stochastic finite state
controllers (FSCs) [21] which are compact, interpretable,
graph-based policy representations. With MR-POMDPs,
FSCs are associated with value vectors that can be compared
using the domination relation. However, the landscape of
FSCs is characterised by many locally-optimal policies (lo-
cal minima) [5], necessitating the use of a meta-optimisation
approach such as the evolutionary algorithm (EA).

As our second contribution, we explore the use of lead-
ing multi-objective evolutionary algorithms (MOEAs) which
have been demonstrably effective on many benchmark and
real-world problems. In particular, we use the popular non-
dominated sorting genetic algorithm (NSGA2) [27] and the
recently-developed multi-objective covariance matrix adap-
tation evolutionary strategy (MO-CMA-ES in the literature
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or MCMA for short in our paper) [14]. Since MOEAs can
be slow to converge in large search spaces, we augment
both algorithms with local-search, resulting in two hybrid or
memetic algorithms: NSGA2-LS and MCMA-LS. To speed
up the policy search, we demonstrate that in the special
case of weighted linear combination (WLC), a defined pref-
erence vector reduces a given MR-POMDP to the famil-
iar POMDP model with a linearly-combined reward func-
tion, which can be solved efficiently using an gradient-based
optimisation algorithm. Performance comparisons between
the algorithms on multi-objective problems (robotic load-
ing, web-advertising and anthrax detection) reveal that the
memetic variants outperformed their original counterparts.

In the next section, we briefly review the basic notions
and notation relevant to POMDPs and FSCs. In Section 3,
we introduce the MR-POMDP and present ideas related to
multi-objective optimisation of FSCs. The MOEAs along
with NSGA2-LS and MCMA-LS are described in Section 4.
Our experimental setup and results are given in Section 5.
We conclude with final remarks, along with more speculative
ideas on future research, in Section 6.

2. PRELIMINARIES

2.1 The POMDP Model
A POMDP models an environment where states are not

directly visible to an agent [17]. Instead, the agent makes
observations, from which it has to infer actions to take. De-
pending on the underlying state and the action, the agent
receives feedback in the form of a scalar-valued reward. In
this work, we focus on situations where the agent wishes to
maximise the expected discounted cumulative reward over
time.

Formally, a POMDP is a tuple 〈S,A,Z, T,O, R, γ〉 where
S is the set of states, A is the set of possible actions and Z is
the set of observations available to the agent. T is transition
function T (s, a, s′) = P (s′|s, a) which gives the probability
of moving to state s′ from s given action a and O is the
observation function O(s, z) = P (z|s) i.e. the probability of
observing z in state s. The reward function, R : S×A×S →
R models the reward for arriving in state s′ after executing
action a in state s. Finally, the discount factor, γ (0 ≤ γ ≤
1) regulates how much future rewards are discounted.

Because observations only give partial information about
the current state, an agent has to rely on the complete his-
tory of its observations and actions. Let us define a finite
history as ht = {ao, z1, . . . , at−1, zt} ∈ H where at and zt
are the action and observation at time t respectively. A pol-
icy π maps elements of H to actions a ∈ A (or a distribution
of actions in the case of stochastic policies). In other words,
policies tell an agent what to do based on what it has seen
up to that point. Given a distribution b0 over the starting
states, the expected value of a policy π is

Eπ = E

( ∞∑
t=0

γtRt | π,b0

)
(1)

where Rt is the reward received at time t. The optimal
policy π∗ is one that maximises this expectation.

Unfortunately, finding π∗ exactly is not easy and turns out
to be PSPACE complete for finite-horizon POMDPs [23] and
undecidable for the infinite-horizon case [20]. As such, re-
search has focussed on finding approximated solutions with
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Figure 1: A FSC with three nodes {N1, N2, N3}, two
actions {a1, a2} and two observations {o1, o2}. For
each node, the action taken is governed by the prob-
ability distribution ψ(n, a) = P (a|n) . The transition
from one node to another is dictated by another
probability distribution η(n′, z, n) = P (n′|z, n). In this
example, the probability of taking action a1 in node
N1 is 0.2, after which a transition occurs depending
on the observation received. If observation o1 is re-
ceived, a transition is made to N2 with probability
0.4 or to N3 with probability 0.6.

two classes of solvers emerging over time: value-iteration
methods (e.g. [28, 25]) and policy-search methods.

In this paper, we focus on policy-search for finite-state
controllers (FSCs). Unlike value-iteration methods, policy-
search algorithms work directly in the policy space and with
a proper representation, good (locally optimal) policies can
be found relatively quickly, even for systems with thousands
of states. The computational properties of policy-search al-
gorithms, such as gradient ascent[21], make them appeal-
ing, inducing a series of interesting developments in the past
decade [26, 24, 5].

2.2 Finite State Controllers
A finite state controller (FSC) is a graph-based represen-

tation of a policy. Each node (also called a “memory state”)
dictates an action to take and depending on the observa-
tion received, we transition to another node in the graph
(which defines the next action to be taken and so on). We
work mainly with stochastic FSCs where each node defines
a probability distribution over possible actions and nodes to
transition to. As an example, a three-node FSC is shown in
Fig. 1.

Assume S, A and Z to be finite. A stochastic FSC is a
tuple 〈N , ψ, η〉 where N is a set of nodes, ψ(n, a) = P (a|n)
is the action selection distribution for each node n ∈ N and
η(n′, z, n) = P (n′|z, n) gives the probability of moving to
node n′ from node n after observing z. It can be shown
that the cross-product between a POMDP and a FSC in-
duces a finite Markov chain [21]. Following the derivations
by Meuleau et al. [21], the transition matrix of this Markov
chain is given by

T̃π(〈n, s〉, 〈n′, s′〉)
=
∑
a∈A

ψ(n, a)T (s, a, s′)
∑
z∈Z

O(s′, z)η(n, z, n′) (2)

and the expected immediate reward vector for each state
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pair is

C̃π(〈n, s〉) =
∑
a∈A

ψ(n, a)
∑
s′∈S

T (s, a, s′)R(s, a, s′). (3)

The value of the FSC, Ṽπ, can then be found by solving
the Bellman equation:

Ṽπ = C̃π + γT̃πṼπ (4)

and the policy value independent of the starting state is

Ẽπ = b̃0Ṽπ (5)

where b̃0 is the joint probability distribution across the ini-
tial 〈n, s〉 pairs. The gradient of (5) with respect to each
policy parameter is

∇Ẽπ = b̃0∇Ṽπ (6)

With (5) and (6), a given FSC can be optimised using a
numerical optimisation algorithm such as conjugate gradi-
ent. As we will see, these equations are similarly valid for
MR-POMDPs, with multiple reward functions.

3. MULTI-REWARD POMDPS
In this section, we introduce a generalisation of POMDPs

for modelling problems with multiple objectives. Recall that
in the standard POMDP, there is a single reward function
R. We replace this reward function by a vector of reward
functions R = [R(1), R(2), . . . , R(M)] where each R(i) cor-
responds to the rewards obtained under objective i. The
tuple 〈S,A,Z, T,O,R, γ〉 is termed a multi-reward partially-
observable Markov decision process (MR-POMDP) 1. The
closest related work is by Bryce [6] on conditional proba-
bilistic planning, who introduced a multi-objective exten-
sion to the value function of belief-state MDPs. In con-
trast, we consider POMDPs with a vector of reward func-
tions, which can then be solved using either value-iteration
or policy-search methods. From another perspective, this
work extends multi-objective variants of Markov decision
processes (MDPs) [29, 1, 30] (which model systems with
fully-observable states) to the partially-observable domain.

With MR-POMDPs, the agent receives a vector-valued
(instead of a scalar) reward. Extending (1), we seek to max-
imise the expected cumulative discount reward for each ob-
jective:

maxE

( ∞∑
t=0

γtR
(i)
t | π,b0

)
for i = 1, 2, . . . ,M (7)

where R
(i)
t is the reward received at time t under reward

function R(i) and M is the number of objectives.

3.1 Policy Domination and the Pareto Opti-
mal Set

With multiple rewards, the value of a given policy is a

vector Eπ = [E
(i)
π ] where E

(i)
π gives the value of the policy

under reward function R(i). To determine the optimal policy
(or policies), we need to be able to compare policy value
vectors: when is a policy πk better than another policy πl?

Intuitively, a policy is preferred over another if it possesses
a higher value for at least one objective, and is no worse

1For simplicity, we assume the discount factor is equal across
rewards.
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Figure 2: An illustration of dominance on a bi-
objective problem. A, B and D are non-dominating
solutions on the Pareto optimal front. C is domi-
nated by B and D, but is not dominated by A.

for all others. Formally, a policy πk dominates policy πl,
denoted as πk � πl, if at least one of its value functions p
is strictly better than that of policy l and none of its value

functions are worse i.e. E
(i)
πk ≥ E

(i)
πl for all i = 1, . . . ,M and

there exists p such that E
(p)
πk > E

(p)
πl . In contrast, if E

(i)
πk ≤

E
(i)
πl for all i and there exists p such that E

(p)
πk < E

(p)
πl , then

we say πk is dominated by πl, denoted πk ≺ πl. Otherwise,
πk and policy πl are non-dominating, πk ∼ πl.

Given the above definitions, the best policies, π∗
k ∈ P

∗
,

are those that are not dominated by any other policy; there
does not exist πl such that πl � π∗

k. We call these policies
Pareto-optimal and P

∗
is the Pareto optimal set. The set

of all value vectors for the policies in the Pareto optimal
set is called the Pareto optimal front, E

∗
= {Eπ∗}. Fig. 2

illustrates the concept of dominance and a sample Pareto
optimal front. Given a MR-POMDP, our goal is to find
the Pareto optimal set of policies. However, the set may be
infinitely large and therefore, we seek a finite approximation.

3.2 Finite State Controllers for MR-POMDPs
FSCs can be evaluated for MR-POMDPs in a similar man-

ner to POMDPs. The primary difference being that the
value of the FSC under a MR-POMDP is a vector where
each component Ẽ

(i)
π is calculated using (5) with reward

function R(i). Likewise, there are M gradient vectors ∇Ẽ(i)
π

for each objective.
One method of constructing the (approximated) Pareto

optimal set is through repeated initialisations of a random
policy and climbing the gradient using a multi-objective
local-search algorithm [3, 12]. Unfortunately, each multi-
objective gradient evaluation is expensive; our computa-
tional effort has increased due to the need to construct M
different C̃π vectors (Eq. 3). Next, we show that this ef-
fort can be reduced in the special case of linear weighted
combination.

3.3 Linear Weighted Combination of Reward
Functions

One class of methods for optimising multi-objective prob-
lems combine the different objective functions via a scalaris-
ing function, such as the weighted linear combination (WLC).
Intuitively, a weight vector specifies a preference over the dif-
ferent objectives. Given a specified weight vector w = [w(i)]
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where
∑M
i=1 w

(i) = 1, we define the weighted value of a pol-
icy,

Ẽw
π =

M∑
i=1

w(i)Ẽ(i)
π (8)

Given w, we can efficiently optimise a FSC for a weighted
MR-POMDP by constructing the combined reward function
Rw =

∑M
i w(i)R(i), i.e., from (8),

Ẽw
π =

M∑
i=1

wib̃0Ṽ
(i)
π

= b̃0(I− γT̃π)
−1

M∑
i=1

wiC̃
(i)
π (9)

Expanding the last part of the above using (3), for each pair
〈n, s〉, we have:

M∑
i=1

w(i)C̃(i)
π (〈n, s〉)

=
∑
a∈A

ψ(n, a)
∑
s′∈S

T (s, a, s′)
M∑
i=1

w(i)R(i)(s, a, s′)

=
∑
a∈A

ψ(n, a)
∑
s′∈S

T (s, a, s′)Rw(s, a, s′) (10)

Therefore, we can simply combine all the R(i)’s through
WLC (a relatively cheap O(|M ||S|2 |A|) operation) and use
gradient ascent as in the single-reward case. The same con-
clusion can be reached more generally from Eq. 7 with some
simple algebraic manipulation and noting that WLC results
in a single reward function provided that discount factors
are equal across rewards:

E

(
M∑
i=0

w(i)
∞∑
t=0

γtR
(i)
t | π,b0

)
= E

( ∞∑
t=0

γtRw
t | π,b0

)

where Rw
t =

∑M
i=0 w

(i)R
(i)
t . In other words, WLC with

a specified w reduces a MR-POMDP to a POMDP with
reward function Rw.

Using this result, an approximate Pareto optimal set can
be constructed by systematically sweeping through weights
and performing gradient ascent for each weight vector. Un-
fortunately, there are three drawbacks to this approach:

1. local optimisation of FSCs is known to lead to poor
local minima [5],

2. WLC only finds solutions on the convex hull of the
Pareto optimal front and finally,

3. the objective space grows exponentially with the num-
ber of objectives making weight sweeps progressively
more expensive.

These limitations motivate the need for a higher-level global
optimisation algorithm, such as the multi-objective evolu-
tionary methods described in the next section.

4. MULTI-OBJECTIVE HYBRID EAS FOR
MR-POMDPS

Since genetic algorithms were first popularised in 1975
[13], evolutionary computation has grown into a significant

research area encompassing a wide variety of methods. Of
interest to us is the application of the evolutionary algo-
rithms (EAs) to multi-objective problems. Multi-objective
evolutionary algorithms (MOEAs), such as NSGA2 [27] and
the strength pareto evolutionary algorithm (SPEA2) [33],
have been successfully applied to a variety of complex test
and real-world problems [8, 32, 10]. In this work, we used
NSGA2 (as a representative of MOEAs using standard real-
coded recombination and mutation operators) and MO-CMA-
ES or MCMA [14], which represented the estimation-of-
distribution (EDA) class of methods. The algorithms used
in this work are “steady-state” in that they generate only
one solution per iteration. Steady-state variants have been
shown to have similar performance to their generation-based
counterparts but with the added benefit of being easily par-
allelized for cluster or multi-core systems.

4.1 Steady-state NSGA2 and MCMA
NSGA2 is one of the most popular MOEAs in the liter-

ature, due to its simplicity and its effectiveness on a large
class of problems. Similar to other MOEAs, NSGA2 iter-
atively generates new solutions using the simulated binary
crossover (SBX) and polynomial mutation operators [27]. At
each iteration, the population (together with the offspring)
are sorted using a fast non-dominated sorting algorithm.
Each solution is assigned a rank (lower ranks are better)
and a second preference criteria, crowding distance, which
approximates the density of solutions around the individ-
ual. NSGA2 is elitist in that it preserves only the top |P|
solutions in the population P at each iteration.

More recently, there has been a growing interest in es-
timation of distribution (EDA) algorithms; in particular,
MCMA, a multi-objective variant of the successful CMA-
ES, has been shown to surpass NSGA2 on several bench-
mark problems [14]. MCMA is similar to NSGA2 in that
it is also elitist, uses non-dominated sorting and density ap-
proximation (either crowding distance or the hypervolume
indicator). A primary difference is in how they generate
new solutions: while NSGA2 relies on “standard” evolution-
ary operators, MCMA builds a probabilistic model of good
solutions from which it can sample from. The models built
are multi-variate Gaussian and at each iteration, MCMA
updates its estimate of the mean and covariance matrix,
as well as strategy parameters. It is also worth mentioning
that, unlike NSGA2, MCMA possesses nice invariance prop-
erties (e.g., invariance under rotation of the search space).
In the next subsections, we discuss FSC representation and
how we augmented both MOEAs with local-search using dy-
namic operator selection. Our algorithms are summarised in
the flowchart shown in Fig. 3.

4.2 FSC Representation
Each FSC is represented with a vector (genome) x ∈

R
|N||A|+|N|2|Z|. There are two segments to this genome for

the action selection distribution ψ(n, a) and node transition
distribution η(n, z, n′) respectively. We refer to segments of
the genome by xψ and xη. To ensure that probability dis-
tributions remained valid and the resulting evaluation func-
tion was differentiable, we use the soft-max function, e.g.
ψ(n, a) = P (a|n,xψ) = exp (xψ[n, a])/Q where xψ[n, a] is
the associated variable for ψ(n, a) and Q is the normalisa-
tion factor.
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Figure 3: Flowchart summarising the NSGA2-LS and MCMA-LS hybrid/memetic algorithms.

4.3 Hybridisation with Local Search (WLC)
The FSCs we are attempting to optimise are large in the

number of parameters; as stated, the genome consists of
|N ||A|+|N |2 |Z| real variables. For example, given a problem
with 4 actions and 5 observations, a 6-node FSC consists of
204 variables. While effective, multi-objective EAs may be
slow to converge in such large search spaces and may not
find solutions with sufficient precision.

A potential solution to this problem are hybrid or memetic
algorithms [18, 22] that combine MOEAs with local-search
methods; the intuition being that local-search can quickly
locate good solutions that the evolutionary operators can
build upon. We hybridised both NSGA2 and MCMA with
gradient-based local-search as an operator and to keep our
search computationally-feasible, we used our derivations in
Section 3.3 to transform the MR-POMDP to a POMDP
with reward function Rw. We use a weight vector w drawn
from a uniform distribution and apply an efficient conjugate-
gradient method [11] until convergence or for a maximum of
5|x| iterations.
4.4 Dynamic Local-Search Operator Selection

The question that naturally arises when using a local-
search operator is how often we should apply it. On one
hand, local-search often results in good solutions. On the
other, it is resource-intensive and may cause the search to
converge prematurely. In fact, the best operator rates are
population and problem-dependent. In this work, we used
a dynamic operator selection scheme based on operator re-
wards similar to [4]. Intuitively, we want more successful
operators to be used more frequently. The reward given to
each operator is a cost-benefit ratio where the “benefit” of
using a particular operator is defined as the proportion of
solutions the offspring is better than relative to its parent
and the “cost” is simply the processing time used by the
operator.

To clarify, suppose an operator o produces a FSC xA from
parent xP . We say xA is better than some other FSC xi,
denoted xA � xi, if:

• xA dominates xi OR

• xA and xi are non-dominating but xA has a better
density measure (e.g., smaller crowding distance.)

We compare xA to all other members of the population xi ∈

P and if xA is better than xi but its parent is not, then we
increase the total benefit of the operator Bok. Hence:

Bok =
1

|P|
|P|∑
i=1

�(xA,xP ,xi)

where

�(xA,xP ,xi) =

{
1 (xA � xi)∧!(xP � xi)

0 otherwise

The reward for an operator o at iteration t, Rot , is then
the total benefit, Bok, divided by the processing time, Cok,
needed to produce the offspring, averaged across the past β
iterations:

Rot =
1

β

β∑
k=1

Bok
Cok

The probability of selecting an operator is proportional to its
reward and each update to the total operator reward occurs
after β iterations using a memory decay technique:

T ot = αT ot−1 + (1− α)Rot

where α is the learning-rate. In our work, β = |P| and
α = 0.75. Also, to prevent zero probabilities that would
prevent the local-search operator from ever being called, the
minimum selection probability is 0.001.

5. EXPERIMENTAL RESULTS
In this section, we present empirical results comparing

NSGA2, MCMA, their hybridised versions NSGA2-LS and
MCMA-LS, as well as a population-based local-search method
(MLS). The MLS algorithm is identical to NSGA2 except
that instead of using evolutionary operators, it only uses
local-search. In our experiments, MLS served as a “base-
line” algorithm that the MOEAs should surpass in order to
be considered useful.

The aim of our experiments was to evaluate the relative
performance of each of the aforementioned algorithms and
our main hypothesis was that hybridisation with WLC and
dynamic operator selection would improve the EAs. We be-
gin this section by describing the three test problems used
in this study, followed by details on our implementation, ex-
perimental setup and performance assessment methodology.
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Figure 4: The multi-load-unload problem with one
load point (L) and five unload points (U1 to U5).
The robot starts at A and has to travel to L, load
a box, travel to any one of the unload points and
unload its cargo. Note that since the robot can only
sense the walls around it, it can only partially deter-
mine its state; for example, A and B look identical
to the robot.

5.1 MR-POMDP Test Problems
We used three different multi-objective problems in robotics,

web-advertising and infectious disease control. Brief descrip-
tions of each problem are given below and complete MR-
POMDP models are available by contacting the author:

• Multi-load-unload (MLU): In the single-objective
load-unload problem, a robot has to traverse a corridor
to the end where it “loads” an item, which it has to
deliver and “unload” at a defined position to receive a
reward. Here, we present a 24-state version with up to
five unload points, each giving a separate (but equal)
reward of 100 (Fig. 4). The robot can only sense
the walls around it, giving it seven possible distinct
observations. It has four movement actions (up, down,
left and right) as well as two actuator actions (load and
unload). Each action (except an unload in at the right
point) results in a −1 reward. Furthermore, the robot
experiences the possibility of sensor and motor failure.

• Multi-Product Web Advertising (MWA): This
problem is adapted from the POMDP by Cassandra [7]
where the objective was to maximise revenue from the
sale of two products on an online-store. An intelligent
advertising agent has to decide, based on the webpages
that a customer visits, which product he is likely to be
interested in and advertise accordingly. The right ad-
vertisement can result in a purchase but the wrong ad-
vertisement might cause the person to leave the store.
We extended this problem to multiple objectives by
modelling each product as an separate reward and by
adding an additional reputation objective. The repu-
tation of the site would decrease every time a person
left the site as a result of a wrong advertisement.

• Multi-Criteria Anthrax Response Policy (MARP):
The problem of anthrax outbreak detection was formu-
lated as a POMDP by Izadi and Buckeridge [16] along-
side public health experts. This POMDP is comprised
of six states (“normal”, “ outbreak day 1” to “outbreak
day 4” and “detected”) with two observations (“sus-
picious” and “not suspicious”) and four actions (“de-
clare outbreak”, “review records”, “systematic studies”
and “wait”). The original POMDP used a relatively
complex reward function that combined the economic
costs from multiple sources such as productivity loss,
investigative costs, hospitalisation and medical treat-
ment. In our multi-objective formulation, we have

three-objectives to minimise: loss of life, number of
false alarms and cost of investigation (in man-hours).

Note that a suffix is added to indicate the number of objec-
tives, e.g., MLU-3 refers to the three-objective MLU prob-
lem (two of the unload points were disregarded). For each
problem, we optimised 6-node stochastic FSCs.

5.2 Experimental Setup
All our algorithms were implemented in C++ using the

Shark Machine Learning library [15] and comparisons were
performed using the PISA performance assessment frame-
work [2, 19]. Non-dominated set comparisons were made
using the hypervolume [31] indicator and significance tests
on the indicator distributions were conducted using the non-
parametric Mann-Whitney U test. Population sizes were set
to 200 (for the bi-objective MLU problem) and 300 for the
remaining problems. Other parameters were set to the de-
faults given in [27] (NSGA2) and [14] (MCMA). We take
perspective of a user with a fixed computational budget and
as such, each algorithm was allowed to run for a maximum
running process time of 3600 CPU seconds. Each run was
repeated 15 times and the reference (approximate) Pareto
optimal sets were constructed by combining the final popu-
lations across all the runs.

5.3 Performance Results
The hypervolume indicator distributions of the final pop-

ulations produced are summarised in boxplots (Figs. 5(a)
to 5(g)). Overall, NSGA2-LS was the most successful algo-
rithm and was the only method to consistently outperform
MLS on every problem (at p < 0.01). NSGA2-LS also sur-
passed all other evolutionary algorithms on MLU-3/5 and
MWA-3/4. On the remaining problems, the indicator dis-
tributions were not statistically different (at p < 0.05), i.e.,
NSGA2-LS did not perform worse.

Focussing on the question whether hybridisation withWLC
was beneficial, we observed that MCMA-LS improved upon
MCMA in four out of the seven tests, generating statistically
better populations at p < 0.01 for MLU-2/3/5 and MWA-
4. NSGA2-LS was better than NSGA2 in four of the tests
(p < 0.05 for MLU-3/5 and p < 0.01 for MWA-3/4). When
NSGA2-LS and MCMA-LS were not better than their reg-
ular counterparts, the indicator distributions were not sta-
tistically different at p < 0.05. Although more confirmatory
tests are needed, these results favour our hypothesis that
the hybridisation (with WLC and dynamic operator selec-
tion) improved the MOEAs. From Fig. 5(h), we observed
that the proportion of local-search calls, pLS, differed sig-
nificantly between the test problems (ranging from 0.005 to
0.288). That said, pLS was similar between algorithms and
between changes in the number of objectives. In addition,
local-search appeared more effective on MWA.

Surprisingly, MCMA appeared to be the worst among the
evolutionary methods, often generating the poorest popula-
tions. A possible reason for this is suggested by Fig. 5(h)
which shows that the number of iterations that MCMA
was able to complete in the allotted time is an order of
magnitude less than NSGA2; model maintenance appears
to be expensive (given the relatively large search space)
and the algorithm ran “slower” than NSGA2, which used
computationally-cheap operators. When NSGA2 and MCMA
were compared using an equal number of function evalu-
ations (≈ 104), a different picture emerged with MCMA
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Figure 5: 5(a)-5(g) show boxplots of hypervolume indicator of final populations for the Multi-load-unload
(MLU), Multi-Product Web Advertising (MWA) and Multi-Criteria Anthrax Response Policy (MARP) prob-
lems. 5(h) shows the number of iterations and the proportion of local-search calls.

producing better non-dominated sets for all problems (p <
0.01). Therefore, on larger problems with more expensive
function evaluations, MCMA and MCMA-LS may produce
competitive or superior non-dominated sets.

6. CONCLUSION AND FUTURE WORK
In this paper, we presented the MR-POMDP for mod-

elling multiple-objective problems in partially-observable en-
vironments. To solve MR-POMDPs, we explored the use
of NSGA2, MCMA and developed two memetic variants,
NSGA2-LS and MCMA-LS, for optimising non-dominated
policies in the form of FSCs. As discussed, empirical re-
sults were showed that NSGA2-LS was statistically superior
to the baseline method and the hybrid/memetic algorithms
outperformed their regular counterparts. We consider this
work as a step towards effective multi-objective solvers for
MR-POMDPs. Both MOEAs and POMDP solvers have de-
veloped significantly in the past two decades and a cross-
pollination of ideas is likely to yield novel developments.
Certainly, different optimisation schemes should be explored,

e.g., it is possible to use the MOEA to restrict the“structure”
of the FSCs which would limit the number of variables that
need to be locally-optimised. Moving beyond FSCs, EAs
can also evolve other representations such as bayesian-based
influence diagrams or biologically inspired models [9].
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