
Beyond Biology: Designing a New Mechanism for
Self-Replication and Evolution at the Nanoscale

Rebecca Schulman
Department of Physics

University of California Berkeley
Berkeley, CA 94720

rschulman@berkeley.edu

ABSTRACT
As biology demonstrates, evolutionary algorithms are an ex-
traordinarily powerful way to design complex nanoscale sys-
tems. While we can harness the biological apparatus for
replicating and selecting DNA sequences to evolve enzymes
and to some extent, organisms, we would like to build repli-
cation machinery that would allow us to evolve designs for
a much wider variety of materials and systems. Here we de-
scribe work that uses techniques from the new field of struc-
tural DNA nanotechnology to modularly design nanoscale
components that together can be assembled into a system
for self-replicating a new form of chemical information or
genome, and thus for evolving a new type of chemical se-
quence.

Categories and Subject Descriptors
J.3 [Life and Medical Sciences]: Biology and genetics

General Terms
Design

Keywords
Nanoscale Systems, Self-Replicating Molecular Machines

1. INTRODUCTION
A major current scientific challenge is to learn how to de-

sign materials with nanoscale features and to exploit the
unique properties of materials available at this scale. Some
of the benefits of nanoscale engineering are widely familiar:
the increasing density with which we can organize transistors
on a chip is largely responsible for the increasing speed of our
computers. But there are many other cases where nanoscale
features change the properties of materials in ways that we
can exploit: for example, the optical and electronic proper-
ties of nanometer-scale crystals and wires can be dependent
on their dimensions [27, 23].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’11, July 12–16, 2011, Dublin, Ireland.
Copyright 2011 ACM 978-1-4503-0557-0/11/07 ...$10.00.

Further, we expect that much of the engineering possi-
bility at the nanoscale remain to be discovered. Perhaps
the most dramatic demonstration of the benefits that could
be gain by having molecular-scale control over matter is
biology. Inside cells, the production, transformation, and
functions of individual molecules are precisely controlled.
These features are essential to the capacity of biology for
self-replication, self-healing and metamorphosis. By having
similar control over molecular synthesis and nanoscale ge-
ometry in synthetic systems, it should be possible to achieve
these features as well as many others in synthetic materials.

Biology’s sophisticated architecture is the product of the
Darwinian evolution of a genomic sequence, an organism’s
program for growth and function. Evolution is therefore an
extraordinarily powerful design strategy for nanoscale mate-
rials and devices. And evolutionary algorithms for molecu-
lar design such as SELEX for evolving RNA molecules with
catalytic function [22, 16] and directed evolution for evolv-
ing functional proteins [2] have been more successful than
comparable rational design strategies.

But there is currently an important limitation on our abil-
ity to solve molecular design problems using Darwinian evo-
lution: we can only replicate, and thus evolve, DNA or RNA
sequences. This replication can take place in cells or in the
test tube, but in either case the form of the information
replicated, a sequence of nucleic acids, is the same. While
changing the representation of the information being evolved
in an in silico process is straightforward, translating the rep-
resentation of chemical information is extremely challenging.

Biology has figured out some mechanisms for accomplish-
ing this representation change: the“central dogma”of molec-
ular biology is that DNA can be transcribed into an RNA
sequence and then translated into an amino acid sequence,
which folds into a protein; a set of proteins can then to-
gether synthesize other molecules. But there is no obvious
way to translate DNA sequence information into instructions
for autonomously constructing many structures we might be
interested in, such as silicon-based circuitry.

The chemical translation problem is not theoretically dif-
ficult, but difficult in practice: even trying to augment the
genetic code to include one new kind of amino acid has
been a major technical challenge [41]. In the past decade,
there have been initial attempts to build a more general in
vitro apparatus for translating DNA sequences into synthesis
recipes [19, 20] that might allow us to evolve a much wider
array of products.

7

And at the same time, new technologies for designing li-
braries of possible sequences (i.e. controlling the mutation
operation) have improved the process of evolutionary design
of proteins [21]. But because of the challenges inherent to
chemical translation, we might ask more generally whether
evolving a sequence of 4 bases is the most efficient way to
solve all molecular design problems. In software, both the
representation of the information being evolved (as well as
how this information is used to produce the function being
evolved) and the mechanism of mutation are important for
efficiently solving design problems using genetic and evolu-
tionary algorithms [25, 31]. If instead of evolving DNA se-
quences that are replicated in cells or by enzymes extracted
from cells, we could design systems for molecular replica-
tion and mutation the way we can design evolutionary algo-
rithms, we might be able to solve a much wider variety of
chemical design problems and build new nanoscale materials
with evolution.

We are still far from being able to design arbitrary molec-
ular machinery capable of processes as complex as self-repli-
cation de novo, and we know only a little about which as-
pects of replication and evolution in molecular systems are
the major determinants of their efficiency [15, 7]. But impor-
tant progress is being made: we are learning how to design
modular molecular components and how to combine these
components into functional molecular machines. And from
these modular parts we can begin to build devices for chem-
ical self-replication.

Here we give an account of the development of compo-
nents for a new system for molecular information replication
and of how evolution could proceed in such a system. We
first describe how we can design molecular components made
from synthetic DNA, (short DNA sequences made chemi-
cally in the laboratory rather than by enzymes within cells).
The component DNA sequences of these structures, arbi-
trary sequences of A’s, T’s, G’s and C’s, can be designed
and optimized on the computer. We then describe how we
can use synthetic DNA components, called DNA tiles, in a
self-assembly process. This self-assembly process is analo-
gous in some sense to solving a jigsaw puzzle and performs
computation during assembly.

That is, for any given computation, we can design a set of
DNA tiles that executes that computation via self-assembly.
We describe how to design a set of DNA tiles that copies a
sequence of information during assembly. The assembly pro-
cess propagates the sequence; and when mechanical forces
fracture an assembly, new sites on the fragmented assembly
become available where the sequence can be propagated,
increasing the rate of sequence propagation. Cycles of se-
quence propagation (assembly) and fragmentation exponen-
tially replicate the sequences. We describe how to implement
this process experimentally and how evolution would occur
in this system.

The processes we can design using synthetic DNA con-
tinue to increase in both complex and variety. There are now
several proposals for building systems for sequence replica-
tion (and thus Darwinian evolution) from synthetic DNA
components [47, 24]. As the set of systems available for
molecular sequence replication and evolution grows, we will
have new opportunities to both learn about evolution of
physical systems and to design efficient algorithms for evo-
lution and selection in these new systems.

2. DNA TILES AND ALGORITHMIC SELF-
ASSEMBLY

DNA is most familiar as the material in which our genome
is stored. What underlies DNA’s capacity for storing and
replicating information is its propensity for Watson-Crick
complementary DNA bases to hybridize and form double-
helical DNA. Recently, DNA’s sequence specific binding ca-
pacity has become an engineering tool: it is possible to de-
sign a sequence and its complement and to know that these
two sequences will bind but that they will not interact with
other DNA molecules in the environment.

In 1982, Nadrian Seeman described how synthetic DNA
might be used for nanoscale-construction. Seeman imagined
using DNA molecules as programmable molecular tinker-
toys that would self-assemble into designed structures be-
cause the complementary regions of the designed sequences
would hybridize while other sequences would not react. He
described how we might make branched DNA structures,
and thus program the formation of 2- and 3-dimensional as-
semblies [37]. As Seeman described it, nanotechnology could
happen the way it does in biology: autonomously – we would
simply design the sequences, synthesize them, and put them
together in a test tube and wait.

Designing a system of DNA molecules has turned out to
be more tractable than the design of other types of com-
plex molecular systems: the rate of DNA hybridization and
the stability of base-paired DNA are generally predictable in
polynomial time [48], and the double-helical structure of hy-
bridized DNA is well-characterized and largely independent
of the particular based-paired sequence [8]. These properties
have enabled the design of extended 2- and 3-dimensional
structures [45, 29, 4], programmed molecular machines [46,
5] and active structures [43, 46, 14] via the design of a set
of DNA molecules and their relative abundances.

A DNA“tile” (Figure 1a) is a primitive for nanoscale con-
struction [17, 45]. A DNA tile consists of a double-stranded
“core” and 4 single-stranded “sticky ends.” Tiles attach to
each other via sticky end hybridization and can form ex-
tended two-dimensional lattices [45]. In principle, the ar-
rangement of tile types within the lattices that form can be
designed by designing appropriate DNA tile sticky end logic,
a process akin conceptually to designing the pieces of a jig-
saw puzzle and their interlocking nubs (Figure 1b). Given a
desired sticky end logic, we can design and synthesize a set
of DNA sequences that assemble into tiles that implement
this logic (e.g. [45, 30, 3]).

Complex patterns can be constructed from DNA tiles effi-
ciently by a technique known as algorithmic self-assembly [42].
The basic premise of algorithmic self-assembly is that an
object is constructed algorithmically, that is by executing a
program.

Algorithmic self-assembly has its roots in the tiling prob-
lem, the question of whether a given set of shapes can tile
the plane, which is undecidable [39, 40, 6]. Using obser-
vations derived from the hardness of plane tiling, Winfree
described a set of tiles and a constructive method for their
assembly that executes a computer program [42, 43].

8

(a)

(b)

(c)

Figure 2: Zig-zag tiles. (a) The basic zig-zag tile set. Each square and rectangle shown is a logical represen-
tation of the molecule shown to its left. (b) Zig-zag growth. At each growth step, a new tile may be added
at the location designated by the small arrow. Two alternating tile types in each row enforce the placement
of the double tiles on the top and bottom, ensuring that growth occurs in a zig-zag pattern. Although only
growth on the right end of the molecule is shown here, growth occurs simultaneously on both ends of the
assembly. (c) The tile set shown in Figure 2b forms only one type of assembly. A tile set consisting of the
tiles in (b) and the four tiles shown here allows four types of assemblies to be formed. The vertical column
of each type contains a crystal’s 2-bit binary sequence.

In Winfree’s construction, growth of a tile crystal begins
from a seed tile or structure whose sticky ends encode the ini-
tial state of a computation. Under physical conditions where
tiles can attach to the seed only by two sticky ends simul-
taneously (i.e. just cooler than the melting temperature of
the crystal), the growth of a DNA tile crystal, or lattice, can
in principle simulate the execution a 1-dimensional blocked
cellular automaton, and therefore perform universal compu-
tation. Intuitively, the two sticky ends a tile must match in
order to attach to a growing crystal are “input” states to a
cellular automaton and the remaining two sticky ends are
the “output” of a single computing step. Since growth can
continue indefinitely, arbitrarily long computations can be
performed. Notably, the entire history of a computation is
stored in the arrangement of tile types within the assembled
crystal. In many cases this arrangement may form a useful
structure that is difficult to assemble by other means [13].

The assembly of the designed structure requires that at
each step of assembly a valid tile, i.e. a tile that matches
two sticky end binding sites simultaneously, be added to the
crystal. However, in initial experiments [30] as many as 1%-
10% of attachments were errors, or not valid—only one of
the “input” edges of the tile matched the available inputs on
the growing crystal. The wrong logical operation was being
performed at those sites.

As would be expected of a computation in which 1–10%
of the primitive operations were computed incorrectly, the
patterns that formed were generally not the designed pat-
terns.

The error rate can be reduced by logically redesigning the
tiles to perform the same computation during assembly, but
more robustly. “Proofreading” tile sets [44, 12, 28, 38] trans-
form a tile set by replacing each individual tile with a k× k
block of tiles, exponentially reducing seeded growth errors
with respect to the size of the block. Along with the im-
provement of the structure where computation begins, the
“seed” [4] and new techniques to prevent growth that does
not begin from a seed, proofreading techniques allowed as-
sembly to proceed much more accurately, i.e. with error
rates as low as 1 in 1000 tiles. Structures such as Sierpin-
ski gaskets [30, 18] and “binary counters” [3, 4] have been
assembled using these techniques.

3. SELF-REPLICATING DNA CRYSTALS
In 1966, Graham Cairns-Smith proposed a simple mecha-

nism by which polytypic clay crystals (clays that can take on
one of many crystal structures) could replicate information
in the absence of biological enzymes [9, 10]. Some polytypic
clay crystals contain discrete layers, each of which contain
molecules of a particular identity or orientation.

9

(a) (b)

Figure 1: DNA tiles and tile nanostructures. (a)
A DNA tile is a nanoscale construction primitive.
Top, a molecular model of a tile that contains short
DNA molecules. Each strand is depicted in a dif-
ferent color. Bottom, a schematic shows the effec-
tive shape of a tile along with the logic of its sticky
ends. Tile “cores” (e.g. the green portion of the
schematic tile shown here) are double-stranded; the
assembled core maximizes the number of Watson-
Crick complementary base pairs between the com-
ponent strands and is therefore a favorable config-
uration. Single-stranded “sticky ends” (the colored
claws in the schematic) function as locks and keys:
they specifically hybridize (i.e. bind) to complemen-
tary sticky end sequences on other tiles. (b) Tiles
designed to form a 4-tile-wide ribbon, and atomic
force micrographs of the ribbons, which assembled
as designed. Scale bars are 500 nm (left) and 25 nm
(right) (image from [33], copyright Proceedings of
the National Academy of Sciences, USA).

A cross-section of such a crystal can contain an information-
bearing sequence. Cairns-Smith proposed that crystal growth
could extend the layers, copying the sequence (the crystal’s
genotype). Occasionally, physical forces could break a crys-
tal apart. Because crystals replicate their genotype many
times during growth, splitting of a crystal can yield multiple
pieces, each containing at least one copy of the information-
bearing sequence. Cycles of growth and fragmentation could
therefore allow a sequence to be exponentially amplified.

We have adapted Cairns-Smith’s ideas about spontaneous
information replication in crystals to design a system for
self-replication using DNA tiles as crystal monomers [32].
A simple set of DNA tiles can form zig-zag crystals that
can propagate information during growth [33, 4]. The tiles
shown in Figure 2a form the zig-zag crystal shown in Fig-
ure 2b. Matching rules determine which tile fits where. Un-
der conditions where each tile addition must form two or
more sticky end bonds (Figure 2a), growth is constrained to
occur in a zig-zag pattern. It is easy to confirm that under
such conditions, there is always a unique tile that may be
added on each end of the ribbon.

Zig-zag crystals are designed so that under conditions
where a tile must attach to a crystal by at least two bonds,
growth produces one new row at a time (i.e. one copy of
a sequence) and continued growth repeatedly copies a se-
quence. The requirement that a tile must attach by two
bonds means that a tile being added must match both its
vertical neighbor (another tile that is part of the new col-
umn being assembled), and its horizontal neighbor (in a pre-
viously assembled row).

Several tiles might match the label on the vertical neigh-
bor, but because tiles must make two correct bonds in order
to join the assembly, only a tile that also matches the label
on the horizontal neighbor can be added. The tile being
added in the new column must therefore correspond to the
one in the previous column. As a result, information is in-
herited through templated growth. The set of tiles formed
by adding the tiles in Figure 2c to those shown in Figure 2b
can propagate one of four strings. Additional tiles may be
added to the set of tiles in Figures 2b and 2c to create a tile
set that can propagate arbitrary binary sequences.

The growth of a zig-zag DNA crystal increases the num-
ber of copies of the original information present in the ribbon
but does not change the rate at which new copies of the se-
quence are produced. The rate of copying can be sped up
by breaking the crystals. With each new crystal that is cre-
ated by breakage, two new “growth fronts” become available
where tiles can attach and information can be copied. Re-
peated cycles of growth and breakage exponentially amplify
an initial piece of information. Occasionally, a tile matching
only one bond rather than two will join the assembly, result-
ing in occasional copying errors, which are also inherited. If
errors happen during copying, which they will under almost
any achievable condition [43], and crystals with particular
sequences grow faster than others, then evolution can occur.

4. SELECTION IN PHYSICAL SYSTEMS
In general, in an evolutionary or genetic algorithm a pop-

ulation is generated and afterwards some portion of the in-
dividuals is selected on the basis of their fitness. This sub-
population is used to create a population for the next gen-
eration via mutation and/or recombination. In a physical
system the process of filtering and creation of a population
for the next generation must be physically realizable, which
is currently a strong limitation. Many types of fitness that
we would like to select for, such as determining whether
a molecule has a particular catalytic function, are difficult
to measure in practice, and the partitioning of molecules
or species based on their fitness is also challenging exper-
imentally. While molecular “tricks” can sometimes permit
autonomous selection of fit individuals [16], there are no
general methods for evolution and selection based on func-
tion.

If we want to build novel systems for the evolution and
selection of molecules or other physical entities, therefore,
we will also need to develop ways to make this selection pro-
cess easier. In biology, the desired function is the capacity to
reproduce quickly with respect to other individuals in a pop-
ulation. Could we tie function to this capacity in artificial
systems? To answer this question we must first understand
why some species might replicate more quickly than others
in a given self-replication process. Below we examine why
some DNA tile sequences might be replicated more quickly
than others, and consider as a result what selection processes
for “fit” DNA tile sequences might be feasible.

5. EVOLUTION OF DNA CRYSTALS FOR
FAST GROWTH: THE ROYAL ROAD

A selection process in a physical self-replicating system
involves both an environment (a set of resources for growth,
their chemistry and the ambient physical conditions) and an
initial population of organisms (sequences).

10

X
1'

X'
0'

Y
1'

Y’
0'

Y
2'

Y’
1'

Y
n'

Y’
n−1'

Y’
1

Y
0

Y’
2

Y
1

Y’
n

Y
n−1

0 0'
T T

X
2'

X'
1'

X
n'

X'
n−1'

X'
1

X
0

X'
2

X
1

X'
n

X
n−1

B
n

B

n'

(a) (b)

0'

n
B

n'
B

n
B

n'
B

Y Y Y X'
1'

2'
Y'

2
Y

1

n−1

n
Y’ Y

n'
Y Y’

n−1'

Y Y'
0'

1'

Y Y'
1'

2'

n'
Y Y’

n−1'

Y’
1

Y
0

Y’
2

Y
1

0
T T

0'

Y'
1

Y
0

Y Y'
0'

1'

0
T T

2'

0
T T

0' 0
T T

0'

n−1

n
X' X

0
T T

0'

n'

n−1'
X X'

n−1

n
X' X

n'

n−1'
X X'

n
B

n'
B

n
B

n'
B

X'
1

X
0

X'
1

X
0

X
0'

1'
X' X

0'

1'
X'

Y'
2

Y
1

Y Y'
1'

2'
Y'

2
Y

1
Y Y'

1'

2'

(c)

Figure 3: Royal Road Selection. (a) For a DNA tile ribbon containing sequences of width n, the Royal Road
tile set contains 4n + 2 tile types. Matching sticky ends have identical labels. Each position of the sequence
contains either a cyan time (from the left group of tile types) or magenta tile (from the right group of tile
types). (b) An environment where cyan tile types are present in higher concentrations than magenta tile
types. (c) Selection in the environment in (b) favors sequences containing cyan tiles, since cyan tiles will be
added to crystals faster than magenta tiles.

In a DNA tile replication process, the environment in-
cludes a set of DNA tiles. The set of DNA tiles determines
the set of sequences which may be copied and the “chem-
istry” of the system, i.e., the rules by which tiles bind to
each other. A particular arrangement of DNA tiles is the
information that is propagated in these experiments, the
genotype; it is the organism being evolved. The phenotype
of a sequence is its replication rate in the environment. In
this section we first describe a tile set that allows many kinds
of sequences to grow and then how selection pressure results
from physical conditions in which the concentration of tile
types differ.

A DNA crystal grows by adding tiles. Tiles come in con-
tact with the crystal as the crystals and tiles diffuse ran-
domly in the aqueous solution where growth occurs. Gener-
ally this growth takes place in a well-mixed reaction vessel,
i.e. the density of crystals and monomers is on average uni-
form across the reaction container. In this case, the higher
the concentration (i.e. density in solution) of a tile type
that the vessel contains, the more quickly a tile of that type
will contact a crystal where it can be legally added. There-
fore, one simple selection pressure results from a difference
in concentration between tile types used to copy sequence in-
formation: assemblies with sequences containing tile types
present at high concentrations will grow faster than assem-
blies with sequences containing tile types present at very low
concentrations.

A tile set in which one of two bits can be propagated at
each of n sequence positions is shown in Figure 3a. Let
Xi and Yi be the two tile types that can be propagated
at sequence position i. If Yi’s concentration is higher than
Xi’s concentration in solution, as suggested by the illustra-
tion in Figure 3b, the resulting fitness landscape resembles
the simplest case of a well-studied problem in genetic algo-
rithms, the “royal road” [26]. The growth rate of a crystal
is proportional to the number of Y ’s in the sequence being
propagated. For each position i, as long as the concentra-
tion of Yi is higher than the concentration of Xi, sequences
containing only Yi tiles will be fitter and quickly dominate
the population during a selection process (Figure 3c).

6. EVOLUTION OF DNA CRYSTAL ALGO-
RITHMS

The previous section demonstrates how the scarcity of tile
resources can lead to selection. But it does not address the
question of how this selection could be used to evolve or im-
prove a useful function of a molecular system: in the Royal
Road process as we described it, the evolution process is
a straightforward optimization problem with a known solu-
tion; no function or algorithm is being discovered.

If in contrast the sequence being evolved were a template
or directive for an algorithm or device, the evolution pro-
cess could select for functional behavior. To achieve such
functional evolution it is necessary to define the language,
or representation, of the information being evolved and the
process of translating this information into a particular func-
tion.

How could we make the information being replicated func-
tional? DNA crystals, as described in Section 2, can com-
pute during growth as well as copy information. We can
use this capacity to build sequences that function as pro-
grams. In fact, any program, no matter how complex, can
be selected for [34, 35]. Thus, DNA crystals can in princi-
ple evolve powerful and complex functions. We review the
mechanisms by which such selections can occur here.

As we described in Section 2, DNA crystals can perform
a computation via the attachment of tiles to a growing crys-
tal. A tile that can favorably attach at a growth site must
match two labels at the growth site, the “input” labels. This
simultaneous matching of two input labels is an elementary
computing step. The other two labels on the attaching tile,
the output labels, determine which tiles can fit in subse-
quent growth sites, so that information about the state of
the computation is transmitted during growth.

Collectively, these tile attachments can simulate a Turing
machine [42] where the initial state of the computation is
determined by the structure of the seed where tile assem-
bly begins. It is also possible to build a set of tiles that
function as a universal Turing machine – the structure of
the initial inputs on the seed determine which computation
occurs during growth [34, 11].

11

In principle, such a tile set can be expanded to make a
tile set that builds ribbons that have two parts – a segment
that runs a program on the universal Turing machine, and a
segment that makes copies of this program [34]. Such a zig-
zag ribbon tile set would be a sort of “universal alphabet,”
with which we could build crystals that simultaneously store
a program (its genome), and run it. During replication,
the program’s source code would be inherited, and in an
evolution process that used this tile set, crystals containing
particularly fit programs would be selected for.

How could a program make a crystal fit? First, the execu-
tion of crystal programs can build algorithmic patterns with
potentially interesting features [13] that we could test via
an artificial selection process. If we attached small devices
to individual tiles, a program that built a binary counter
might produce a pattern suitable for templating a demulti-
plexer circuit, for example [13]; other patterns might arrange
molecules or nanoparticles into a combinatorial ensemble of
interesting geometries. These assembled patterns could have
optical, electronic or chemical functionality that could be
selected for (given an available selection protocol), just as
chemical functionality is currently selected for in SELEX or
directed evolution experiments.

A tile program could also be a control system for adap-
tively sensing and responding to the environment. As we de-
scribed in Section 5, the most basic reason for fitness is rapid
growth, and crystals which use tile types that are abundant
in the environment grow rapidly: a tile t is added at an av-

erage rate
kf

[t]
where kf is a tile-independent rate constant,

and [t] is the concentration (density in solution) of tile t.
More generally, if we disregard the frequency of fragmenta-
tion, the fitness of a crystal is proportional to the time it
takes to grow a crystal layer [35], which is the sum of the
times it takes to add each new tile in the layer. Thus, each
tile addition makes a contribution to a crystal’s fitness.

A fit crystal control program would be a program that
could learn what tile types are abundant and then adopt
the growth process to use as many of the most abundant
tile types as possible. One way for a tile program to con-
tinually use abundant (as opposed to rare) tile types would
be for the growing crystal executing the program to read
information about whether tiles are abundant or rare at
specified growth sites where multiple tile types could at-
tach. The program could then use this input to determine
which other tile types are abundant and thus should be used
for computation. Such a program could be viewed as a sort
of “metabolism” for crystals that figures out what nutrients
are available and uses the available nutrients for energy and
growth, in a process akin to metabolic sensing and response
by biological cells. This kind of “crystal” control system
sounds primitive, but in principle it could be arbitrarily com-
plex: because crystals can simulate a Turing machine, they
can assemble a program that senses and responds to any
computable correlation between the abundances of tile types
over time. If the correlations between tile type concentra-
tions were very complex, then a very complex tile program
to compute and take advantage of these correlations would
evolve.

This tile set and evolutionary process (the changing con-
centrations of tile types over tile) could be a model system
for studying evolution in non-biological molecular systems:
we have a quantitative model of crystal behavior and the
system as a whole and we have control over the concentra-
tions of each tile type. In contrast, in biological systems
we do not have control over many variables that are im-
portant to fitness, and the system dynamics are largely not
understood: even the best-understood organisms produce
hundreds of proteins whose functions are not known [1].

And while tile concentrations are not generally quantities
that have immediate real-world interest, we could include
modules in the growth environment that translate signals
of other types into tile concentrations [36]. These transla-
tion systems would function as separate components, i.e. as
molecular sensors that as output either produced or used up
tiles, thus changing their concentrations. In a more sophis-
ticated tile-based replication system, arrangements of tiles
could themselves function as sensors and thus have function.

7. CONCLUSIONS
DNA tile crystal growth and scission is a novel synthetic

mechanism for molecular sequence self-replication. In prin-
ciple, evolution in tile crystal systems is as computationally
rich as evolution in any system: if the mutation rate during
crystal growth could be made arbitrarily low, then eventu-
ally any program, no matter how complex, can evolve if it
is the most fit program for the environment.

It may thus be that for physical systems, the capacity to
perform universal computation and tie this computation in
some way to the environment may be sufficient for open-
ended evolution in a self-replicating system. In practice the
speed of evolution and selection is also vital: if an evolu-
tionary optimization process took more time than the age
of the universe to complete, it would be of no practical in-
terest. Thus what is needed is a study of how to quickly and
robustly evolve solutions to problems of interest.

The challenge of evolving these structures in the labora-
tory will teach us new things about how to encode evolu-
tionary processes in physical, as opposed to purely compu-
tational systems. The DNA crystals described here repli-
cate molecular information in one way. In the future we
will broaden our library of mechanisms for self-replicating
systems which will allow to grow closer to engineering evo-
lutionary algorithms for a variety of molecular design prob-
lems. It will also allow us to examine the trade-offs in not
only the implementation of an alphabet within a single self-
replicating mechanism, but also the trade-offs inherent in
the design of the mechanism itself.

8. REFERENCES
[1] M. Arifuzzaman, M. Maeda, A. Itoh, K. Nishikata,

C. Takita, R. Saito, T. Ara, K. Nakahigashi, H.-C.
Huang, A. Hirai, K. Tsuzuki, S. Nakamura,
M. Altaf-Ul-Amin, T. Oshima, T. Baba,
N. Yamamoto, T. Kawamura, T. Ioka-Nakamichi,
M. Kitagawa, M. Tomita, S. Kanaya, C. Wada, and
H. Mori. Large-scale identification of protein-protein
interaction of Escherichia coli K-12. Genome Res.,
16:686–691, 2006.

[2] F. H. Arnold. Design by directed evolution. Accounts
of Chemical Research, 31:125–131, 1998.

12

[3] R. D. Barish, P. W. K. Rothemund, and E. Winfree.
Two computational primitives for algorithmic
self-assembly: Copying and counting. Nano Lett.,
5:2586–2592, 2005.

[4] R. D. Barish, R. Schulman, P. W. K. Rothemund, and
E. Winfree. An information-bearing seed for
nucleating algorithmic self-assembly. P. Natl. Acad.
Sci., 106(15):6054–6059, 2009.

[5] J. Bath and A. J. Turberfield. DNA nanomachines.
Nat. Nanotechnol., 2:275–284, 2007.

[6] R. Berger. The undecidability of the domino problem.
Memoirs of the AMS, 66:1–72, 1966.

[7] C. K. Biebricher, M. Eigen, and R. Luce. Kinetic
analysis of template-instructed and de novo RNA
synthesis by Qβ replicase. J. Mol. Biol., 148:391–410,
1981.

[8] V. A. Bloomfield, D. M. Crothers, and I. Tinoco.
Nucleic acids: structures, properties, and functions.
University Science Books, Mill Valley, Cal., 2000.

[9] A. G. Cairns-Smith. The origin of life and the nature
of the primitive gene. J. Theor. Biol., 10:53–88, 1966.

[10] A. G. Cairns-Smith. The chemistry of materials for
artificial Darwinian systems. Int. Rev. Phys. Chem.,
7:209–250, 1988.

[11] H.-L. Chen, Q. Cheng, A. Goel, M.-D. Huang, and
P. M. de Espanés. Invadable self-assembly: Combining
robustness with efficiency. In Proceedings of the
Fifteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 883–892, 2005.

[12] H.-L. Chen and A. Goel. Error free self-assembly using
error prone tiles. In C. Ferretti, G. Mauri, and
C. Zandron, editors, DNA Computing 10, volume
LNCS 3384, pages 62–75, Berlin Heidelberg, 2005.
Springer-Verlag.

[13] M. Cook, P. W. K. Rothemund, and E. Winfree.
Self-assembled circuit patterns. In J. Chen and J. Reif,
editors, DNA Computing 9, volume LNCS 2943, pages
91–107, Berlin Heidelberg, 2004. Springer-Verlag.

[14] R. M. Dirks and N. A. Pierce. Triggered amplification
by hybridization chain reaction. P. Natl. Acad. Sci.,
101(43):15275–15278, 2004.

[15] M. Eigen, J. McCaskill, and P. Schuster. Molecular
quasi-species. J. Phys. Chem., 92:6881–6891, 1988.

[16] A. D. Ellington and J. W. Szostak. In vitro selection
of RNA molecules that bind specific ligands. Nature,
346:817–821, 1990.

[17] T.-J. Fu and N. C. Seeman. DNA double-crossover
molecules. Biochemistry, 32:3211–3220, 1993.

[18] K. Fujibayashi, R. Hariadi, S. H. Park, E. Winfree,
and S. Murata. Toward reliable algorithmic
self-assembly of DNA tiles: a fixed-width cellular
automaton pattern. Nano Letters, 8:3554–3560, 2008.

[19] D. R. Halpin and P. B. Harbury. DNA display II.
genetic manipulation of combinatorial chemistry
libraries for small-molecule evolution. PLOS Biol.,
2:e174, 2004.

[20] Y. He and D. R. Liu. Autonomous multistep organic
synthesis in a single isothermal solution mediated by a
DNA walker. Nat. Nanotechnol., 5:778–782, 2010.

[21] C. J ackel, P. Kast, and D. Hilvert. Protein design by
directed evolution. Annu. Rev. Biophys., 37:153–173,
2008.

[22] G. F. Joyce. Amplification, mutation and selection of
catalytic RNA. Gene, 82:83–87, 1989.

[23] K. L. Kelly, E. Coronado, L. L. Zhao, and G. C.
Schatz. The optical properties of metal nanoparticles:
The influence of size, shape, and dielectric
environment. J. Phys. Chem. B, 107:668–677, 2003.

[24] M. E. Leunissen, R. Dreyfus, R. Sha, T. Wang, N. C.
Seeman, D. J. Pine, and P. M. Chaikin. Towards
self-replicating materials of DNA-functionalized
colloids. Soft Matter, 5:2422–2430, 2009.

[25] G. E. Liepinsa and M. D. Vose. Representational
issues in genetic optimization. J. Exp. Theor. Artif.
In., 2:101–115, 1990.

[26] M. Mitchell, S. Forrest, and J. H. Holland. The royal
road for genetic algorithms: Fitness landscapes and
GA performance. In Proceedings of the First European
Conference on Artificial Life, 1992.

[27] T. W. Odom, J.-L. Huang, P. Kim, and C. M. Lieber.
Atomic structure and electronic properties of
single-walled carbon nanotubes. Nature, 391:62–64,
1998.

[28] J. H. Reif, S. Sahu, and P. Yin. Compact
error-resilient computational DNA tiling assemblies.
In C. Ferretti, G. Mauri, and C. Zandron, editors,
DNA Computing 10, volume LNCS 3384, pages
293–307, Berlin Heidelberg, 2005. Springer-Verlag.

[29] P. W. K. Rothemund. Folding DNA to create
nanoscale shapes and patterns. Nature, 440:297–302,
2006.

[30] P. W. K. Rothemund, N. Papadakis, and E. Winfree.
Algorithmic self-assembly of DNA Sierpinski triangles.
PLOS Biology, 2:424–436, 2004.

[31] F. Rothlauf. Representations for genetic and
evolutionary algorithms. Physica-Verlag, Heidelberg
New York, 2002.

[32] R. Schulman and E. Winfree. Self-replication and
evolution of DNA crystals. In Advances in Artificial
Life, 8th European Conference, volume 3630, Berlin
Heidelberg, 2005. Springer-Verlag.

[33] R. Schulman and E. Winfree. Synthesis of crystals
with a programmable kinetic barrier to nucleation. P.
Natl. Acad. Sci., 104(39):15236–15241, 2007.

[34] R. Schulman and E. Winfree. How crystals that sense
and respond to their environments could evolve.
Natur. Comp., 7:219–237, 2008.

[35] R. Schulman and E. Winfree. Simple evolution of
complex crystal species. In DNA Computing 16,
volume 6518, Berlin Heidelberg, 2010. Springer-Verlag.

[36] G. Seelig, D. Soloveichik, D. Y. Zhang, and
E. Winfree. Enzyme-free nucleic acid logic circuits.
Science, 314:1585–1588, 2006.

[37] N. C. Seeman. Nucleic-acid junctions and lattices. J.
Theor. Biol., 99(2):237–247, 1982.

[38] D. Soloveichik and E. Winfree. Complexity of compact
proofreading for self-assembled patterns. In DNA
Computing 11, Berlin Heidelberg, 2005.
Springer-Verlag.

13

[39] H. Wang. Proving theorems by pattern recognition. II.
Bell Syst. Tech J., 40:1–42, 1961.

[40] H. Wang. An unsolvable problem on dominoes.
Technical Report BL-30 (II-15), Harvard Computation
Laboratory, 1962.

[41] L. Wang, J. Xie, and P. G. Schultz. Expanding the
genetic code. Annu. Rev. Biophys. Bio., 35:225–249,
2006.

[42] E. Winfree. On the computational power of DNA
annealing and ligation. In DNA Based Computers,
pages 199–221, 1995.

[43] E. Winfree. Simulations of computing by self-assembly.
Technical Report CS-TR:1998.22, Caltech, 1998.

[44] E. Winfree and R. Bekbolatov. Proofreading tile sets:
Error-correction for algorithmic self-assembly. In

J. Chen and J. Reif, editors, DNA Computing 9,
volume LNCS 2943, pages 126–144, Berlin Heidelberg,
2004. Springer-Verlag.

[45] E. Winfree, F. Liu, L. A. Wenzler, and N. C. Seeman.
Design and self-assembly of two-dimensional DNA
crystals. Nature, 394:539–544, 1998.

[46] B. Yurke, A. J. Turberfield, A. P. Mills, Jr., F. C.
Simmel, and J. L. Nuemann. A DNA-fuelled molecular
machine made of DNA. Nature, 406:605–608, 2000.

[47] D. Y. Zhang and B. Yurke. A DNA
superstructure-based replicator without product
inhibition. Natur. Comp., 5:183–202, 2006.

[48] M. Zuker. Calculating nucleic acid secondary
structure. Curr. Opin. Chem. Biol., 10:303–310, 2000.

14

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

