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ABSTRACT

The simplicity and success of particle swarm optimization
(PSO) algorithms, has motivated researchers to extend the
use of these techniques to the multi-objective optimization
field. This paper presents a multi-objective particle swarm
optimization (MOPSO) algorithm based on a decomposition
approach, which is intended for solving continuous and un-
constrained multi-objective optimization problems (MOPs).
The proposed decomposition-based multi-objective particle
swarm optimizer (dMOPSO), updates the position of each
particle using a set of solutions considered as the global
best according to the decomposition approach. dMOPSO
is mainly characterized by the use of a memory reinitializa-
tion process which aims to provide diversity to the swarm.
Our proposed approach is compared with respect to two
decomposition-based multi-objective evolutionary algorithms
(MOEAs) which are representative of the state-of-the-art in
the area. Our results indicate that our proposed approach
is competitive and it outperforms the two MOEAs with re-
spect to which it was compared in most of the test problems
adopted.

Categories and Subject Descriptors

I.2.8 [Computing Methodologies]: Artificial Intelligence—
Problem Solving, Control Methods, and Search.

General Terms

Algorithms, Theory.

Keywords

Multi-objective optimization, particle swarm optimization,
decomposition approach

1. INTRODUCTION
Particle swarm optimization (PSO) [6] has been found to

be a very successful bio-inspired metaheuristic for dealing
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with unconstrained and continuous optimization problems.
This has motivated the interest of researchers in extending
PSO to the solution of multi-objective optimization prob-
lems (for a survey on multi-objective particle swarm opti-
mizers, see [18]).

Recently, a new multi-objective evolutionary algorithm
based on a decomposition approach (MOEA/D) [21] has
been proposed. MOEA/D decomposes a MOP into sev-
eral single-objective optimization problems. In this way,
a set of approximate solutions to the Pareto optimal set
is reached by minimizing each subproblem instead of using
Pareto ranking. This has given rise to a new generation of
MOEAs.

Regarding multi-objective particle swarm optimizers (MO-
PSOs), to the authors’ best knowledge, there exist only two
of them based on a decomposition approach (see [16, 15]).
However, we believe that the potential of this sort of ap-
proach, when combined with PSO, has not been fully ex-
ploited, which has motivated the work reported in this pa-
per.

Peng and Zhang [16] proposed the multi-objective parti-
cle swarm optimizer based on decomposition (MOPSO/D).
This approach uses the framework adopted by MOEA/D
but replaces the genetic operators (crossover and mutation)
by the inertia flight equations used in traditional PSO. MO-
PSO/D uses a turbulence (or mutation) operator and adopts
an archiving strategy (which is based on ǫ-dominance [13])
to store the nondominated solutions found during the search.

More recently, Moubayed et al. [15] proposed a novel smart
multi-objective particle swarm optimizer using decomposi-
tion (SDMOPSO). This algorithm is also based on MOEA/D,
and adopts an external archive based on ǫ-dominance for
maintaining diversity in the swarm. An interesting aspect
of this approach is that it uses Pareto dominance for up-
dating the personal best position of each particle. In SD-
MOPSO, the global best set of each particle is defined by
all the solutions located within a certain neighborhood, and
this set is updated analogously to the mechanism adopted
by a MOEA/D variant proposed in [22].

In this paper, we introduce a new decomposition-based
multi-objective particle swarm optimizer (dMOPSO) for con-
tinuous and unconstrained MOPs. The proposed approach
does not require either the use of turbulence or the Pareto
optimality concept for approximating solutions towards the
Pareto optimal set. Instead, we adopt both a mechanism
for selecting global best solutions based on the nature of the
decomposition approach and a mechanism to reinitialize the
particles based on their age. dMOPSO avoids the use of
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an external archive, which results in a lower computational
time than that of state-of-the-art MOPSOs.

The remainder of the paper is organized as follows. In
Section 2, we provide the basic background required for un-
derstanding the rest of the paper. In Section 3, we explain
in detail our proposed approach. In Section 4, we show the
results of our comparative study. Finally, in Section 5 we
provide our conclusions and some possible paths for future
work.

2. BASIC BACKGROUND

2.1 Multi-Objective Optimization
A continuous and unconstrained multi-objective optimiza-

tion problem can be stated 1 as follows:

min
x∈Ω

{F (x)} (1)

where Ω define the decision variable space and F is defined
as the vector of the objective functions:

F : Ω → R
k
, F (x) = (f1(x), . . . , fk(x))

T

where fi : R
n → R is a continuous and unconstrained func-

tion.
In multi-objective optimization, a set of trade-off solutions

are normally aimed for, because to minimize a function fi
implies to deteriorate another one. To describe the concept
of optimality in which we are interested, the following defi-
nitions are provided.
Definition 1. Let x, y ∈ Ω, we say that x dominates y
(denoted by x ≺ y) if and only if, fi(x) ≤ fi(y) and F (x) 6=
F (y).
Definition 2. Let x⋆ ∈ Ω, we say that x⋆ is a Pareto

optimal solution, if there is no other solution y ∈ Ω such
that y ≺ x⋆.
Definition 3. The Pareto Optimal Set PS is defined by:

PS = {x ∈ Ω|x is Pareto optimal solution}

and its image (PF = {F (x)|x ∈ PS}) is called the Pareto

Optimal front.
We are interested in generating as many (different) ele-

ments of the Pareto optimal set as possible, while maintain-
ing a distribution of solutions as uniform as possible along
the Pareto front.

2.2 Decomposition Approach
Although Pareto ranking has been the most common ap-

proach adopted by MOEAs in the last few years, scalar-
ization functions have been available in the literature for a
much longer time (see for example [7, 14, 20]). These meth-
ods use a weighted vector (as a search direction) to define
a scalar function. In this way and under certain assump-
tions (e.g., the minimum is unique, the weighting coefficients
are positive, etc.), an optimal Pareto solution is achieved
by minimizing such a scalarization function. Among these
methods, probably the two most widely used are the Tcheby-
cheff and the Weighted Sum approaches. However, as it has
been previously discussed in [3, 21], the approaches based on
boundary intersection possess certain advantages over those
based on either Tchebycheff or the Weighted Sum. Next, we
introduce a decomposition approach based on the boundary
intersection, which is the approach adopted in this work.

1Without loss of generality, we assume minimization

d1

d2

F(x)

z
l

w

f2

f1

Attainable Objective Set

Pareto Front

Figure 1: Illustration of the Penalty Boundary In-
tersection (PBI) approach

2.2.1 Penalty Boundary Intersection Approach

The Penalty Boundary Intersection (PBI)2 approach pro-
posed by Zhang and Li [21], uses a weighted vector w and
a penalty value θ for minimizing both the distance to the
utopia vector d1 and the direction error to the weighted
vector d2 from the solution F (x) (see Fig. 1). Therefore,
the optimization problem can be stated as:

minimize: g(x|w, z
⋆) = d1 + θd2 (2)

where

d1 =
||(F (x)− z⋆)Tw||

||w||

and d2 =
∣

∣

∣

∣

∣

∣
(F (x)− z⋆)− d1

w

||w||

∣

∣

∣

∣

∣

∣

as the Tchebycheff approach, x ∈ R
n and z⋆ = min{fi(x)|x ∈

Ω}.
In this way, both the Tchebycheff and the PBI approaches

can generate a good representation of the Pareto front by
defining a well-distributed set of weighted vectors.

2.3 Particle Swarm Optimization
Particle Swarm Optimization (PSO) is a metaheuristic

originally proposed by Kennedy and Eberhart [11] for deal-
ing with continuous and unconstrained nonlinear optimiza-
tion problems. PSO simulates the movements of a flock of
birds which aim to find food. In PSO, a particle is repre-
sented by a solution xi ∈ R

n. A population can be defined
by one or several swarms of particles. Each swarm is evolved
by updating both the velocity vt+1 and the position of each
particle xt+1 according to the following equations:

v
t+1
i = wv

t
i + c1r1(xpb,i − x

t
t) + c2r2(xgb,i − x

t
i) (3)

and the new particle’s position is updated according to the
equation:

x
t+1

i = x
t
i + v

t+1

i (4)

where w ≥ 0 represents the inertia factor, c1, c2 ≥ 0 are the
constraints on the velocity, r1, r2 are two random variables
having a uniform distribution in the range (0, 1), vi, xpb,i

and xgb,i represent the velocity, the personal best and the
global best position for the ith particle, respectively.

2based on the well-known Normal Boundary Intersection
(NBI) method [3]

70



3. THE DECOMPOSITION-BASED MOPSO

3.1 General Framework
Our proposed dMOPSO, employs a decomposition-based

framework similar to the one adopted by MOEA/D. There-
fore, a well-distributed set of weighted vectors W has to be
previously defined. Here, we use the same method as in [21],
however, other methods can be used, see for example [2].
The boundary-intersection-based techniques possess certain
advantages over Tchebycheff-based techniques (which have
been previously discussed in [3] and [21]). Because of that,
the PBI approach is adopted in our dMOPSO. However,
Tchebycheff or another decomposition approach could also
be easily coupled to our approach.

At the beginning of the algorithm, a set of N particles
P = {x1, . . . , xN} is randomly initialized. Each particle
possesses a flight velocity vi and an age ai, both of which
are initially set to zero. Along the flight cycles, each parti-
cle tries to minimize one of the subproblems defined by the
weighted vector wi. Therefore, each particle undertakes its
flight towards a better position in order to minimize a single
subproblem g(xi|wi, z

⋆).
The personal best xpb,i of the ith particle, represents the

best position of the particle to the ith subproblem. Since
at the beginning a particle does not have a previous move-
ment, the best personal position is initialized with the same
position as the particle, i.e., xpb,i = xi.

At each cycle, the flight historical record of each parti-
cle is used to find the best solutions to each subproblem.
Therefore, the set of global best Gbest is defined in a natu-
ral way. This set will contain the solutions that minimize
each subproblem, and it is updated in each cycle accord-
ing to the Algorithm 1. Thus, the notion of elitism used in
evolutionary multi-objective optimization is implicitly em-
ployed. However, in this case, a decomposition approach is
used instead of the more traditional Pareto optimality.

Once the global best set has been defined, the velocity and
the position of each particle are updated according to equa-
tions (3) and (4), respectively. Since the proposed approach
tries to minimize a set of subproblems (whose solutions at
the end of the flight cycles should be very close to the Pareto
optimal set), and the Algorithm 1 introduces a high selec-
tion pressure that should contribute to this, we assume that
all solutions in Gbest are equally good (i.e., we assume that
all the subproblems were satisfactorily solved). Thus, the
velocity of each particle is computed using as their global
best a solution which is randomly taken from Gbest.

The age of each particle, promotes the diversity along the
flight cycles and indicates when a particle is not provid-
ing good information in its flight experience. If a particle
does not improve its personal position in a flight cycle, then
the particle increases (by one) its age. On the other hand,
if a particle exceeds a certain (pre-defined) age threshold,

Algorithm 1 Gbest := updateGlobalBest(W,P)

1: T = P, G = ∅;
2: for all wi ∈ W do
3: G = G ∪ {xj | min

xj∈T
g(xj |wi, z

⋆)};

4: T = T \ {xj};
5: end for
6: return G;

Figure 2: Illustration of the Gaussian distribution
used by dMOPSO for generating a new particle. The
personal best xpb,i and the global best xgb,i are used
to define the mean and σ for the normal distribution.

the particle (including, its velocity, its age and its best per-
sonal) is reinitialized. dMOPSO employs a reinitialization
mechanism based on a parametric probability density func-
tion, which involves the selected global best xgb,i and the
personal best xbp,i of the current particle xt

i. With that,
dMOPSO aims to perform smart reinitialization movements
from the personal best towards the global best solutions us-
ing a Gaussian distribution, as is shown in Fig. 2. Therefore,
the jth component of the new particle is reset according to
the following equation 3:

x
t+1

i (j) = N

(

xgb,i(j)− xpb,i(j)

2
, |xgb,i(j)− xpb,i(j)|

)

(5)

where N(m,σ) represents a random number using a normal
distribution with mean m and sigma σ.

In PSO, it is very common that some particles go beyond
the boundaries of the decision variables. In order to deal
with this problem, we used one of the nine methods studied
in [1]. Here, we adopted the deterministic back to repair
solutions that are generated outside the allowable bounds.
Therefore, the jth bound of the particle’s position xt+1

i and
of its velocity vt+1

i , are re-established as follows:

xt+1
i (j) =

{

xlb(j), if xt+1
i (j) < xlb,i(j)

xub(j), if xt+1

i (j) > xub,i(j)

vt+1

i (j) = −γvt+1

i (j)

(6)

where xlb,i(j) and xub,i(j) are the lower and upper bounds in
the jth component of the allowable decision variable values,
respectively. In the same way than other MOPSOs [18, 15],
dMOPSO adopts γ = 1.

Summarizing, the dMOPSO algorithm can be stated as
follows:

Step 1) Initialization

Step 1.1) t = 0 // the number of flight cycles

Step 1.2) Generate a well-distributed set of N weighted
vectors W = {w1, . . . , wN}.

Step 1.3) Generate a swarm Pt = {x1 . . . , xN} of N ran-
dom particles.

Step 1.4) Initially, the velocity vi and the age ai of each
particle xi is set in zero, i.e. vti = ati = 0 (for i = 1, . . . , N).

Step 1.5) Define the personal best: xpb,i = xi, (for i =
1, . . . , N).

3This equation is a generalization of the one given in [10].
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Step 1.6) Define the global best set: Gbest = Pt.

Step 2) Shuffle Gbest.
Step 3) The cycle // update Pt+1 = {xt+1

1 , . . . , xt+1

N }

For i = 1, . . . , N , do

If ati < Ta then

3.1) Update particle: Update the velocity vt+1
i

(using as global best the solution xgb,i ∈ Gbest) and

update the position xt+1
i according to equations (3)

and (4), respectively.

Otherwise,

3.2) Reset particle: Reset the memory of the par-

ticle, i.e., vt+1
i = at+1

i = 0 and the position xt+1
i is

reset according to the equation (5).

3.3) Repair bounds: Repair the particle’s bounds xt+1
i

and update the velocity vt+1
i according to the equation (6).

3.4) Evaluate the particle and update z⋆: Get F (xt+1
i ).

If fj(x
t+1
i ) < z⋆j then z⋆j = fj(x

t+1
i ) (for j = 1, . . . , k).

3.5) Update the personal best: If g(xt+1
i |wi, z

⋆) ≤

g(xpb,i|wi, z
⋆) then xpb,i = xt+1

i and at+1
i = 0, Else at+1

i =

ati + 1.

Step 4) Update the global best: Get Gbest from S =
Gbest ∪ Pt+1, i.e., Gbest = updateGlobalBest(W,S).
Step 5) Stopping Criteria: If t < Ngen then t = t + 1
and go to Step 2. Otherwise, stop dMOPSO and output:
Gbest.

3.2 dMOPSO vs. other decomposition-based
MOPSOs

As indicated before, we are only aware of two MOPSOs
based on a decomposition approach (see [16, 15]). Next, we
compare our proposed MOPSO to them.

MOPSO/D [16], explores the way of obtaining a set of
global best solutions using a set of T neighboring solutions.
The neighborhood of each particle is updated using a mech-
anism similar to the one adopted in MOEA/D. Therefore,
for a swarm of size N , the computational complexity of
MOPSO/D is O(NT ). On the other hand, SDMOPSO [15]
also uses a neighborhood of size T as its global best set.
However, only nr (where nr < T ) solutions of the neighbor-
hood are updated. Nonetheless, the worst case occurs when
T solutions are compared to obtained those nr solutions for
updating. Considering N particles in the swarm, the com-
putational complexity for this updating process is as well
given by O(NT ). Both MOPSO/D and SDMOPSO use an
external archive. When such an external file is completely
full, the computational effort required to decide whether a
new particle is stored in the archive is O(N). Considering
an archive size of N , the updating process has then a com-
putational complexity of O(N2). Therefore, in each cycle,
both MOPSO/D and SDMOPSO require a computational
complexity of O(NT + N2). In dMOPSO, the global best
set is only updated once at each cycle, i.e., we find the best
solution for each subproblem of the decomposition approach.
This updating has a computational complexity of O(N2) for
N different subproblems (as shown in Algorithm 1). In fact,
when the number of generations is large, the computational
cost offered by dMOPSO become significantly lower than
either MOPSO/D or SDMOPSO.

dMOPSO does not use any explicit diversity maintenance
mechanism to obtain well-distributed solutions along the

Pareto front. Instead, it relies on the penalty from the
PBI approach, which provides diversity to such solutions
along the flight circuits. However, the use of other decom-
position approaches could deteriorate the performance of
our dMOPSO, especially when dealing with more complex
MOPs. This is because the PBI approach forces particles to
follow a single direction, since moving away from such direc-
tion will be penalized. dMOPSO does not use any archiving
strategy and, instead, it relies on the fact that at the end of
flight cycles the subproblems will be minimized and, thereby,
nondominated solutions will be reached. Nevertheless, the
use of archiving strategies (see e.g. [12, 13, 24]) could be
used to cover those drawbacks that weighted-vector-based
methods possess (e.g. when dealing with MOPs having
either disconnected Pareto fronts or many objective func-
tions). They could be employed to store well-distributed
nondominated solutions, while the set of global best solu-
tions could be used as guides in the optimization process.

4. EXPERIMENTAL RESULTS

4.1 Test Problems
In order to assess the performance of the proposed ap-

proach, we compare its results with respect to those ob-
tained by a MOEA/D [21] and SDMOPSO [15]. We adopted
nine test problems whose Pareto fronts have different charac-
teristics including convexity, concavity, disconnections and
multi-frontality. The first adopted MOP was proposed by
Fonseca [8]. The two-objective test suite of Zitzler-Deb-
Thiele (ZDT) [23] (except for ZDT5, which is a binary prob-
lem) is also adopted. For three-objective problems, we adop-
ted three problems taken from the Deb-Thiele-Laumanns-
Zitzler (DTLZ) test suite [5] (DTLZ2, DTLZ6 and DTLZ7).

We used 30 decision variables for ZDT1, ZDT2 and ZDT3.
ZDT4 and ZDT6 was tested using 10 decision variables. For
DTLZ2 and DTLZ6, 12 variables were adopted. DTLZ7 was
tested with 22 decision variables. Finally, Foseca’s problem
was tested using only three decision variables.

4.2 Performance Measures

4.2.1 Hypervolume

The Hypervolume (Hv) performance measure was pro-
posed by Zitzler [25]. This performance measure is Pareto
compliant [26] and quantifies the approximation of nondom-
inated solutions to the Pareto optimal front. The hyper-
volume corresponds to the non-overlapped volume of all the

Table 1: Parameters for dMOPSO, SDMOPSO and
MOEA/D

Parameter dMOPSO SDMOPSO MOEA/D
Npop 100/300 100/300 100/300
Ngen 150 150 150
Narc – 100/300 –
ǫ – 0.0075 –
nr – 2 –
Tn – 30 30
ηc – – 20
ηm – – 20
Pc – – 1
Pm – – 1/n
Ta 2 – –
θ 5 5 5
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Table 2: Results of the Hv performance measure for
dMOPSO, SDMOPSO and MOEA/D

MOP
dMOPSO SDMOPSO MOEA/D
average average average

(σ) (σ) (σ)

FONSECA
0.546328 0.541803 0.383232
(0.000137) (0.001744) (0.001008)

ZDT1
0.869828 0.102649 0.809607
(0.000160) (0.064542) (0.030636)

ZDT2
0.536473 0.026707 0.316948
(0.000425) (0.035759) (0.091569)

ZDT3
1.317248 0.151858 1.246748
(0.002921) (0.090791) (0.044609)

ZDT4
0.862245 0.000000 0.774609
(0.029966) (0.000000) (0.065285)

ZDT6
0.504519 0.052415 0.457862
(0.000004) (0.084859) (0.009460)

DTLZ2
0.741219 0.713603 0.771041

(0.002131) (0.005012) (0.000386)

DTLZ6
0.426532 0.332548 0.426153
(0.000038) (0.149801) (0.000098)

DTLZ7
1.409133 1.115480 1.375630
(0.007166) (0.068608) (0.141559)

hypercubes formed by a reference point r (given by the user)
and each solution p in the Pareto set approximation (PFk).
Hypervolume is mathematically defined as follows:

Hv = Λ





⋃

p∈PFk

{x|p ≺ x ≺ r}



 (7)

where Λ denotes the Lebesgue measure and r ∈ R
k denotes

a reference vector being dominated by all valid candidate
solutions in PFk.

4.2.2 Spacing

The Spacing (Sp) performance measure was proposed by
Schott [19], and quantifies the spread of solutions in the ob-
tained approximation of the Pareto front. This performance
measure is computed as:

Sp =

√

√

√

√

1

|P |

|P |
∑

i=1

(d− di)2 (8)

where di and d are defined as: di = min
i,i6=j

∑M

k=1
|f i

k − f
j

k | and

d =
∑|P |

i=1 di

|P |
. A value of zero for this performance measure

indicates that all the solutions are uniformly spread (i.e., the
best possible performance).

4.2.3 Coverage of Two Sets

The Coverage of Two Sets (C) was proposed by Zitzler et
al. [23], and it compares two sets of solutions A and B, using
Pareto dominance. This performance measure is defined as:

C(A,B) =
|{b ∈ B|∃a ∈ A : a � b}|

|B|
(9)

If all points in A dominate or are equal to all points in
B, this implies that C(A,B) = 1. Otherwise, if no point
of A dominates some point in B then C(A,B) = 0. When
C(A,B) = 1 and C(B,A) = 0 then, we say that A is better
than B. Since the Pareto dominance relation is not sym-
metric, we need to compute both C(A,B) and C(B,A).

Table 3: Results of the Sp performance measure for
dMOPSO, SDMOPSO and MOEA/D

MOP
dMOPSO SDMOPSO MOEA/D
average average average

(σ) (σ) (σ)

FONSECA
0.004118 0.004597 0.003055

(0.000104) (0.000739) (0.000074)

ZDT1
0.004822 0.032203 0.007400
(0.000157) (0.037486) (0.002690)

ZDT2
0.004231 0.000587 0.008435
(0.000178) (0.002528) (0.007557)

ZDT3
0.016659 0.022242 0.019219
(0.000752) (0.041666) (0.003819)

ZDT4
0.006004 0.020263 0.009245
(0.005617) (0.048561) (0.003852)

ZDT6
0.002762 0.421809 0.005847
(0.000014) (0.845177) (0.001834)

DTLZ2
0.024236 0.030467 0.029092
(0.001323) (0.002005) (0.000179)

DTLZ6
0.003563 0.581048 0.036316
(0.000366) (1.036406) (0.046853)

DTLZ7
0.103306 0.040643 0.100617
(0.001991) (0.010550) (0.021034)

Table 4: Results of the C performance measure for
dMOPSO, SDMOPSO and MOEA/D

MOP

C(dMOPSO, C(SDMOPSO, C(dMOPSO, C(MOEA/D,

SDMOPSO) dMOPSO) MOEA/D) dMOPSO)

average average average average
(σ) (σ) (σ) (σ)

FON
0.226667 0.034333 0.026333 0.090667

(0.034383) (0.016059) (0.018883) (0.019653)

ZDT1
0.028328 0.000000 0.895667 0.000000
(0.093794) (0.000000) (0.089132) (0.000000)

ZDT2
1.000000 0.000000 0.499667 0.048667
(0.000000) (0.000000) (0.172153) (0.028016)

ZDT3
0.103268 0.001000 0.815667 0.229000
(0.207493) (0.005385) (0.101937) (0.095231)

ZDT4
0.256550 0.000000 0.989333 0.000000
(0.425500) (0.000000) (0.015041) (0.000000)

ZDT6
1.000000 0.000000 1.000000 0.000000
(0.000000) (0.000000) (0.000000) (0.000000)

DTLZ2
0.311188 0.175778 0.000556 0.645222

(0.066503) (0.029312) (0.001242) (0.009988)

DTLZ6
0.299783 0.296222 0.477556 0.368333
(0.392221) (0.156012) (0.022326) (0.008378)

DTLZ7
0.577711 0.041667 0.221444 0.427222

(0.223492) (0.013465) (0.059589) (0.102300)

4.3 Experimental Settings
For each MOP, 30 independent runs were performed with

each algorithm. The parameters used in each algorithm are
summarized in Table 1, where Npop represents the popu-
lation size (100 for the bi-objective and 300 for the three-
objective problems). Ngen represents the number of gen-
erations (which was set in 150). Therefore, we performed
15, 000 (for the bi-objective problems) and 45, 000 (for the
three-objective problems) fitness function evaluations. For
dMOPSO, Ta represents the age threshold. For SDMOPSO,
Narc represents the maximum number of elements in the ex-
ternal archive, ǫ is the parameter used for ǫ-dominance, nr

is the number solutions which are replaced in the neighbor-
hood and Tn defines the neighborhood size. For MOEA/D,
Tn, ηc, ηm, Pc and Pm represent the neighborhood size, cross-
over index, mutation index, crossover rate and mutation
rate, respectively. Finally, the parameter θ, represents the
penalty value used in the PBI approach. For dMOPSO
and SDMOPSO, the constraints on the velocity (c1, c2) and
the inertia factor (w) were dynamically defined (as in other
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Figure 3: dMOPSO, SDMOPSO and MOEA/D in the bi-objective optimization problems
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Figure 4: dMOPSO, SDMOPSO and MOEA/D in the three-objective optimization problems

MOPSOs, see e.g. [17, 15]). Additionally, we used the val-
ues proposed by the authors of SDMOPSO [15], which take
uniformly distributed values, such that: c1, c2 ∈ (1.2, 2.0)
and w ∈ (0.1, 0.5).

For each MOP, the algorithms were evaluated using the
three performance measures previously indicated (Hypervol-

ume, Spacing and Coverage of Two Sets). The results are
summarized in Tables 2 to 4. Regarding the hypervolume,
the reference vectors adopted were: r = (1.1, . . . , 1.1)T for
FONSECA, DTLZ2, DTLZ6 and ZDT test problems, while
for DTLZ7 the reference vector r = (1.0, 1.0, 6.1)T was used.

Each table displays both the average and the standard de-
viation (σ) of each performance measure, for each of the test
problems adopted. The best results are shown in boldface
for each performance measure and test problem adopted.

4.4 Discussion of Results
As shown in Table 2, our proposed approach (dMOPSO)

outperformed both SDMOPSO and MOEA/D in most of the
test problems with respect to the Hypervolume (Hv). This
indicates that our algorithm produced a better approxima-
tion along the Pareto front. The exception was DTLZ2,
where MOEA/D obtained better results. However, the dif-
ferences in the values obtained by our approach are not sig-
nificant.

Regarding the Spacing (Sp) performance measure, our
proposed dMOPSO obtained better results with respect to
those produced by SDMOPSO and MOEA/D in most test

problems. The exceptions were ZDT2, DTLZ7 and FON-
SECA. However, a better distribution of solutions is rele-
vant only when there is a good approximation to the Pareto
front. For these specific problems (FONSECA, DTLZ2 and
DTLZ7), our proposed approach achieved better conver-
gence than both SDMOPSO and MOEA/D.

Finally, according to the Coverage of Two Sets (C) per-
formance measure, dMOPSO outperformed the results ob-
tained by SDMOPSO in all the test problems adopted. That
means that our proposed approach obtained more solutions
that dominate those generated by SDMOPSO. However, for
the FONSECA, DTLZ2 and DTLZ7 test problems MOEA/D
obtained the better results. However, in the case of FON-
SECA, it can be clearly seen in Fig. 3 that MOEA/D only
covered a portion of the true Pareto front, whereas dMOPSO
covered it entirely. So, in this case, MOEA/D generated
more nondominated solutions than dMOPSO, but they were
not properly distributed. Something similar happens in DT-
LZ7, being DTLZ2 the only case in which it is clear that
MOEA/D outperformed our dMOPSO, although the results
(both numerical and graphical values) regarding convergence
and spread are not significantly different.

Figures 3 and 4 show the final Pareto fronts obtained
by dMOPSO, SDMOPSO and MOEA/D algorithms in the
adopted test problems. These plots show the final set of
nondominated solutions found by each algorithm and corre-
spond to the run with the value nearest to average of the
Hv metric for each problem.
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5. CONCLUSIONS AND FUTURE WORK
We have presented a multi-objective particle swarm op-

timizer based on decomposition. Our proposed algorithm
was able to outperform both MOEA/D and SDMOPSO in
most of the test problems adopted, with respect to three
performance measures (hypervolume, spacing and coverage
of two sets). Our proposed approach does not use an ex-
ternal archive to store nondominated solutions and adopts
instead, a mechanism to select the globally best solutions.

The use of PBI greatly benefits the diversity of solutions in
the minimization process of our approach. The penalty pa-
rameter θ imposes a search direction defined by each weighted
vector. However, a study of the variation of this param-
eter along the flight circuits is a promising path for fu-
ture research. Evidently, it could relax the search process,
and could lead us to achieve faster convergence towards the
Pareto optimal set.

As part of our future work, we plan to exploit the proper-
ties of the decomposition approach when coupling it to other
metaheuristics (e.g., scatter search [9] or artificial immune
systems [4]) in order to design a more robust strategy which
can effectively deal with more complicated multi-objective
problems.
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