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ABSTRACT 
A lot of optimal and heuristic algorithms for solving facility 
layout problem (FLP) have been developed in the past few 
decades. The majority of these approaches adopt a problem 
formulation known as the quadratic assignment problem (QAP) 
that is particularly suitable for equal area facilities. Unequal area 
FLP comprises a class of extremely difficult and widely 
applicable optimization problems arising in many diverse areas to 
meet the requirements for real-world applications. Unfortunately, 
most of these approaches are based on a single objective. While, 
the real-world FLPs are multi-objective by nature. Only very 
recently have meta-heuristics been designed and used in multi-
objective FLP. They most often use the weighted sum method to 
combine the different objectives and thus, inherit the well-known 
problems of this method. As of now, there is no formal approach 
published for the unequal area multi-objective FLP to consider 
several objectives simultaneously. This paper presents an 
evolutionary approach for solving multi-objective unequal area 
FLP using multi-objective genetic algorithm that presents the 
layout as a set of Pareto-optimal solutions optimizing multiple 
objectives simultaneously. The experimental results show that the 
proposed approach performs well in dealing with multi-objective 
unequal area FLPs which better reflects the real-world scenario.  

Categories and Subject Descriptors 
I.2.8 [Artificial Intelligence]: Problem Solving, Control 
Methods, and Search — Heuristic methods 

General Terms 
Experimentation 

Keywords 
Unequal area FLP, Pareto-optimal solutions, Multi-objective 
optimization, Quantitative objective, Qualitative objective. 

 

1. INTRODUCTION 
FLP is concerned with the physical arrangement of a number of 
interacting facilities on the factory floor of a manufacturing 
system to meet one or more objectives. A facility is an entity that 
assists to one dedicated tasks. It may be a machine tool, a work 
centre, a manufacturing cell, a machine shop, a department, a 
warehouse, etc. [9]. FLP is an emerging problem in the 
manufacturing industries due to the fact that the computational 
complexity increases with the number of facilities, which makes 
it a combinatorial optimization problem. Layout planning is one 
of the key factors for successful operation in a manufacturing 
company. A good layout will help any company to improve its 
business performance and can reduce up to 50% of the total 
operating expenses [18, 25]. FLPs also arise in other engineering 
design contexts such as VLSI placement and routing. 
Unfortunately, all of these problems are known to be NP-hard [7]. 

Classical approaches to FLP tend to focus on the relative location 
of equal area facilities on a floor plan. If all facilities are of equal 
area, or can be physically interchanged without altering the 
overall adjacency or distance relationship among the remaining 
facilities, it is easy to specify in advance a finite number of 
potential sites for these facilities to occupy [24]. FLP can then be 
modelled as a QAP. However, in most applications and real-
world scenarios, equal facility area is a very poor assumption 
[13]. When layout problems have varying area facilities, it can no 
longer be treated as the problem of assigning facilities to n 
distinct centroid locations. Instead, the locations of the centroids 
will depend on the exact configuration selected, making QAP 
formulations of the unequal area problem less tractable than their 
equal area counterparts. To handle such unequal area FLPs, early 
heuristic algorithms are based on discrete models which divide 
the floor plan into a grid of equal-sized squares. Then, each 
facility is assigned the number of squares which most closely 
matches its total area. While conceptually simple, this approach 
has discouraged users because of the odd-shaped facilities 
generated [13]. 

Although the FLP is an inherently multi-objective optimization 
problem (MOOP), it has traditionally been solved considering 
only one objective  either qualitative or quantitative feature of 
the layout [18]. Quantitative (distance-based) objective aims at 
minimizing the total material handling (MH) cost between 
facilities based on a distance function. Qualitative (adjacency-
based) goal looks for maximizing the closeness relationship (CR) 
scores between facilities based on the placement of facilities that 
utilize common materials, personnel, or utilities adjacent to one 
another, while separating facilities for the reasons of safety, noise, 
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or cleanliness. Accordingly, practical FLP involves several 
conflicting objectives, thus requiring a multi-objective 
formulation. Therefore, like many other real-world optimization 
problems, it is naturally posed as a MOOP. For that reason, FLP 
must consider both quantitative and qualitative objectives 
simultaneously.  

Since practical FLPs are multi-objective by nature, they require 
the decision makers to consider a number of criteria involving 
both quantitative and qualitative objectives before arriving at any 
conclusion. A solution that is optimal with respect to a certain 
given criterion might be a poor candidate for some other criterion. 
Hence, it is desirable to generate many near-optimal layouts 
considering multiple objectives according to the requirements of 
the production order or customer demand. Then, the production 
manager can selectively choose the most demanding one among 
all of the generated layouts for specific order or customer 
demands. 

Multi-objective approaches in FLP, which recently have been 
proposed, in most cases lead to the optimization of a weighted 
sum of a function. In this method, multiple objectives are added 
up into a single scalar objective using weighted coefficients. 
Comprehensive surveys are found in [7, 22]. The poor 
practicability of weighted sum approach is due to the difficulty of 
normalizing these functions and of quantifying the weights in 
advance. As a result, the objective function that has the largest 
variance value may dominate the multi-objective evaluation. 
Consequently, inferior non-dominated solutions with poor 
diversity will be produced. Also, the user always has to specify 
the weight values for functions and sometimes these will not have 
any relationship with the importance of the objectives. In 
addition, a single solution is obtained at a time. If we are 
interested in obtaining a set of feasible solutions, it has to be run 
several times. However, there is no warranty that the solutions 
obtained in different runs are different. Most importantly, the 
layout designer based on his/her past experience randomly selects 
the layout having multiple objectives. This restricts the designing 
process completely designer dependent and thus, the layout varies 
from designer to designer. Interested readers can find the details 
of these problems in [19]. To overcome such difficulties, Pareto-
optimality [5] has become an alternative to the classical weighted 
sum method. 

Problems related to FLP are computationally difficult. In an n-
facility problem, we would have to evaluate n! different layouts. 
Due to the combinatorial nature of the problem, optimal 
algorithms have been successfully applied only to small problems 
(>15 facilities), but they require high computational efforts and 
extensive memory capabilities. As a result, heuristic and meta-
heuristic algorithms have got the attention in recent years to solve 
FLPs. This is due to their ability to generate feasible solutions in 
the least possible computational time. Broad reviews of the 
different approaches to FLPs are found in [7, 21]. Among these 
approaches, the genetic algorithm (GA) has found wide 
application in research intended to solve FLP. Generally 
speaking, GA outperforms the other heuristic methods due to its 
capability to generate feasible solutions in a minimum amount of 
time [10, 18].  

To date, there are only a few attempts to tackle the multi-
objective FLP using GA. However, they use weighted sum 
method. Some recent applications of GA using Pareto-optimality 
can be found in [17, 18, 19]. Unfortunately, in all existing 

methods, attention has been given to the equal area FLP. Very 
recently, unequal area FLP has received significant attention by 
many researchers. Interested readers should consult [12] for a 
detailed review. The primary difficulties associated with unequal 
area FLP have to do with the vast number of possible physical 
layouts, and with the existence of many locally optimal layouts 
that are poor compared to the global optimum layout. For such a 
problem, parallel search methods perform better than strictly 
serial searches, and randomized search methods perform better 
than greedy or enumerative searches. GA combines both of these 
attributes in a parallel, stochastic heuristic manner [24]. Similar to 
the equal area FLPs, various methods for solving unequal area 
FLPs using GA have been suggested in the literature [3, 24, 26]. 
However, existing approaches are intended to achieve single-
objective optimization. Thus, these methods essentially ignore the 
prospects of Pareto-optimal solutions in solving the real-world 
multi-objective unequal area FLP.  

Although the advantages and good performance of multi-
objective GA in many combinatorial optimization problems have 
been demonstrated in the literature, yet there is no formal 
approach to solve the unequal area FLP considering multiple 
objectives separately. All these, motivate us to propose a multi-
objective GA for solving unequal area FLP that presents the 
layouts as a set of Pareto-optimal solutions, and to investigate its 
performance. In an attempt to address multiple objectives 
simultaneously, we apply material handling (MH) costs and 
closeness relationship (CR) scores among various facilities as 
quantitative and qualitative objective, respectively. In this work, 
we have used the Non-dominated Sorting Genetic Algorithm 2 
(NSGA 2) proposed by Deb et. al. [6] as the multi-objective 
evolutionary algorithm (MOEA).  

The remainder of the paper is structured as follows. Section 2 
highlights the importance of Pareto-optimality in the FLP. 
Relevant literatures for the unequal area FLP are reviewed in 
Section 3. Section 4 presents the mathematical formulation for the 
multi-objective unequal area FLP. Section 5 contains the 
proposed approach. To demonstrate the performance of the 
proposed approach, computational results are presented and 
analyzed in Section 6. Finally, this paper ends with conclusion in 
Section 7. 

2. IMPORTANCE OF PARETO - 
OPTIMALITY IN FLP 
Real-life scientific and engineering problems typically require the 
search for satisfactory solution for several objectives 
simultaneously. It is also common that conflicts exist among the 
objectives. In the presence of such multiple and conflicting 
objectives, the resulting optimization problem gives rise to a set 
of optimal solutions, instead of one absolute optimal solution. 
Multiple optimal solutions exist because no single solution can be 
optimal for multiple conflicting objectives. These multiple 
solutions, namely the Pareto-optimal solutions, are optimal in the 
wider sense that no other solutions in the search space are 
superior when all the objectives are considered. Since none of 
these solutions can be said to be an ‘absolute optimum’, it is 
reasonable for the users to find as many different Pareto-optimal 
solutions as possible. The set of such solutions is called Pareto 
front. Among these solutions, the designer is free to select any 
solution that offers the most profitable trade-off among the 
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objectives. Figure 1 presents a Pareto front for two objectives, 
which are subject to minimization. 

 

Figure 1. Pareto Front [16]. 

In general, the minimization of the total MH costs is often used as 
the optimization criterion in FLP. However, the closeness rating, 
hazardous movement or safety, and the like are also important. 
Many researchers have questioned the appropriateness of 
selecting a single-criterion to solve FLP because qualitative and 
quantitative approaches each have advantages and disadvantages 
[19]. The major limitations on quantitative approaches are that 
they consider only relationships that can be quantified and do not 
consider any qualitative factors. On the other hand, qualitative 
approaches suffer from the shortcoming of strong assumption 
made on all qualitative factors that these factors can be 
aggregated into one criterion. In essence, FLP falls into the 
category of a MOOP. Thus, instead of offering a single solution, 
giving options and letting decision makers choose between them 
based on the current requirement is more realistic and 
appropriate. Moreover, based on the principle of multi-objective 
optimization, obtaining an optimal solution that satisfies all of the 
objectives is almost impossible. It is mainly due to the conflicting 
nature of objective functions, where improving one objective may 
only be achieved when worsening another objective. 
Accordingly, it is desirable to obtain as many different Pareto-
optimal layout solutions as possible, which should be converged 
to, and diverse along the Pareto-optimal front with respect to 
multiple criteria. 

3. LITERATURE REVIEW 
FLP is one of the truly difficult ill-structured, multi-criteria and 
combinatorial optimization problems. Since the pioneer work in 
FLP by Armour and Buffa [2], a number of sub-optimal and 
intelligent techniques have been proposed to cope with this type 
of problems. Early heuristic algorithms are mainly based on 
discrete models. In this model, the total manufacturing floor area 
is divided into a grid of equal-sized squares, and each facility is 
assigned the number of squares which most closely matches to its 
total area. The major drawback of this model is that it generates 
odd-shaped facility areas. In terms of meta-heuristics, Castillo et 
al [4] applied a mixed-integer nonlinear programming for solving 
this problem. In [23], a simulated annealing based approach has 
been proposed. Hu and Wang [10] applied GA to unequal area 
FLP for achieving the minimal layout cost. Islier [11] used GA to 
solve a multi-criteria FLP to name but a few. A genetic search for 
solving construction site-level unequal area FLP has been 

proposed in [8]. Tate and Smith [24] presented a GA based model 
for FLPs with unequal areas and different geometric shape 
constraints. A solution to the unequal area layout problem by GA 
has also been given in [26]. A hybridized meta-heuristic for the 
solution of the unequal area FLP is presented in [15]. Recently, 
Liu and Meller [14] proposed an approach to solve this problem 
by using GA and mixed-integer programming (MIP). More 
recently, a Tabu Search (TS) based approach with slicing tree 
representation [20] and an Ant System (AS) based method [12] 
have been proposed to solve unequal area FLPs. A good survey 
for various approaches to unequal area FLP can be found in [1]. 
From the existing literature, it can be summarized that unequal 
area FLP is still an active area. It is also noticeable that all the 
existing methods use either single objective or weighted sum 
method to solve the unequal area FLP. As a result, Pareto-
optimality has not been utilized for solving the unequal area FLP. 

4. PROBLEM FORMULATION 
In this work, we follow the assumptions described in [12]: 
facilities must be located within a given area; facilities must not 
overlap with each other; the layout must fulfill the maximum ratio 
constraints (or minimum value restrictions) for the dimension of 
facilities (length and width of each facility). The first fitness 
function, total material handling (MH) cost, is based on 
quantitative model. This function is subject to minimization, and 
measured as 

                         
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The second fitness function, the closeness rating (CR) score, is 
based on qualitative model. This function is subject to 
maximization, and expressed as 
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Where, fij is the material flow between facility i and j, Cij is the 
transportation cost between facility i and j, and dij is the Euclidean 
distance between the centres of facility i and j.   Here, we apply 
the following closeness ranking value: A (absolutely 
necessary)=6, E (essentially important)=5, I (important)=4, O 
(ordinary)=3, U (un-important)=2, and X (undesirable)=1. 

2 6 3 4 5 0 1 4 3 2 1 0 5 0 0 1 1 1 0

Figure 2. Chromosome representation for 7- facility problem. 

5. PROPOSED APPROACH 

5.1 Chromosome Representation 
In the proposed approach, a chromosome representation suitable 
for slicing tree structure for unequal area FLP [12] is used. The 
chromosomes are encoded as (f1f2f3 …… fN) (ss1ss2 ss3 …... ssN-1) 
(so1so2 so3 …... soN-1), where N is the number of facilities; and f, 
ss, and so represents facility sequence, slicing sequence, and 
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slicing orientation, respectively. In general, the slicing tree 
representation recursively divides the total floor area 
(horizontally or vertically), in proportion to the areas of the 
facilities. The first two parts of the chromosome are represented 
by integer numbers, whereas the last part is represented by either 
1 or 0. The facility sequence will be transformed into a slicing 
tree form. The slicing sequence is the ordering that slices the 
facility sequence. The slicing orientation 0 represents a horizontal 
cut and 1 represents a vertical cut. A chromosome for a 7 facility 
problem is presented in Figure 2. Figure 3 presents the 
corresponding solution representation, the slicing tree 
transformation, and the layout solution for this chromosome. 

 
(a) Solution representation 

 

(b) Slicing tree 

 

(c) Solution layout 

Figure 3. Transformation of solution representation into 
slicing tree form and solution layout for the chromosome 

presented in Figure 2. 

5.2 Crossover 
In this approach, we applied 3-point crossover for performing the 
crossover operation. For keeping the chromosome valid after the 
operation, we choose the 3 points separately from each segment 
of a chromosome. However, for the first two segments (facility 
sequence and slicing sequence), some repair works are required 

after the crossover to remove any duplication or absence of 
facility. In this repair work, first we find and list the duplicate 
facilities in the first segment according to the occurrence in the 
chromosome. Then, we check whether any facility is missing in 
the segment starting from the first to the last facility (from 1 to 
N). After that we replace the list of the duplicate facilities with 
missing facilities. The same procedure is repeated for the second 
segment, except that here the range is from 1 to N-1. Figure 4 
depicts the crossover operation. 
 

 

 

P1 2 6 3 4 5 0 1 4 3 2 1 0 5 0 0 1 1 1 0
  

P2 1 3 5 4 2 6 0 1 5 3 0 2 4 1 0 1 0 1 1

(a) Parent chromosomes before crossover. 

C1 2 6 3 4 2 6 0 4 3 2 1 2 4 0 0 1 0 1 1
  

C2 1 3 5 4 5 0 1 1 5 3 0 0 5 1 0 1 1 1 0

 (b) Child chromosomes after crossover without repair. 

C1 2 6 3 4 1 5 0 4 3 2 1 0 5 0 0 1 0 1 1
  

C2 1 3 5 4 6 0 2 1 5 3 0 2 4 1 0 1 1 1 0

(c) Child chromosome after repair. 

Figure 4. Crossover operation. 

5.3 Mutation 
To apply mutation, we use swap mutation with the restriction that 
both genes will be chosen from the same segment. As a result, no 
repair work is necessary for mutation. Unlike the crossover, the 
genes will be chosen from only one segment of the chromosome 
and this choice will be random for every chromosome of the 
population pool. Figure 5 gives an example for the mutation. 

 

 

2 6 3 4 5 0 1 4 3 2 1 0 5 0 0 1 1 1 0

(a) Before. 
 

2 6 3 4 5 0 1 4 0 2 1 3 5 0 0 1 1 1 0

(b) After. 

Figure 5. Mutation. 
The non-dominated sorting strategy, crowding distance 
mechanism and elitism strategy used in the proposed approach is 
the same as used in NSGA 2 [6].  

6. COMPUTATIONAL RESULT AND 
ANALYSIS 
6.1 Benchmark Problem 
To evaluate how the proposed approach performs with respect to 
solution quality, we run the algorithm on various problem sets 
taken from the literature. The test problems are composed of 7, 8, 
9, 10, 12, 14, 20, 30, 35, and 62 facilities. The details of the 
problem data can be found in [12]. We used the last digits to 
indicate the number of facilities in each problem. 
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Table 1. Comparison with existing algorithms for MH cost only 

Data 
Sets 

AS [12] 
GA with flexible 

bay [24] 
GA with 
MIP [14] 

TS with slicing 
tree [20] 

Best known 
Best known 
reference 

Proposed 
Approach 

Dif. 
(%) 

07 131.68 NA 131.63 132.00 131.58 [4] 98.6698 25.01 

08 243.12 NA 245.41 243.16 242.93 [4] 202.7174 16.14 

09 236.12 NA 246.26 239.07 236.14 [12] 201,7502 14.56 

VC10 19967.60 23671.00 19997.00 19994.10 19967.60 [12] 19963,7421 0.19 

Ba12 8252.67 8768.00 8702.00 8264.00 8180.00 [4] 8103.8476 0.93 

Ba14 4724.68 5080.00 4852.00 4712.33 4712.33 [20] 4790.8354 1.66 

Ab20 4972.56 NA 5668.00 5225.96 4972.56 [12] 4015.2549 19.25 

SC30 3868.54 5743.00 3707.00 NA 3707.00 [14] 3740,7553 0.91 

SC35 4132.37 NA 3604.00 NA 3604.00 [14] 3835.7802 6.43 

Du62 3720521.13 NA NA NA 3720521.13 [12] 2977512.9599 19.97 

 

For experimental purpose, we set the maximum aspect ratio 
(height vs. width of a facility) as 4 for Ba12, Ba14, SC30, and 
SC35. Very few benchmark problems are available for unequal 
area multi-objective FLP, particularly in the case of CR score. As 
a result, we have created test data sets for CR score for these 
problems on our own. These problems are chosen because of their 
variety in size (from small to large), and their wide use in 
previous studies. 

6.2 Experimental Setup 
The experiments are conducted using 200 chromosomes and 100 
generations for problems with up to 15 facilities; and 1000 
chromosomes and 900 generations for problems with more than 
15 facilities. The probabilities of crossover and mutation are 0.9 
and 0.3, respectively. We use traditional tournament selection 
with tournament size of 2. Each benchmark problem is tested 30 
times with different seeds. Then each of the final generations is 
combined and non-dominated sorting [6] is performed to 
constitute the final non-dominated solutions. 

6.3 Experimental Analysis 
To evaluate our proposed algorithm, first we perform the 
experiments in a single objective context to justify its capability 
to optimize MH cost. Then, we show its performance as a multi-
objective evolutionary approach by optimizing MH cost and CR 
score simultaneously. We should note that, for both single and 
multi-objective comparison, we have used the same results from 
the same non-dominated solutions obtained by our approach. 

In Table 1, the performance of the proposed approach is 
compared with some existing algorithms for unequal area FLP in 
term of MH cost. We compare our results with those obtained by 
Ant System (AS) [12], GA with flexible bay representation [24], 
GA with mixed integer programming (MIP) [14], Tabu Search 
with slicing tree representation [20]. This table is partially cited 
from [12]. In addition, the reference of some best found results so 
far has been cited from [4]. The best results are bold-faced. As 
shown in Table 1, the proposed approach outperforms AS and GA 
with flexible bay for all the test problems. Only 3 out of 10 
problems, it performs slightly worse than the best found results so 

far (2 for GA with MIP and 1 for TS with slicing tree). From the 
table, it can be found that the proposed approach clearly 
outperforms the other evolutionary approaches by a significant 
margin of up to 25.01% better performance. As mentioned earlier, 
we find only 3 values with negative deviations. It is interesting to 
observe that all three negative deviations are for the test problems 
(Ba14, SC30, and SC35) where we set the aspect ratio to 4 in 
place of the flexibility offered in the original problems. So, it 
might be the reason for getting negative deviations. However, the 
margin is relatively insignificant compared to those of the 
positive deviations (only 1.66%, 0.91%, and 6.43%). Above all, it 
is worthwhile to mention that our approach performs well in cases 
of both small and large FLPs. 

Table 2. Results for multi-objective unequal area FLP 
considering both MH cost and CR score 

MH Cost CR Score Data 
Sets Best Avg Best Avg 

07 98.6698 111,009 54 30.825 

08 202.7174 292.602 64 32.267 

09 201.7502 444.672 88 39.897 

VC10 19963.7421 26065.55 120 61.846 

Ba12 8103.8476 8711.847 110 71.25 

Ba14 4790.8354 5500,217 156 98.167 

Ab20 4015.2549 6131.369 201 99.329 

SC30 3740,7553 4444.037 349 241.872 

SC35 3835.7802 4305.899 337 216.043 

Du62 2977512.9599 3220771.01 248 255.25 

 

Multi-objective optimization differs from single objective 
optimization in many ways. For two or more objectives, each 
objective corresponds to a different optimal solution, but none of 
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the trade-off solutions is optimal with respect to all objectives. 
Thus, MOEAs do not try to find one optimal solution but all the 
trade-off solutions.  

Table 2 shows the performance statistics of the evolutionary 
multi-objective unequal area FLP in the context of MH cost and 
CR score. Since there are no published papers using the Pareto-
optimality for unequal area FLP, we could not compare the 
performance of the Pareto-optimal solutions, particularly, in the 
case of CR score. On the other hand, we have already shown and 
discussed the prerformance of the proposed approach in case of 
MH cost in Table 1. As shown in Table 2, the gaps between the 
best and average values are a little high in some cases. Despite 
that it should be mentioned that the main goal of our algorithm is 
to find the trade-off solutions for unequal area multi-objective 
FLP, which is very rare in literature. Also, according to the 
Pareto-optimal theory, the final and average value of one 
objective may be influenced by the presence of other objective. 
While considering this, the overall performance of the proposed 
approach is very promising for all the problems. 

 

 
                                        (a) 09 

 

 

(b) SC30 

Figure 6. Final Pareto-optimal layouts. 

 
To illustrate the convergence and diversity of the solutions, non-
dominated (Pareto-optimal) solutions of the final generation 
produced by the proposed algorithm for the test problems 09 and 
SC30 are presented in Figure 6. It is worthwhile to mention that in 
all cases, most of the solutions of the final population are Pareto-
optimal. In the figures, the occurrences of the same non-
dominated solutions are plotted only once. From these Figures, it 
can be observed that the final solutions are well spread and 
converged. And for this reason, it is capable of finding extreme 
solutions. As a result, it provides a wide range of alternative 
layout choices for the designers. 

 

 
(a) MH cost 

 

 
(b) CR score 

Figure 7. Two objectives over generations of 07 problem. 

 
(a) MH cost 

 

 
(b) CR score 

Figure 8. Two objectives over generations of Ab20 
problem. 
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Figure 7 and Figure 8 demonstrate the optimization behavior of 
the proposed method over generations for 07 and Ab20 problem, 
respectively. These figures also justify that our proposed 
approach clearly optimizes both of the objectives with 
generations. From the figures, it can be found that the proposed 
method is able to optimize both the best and average values for 
MH cost (minimize) and CR score (maximize) from the first to 
the last generation very efficiently. 

To summarize the results, the proposed approach for solving the 
unequal area multi-objective FLP is capable of producing near-
optimal and non-dominated layout solutions, which are also the 
best-known results in many cases. The simulation results clearly 
show that it is able to find a set of diverse Pareto-optimal 
solutions, which fulfills the two main goals of the multi-objective 
FLP algorithm  convergence and diversity. Accordingly, it 
shows excellent promises as a useful tool in solving unequal area 
multi-objective FLP. 

7. CONCLUSION 
Although a considerable amount of work has been done in FLP 
over the last few decades, almost none of them deal with multi-
objective optimization for unequal area FLP. Nevertheless, equal 
area and single objective FLP is a very poor assumption 
considering practical situations. This paper presents an 
evolutionary approach for solving the multi-objective unequal 
area FLP to find a set of Pareto-optimal layouts, which better 
reflects the real-world scenarios. A comparative analysis with the 
previous studies in the literature shows that the proposed method 
generates better solutions in the context of single-objective 
optimization (MH Cost). More importantly, in multi-objective 
cintext, it is capable of finding a set of Pareto-optimal layouts that 
optimizes both MH cost and CR score simultaneously throughout 
the entire evolutionary process. Thus, it provides a wide range of 
alternative layout choices, allowing the decision makers to be 
more flexible and to make better decisions based on market 
circumstances. We reckon this method would pioneer in case of 
multi-objective optimization for solving the unequal area FLP. 
However, in some cases the gap between the best and average 
solution may be relatively large. In future, we hope to improve 
this by applying local search. Also, we would like to apply 
several MOEAs to test their performance in solving unequal area 
multi-objective FLP. 
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