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ABSTRACT
Differential evolution (DE) has been traditionally applied to
solving benchmark continuous optimisation functions. To
enable it to solve a combinatorially oriented design prob-
lem, such as the construction of effective radio frequency
identification antennas, requires the development of a suit-
able encoding of the discrete decision variables in a contin-
uous space. This study introduces an encoding that allows
the algorithm to construct antennas of varying complexity
and length. The DE algorithm developed is a multiobjective
approach that maximises antenna efficiency and minimises
resonant frequency. Its results are compared with those gen-
erated by a family of ant colony optimisation (ACO) meta-
heuristics that have formed the standard in this area. Re-
sults indicate that DE can work well on this problem and
that the proposed solution encoding is suitable. On small
antenna grid sizes (hence, smaller solution spaces) DE per-
forms well in comparison to ACO, while as the solution space
increases its relative performance decreases. However, as the
ACO employs a local search operator that the DE currently
does not, there is scope for further improvement to the DE
approach.

Categories and Subject Descriptors
G.1.6 [Numerical Analysis]: Optimization; I.2.8 [Artificial
Intelligence]: Problem Solving, Control Methods, and Search—
Heuristic methods

General Terms
Algorithms
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Differential evolution, multiobjective optimisation, RFID an-
tenna design
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1. INTRODUCTION
Since its inception in 1948 [23], radio frequency identifi-

cation (RFID) has become one of the major methods for
the tracking and identification of goods and items, partic-
ularly within logistics and supply chains [9]. The tech-
nology has many uses, an example of which is the track-
ing and identification of luggage coming through airports.
Hong Kong International Airport currently processes ap-
proximately 40,000 pieces of luggage a day (for departing
flights) using the RFID system. This is far more reliable
than using barcodes, with the read-rates being at 97% as
opposed to only 80% [7]. It is anticipated that the next
large scale application of RFID will be to replace the uni-
versal price code (barcoding) system used for the purchase
of goods at retail outlets.

An RFID system consists of two basic components: a
reader and a tag (containing an antenna). The reader sends
an RF signal which can power the receiver (the tag). This
in turn will radiate back a signal to the reader [21]. This
backscattered signal usually contains a number that uniquely
identifies the tag/item. The major design objective for the
antenna is improving the read range (the distance the signal
can be sent and received). Two major factors affect the effec-
tiveness of the system. The read range is generally inversely
proportional to the resonant frequency and proportional to
the antenna gain (related to the antenna efficiency). Both
these factors are defined by the design of the antenna, and
hence become an optimisation problem. It is desirable to
minimise resonant frequency (f0) and maximise efficiency
(η). This is achieved by producing antennas that maximise
the length of the antenna in a convoluted space-filling man-
ner. RFID antennas are usually designed in such a way that
they form meander lines as dipole structures. An example
of such an antenna is given in Figure 1. Note that these
antennas can be laid out on a Cartesian grid and are sym-
metrical around the dipole, so only one half of the antenna
needs to be designed by an algorithm.

Producing a meander line antenna is essentially a con-
structive activity. Hence, much research has concentrated on
the design of antennas using the constructive metaheuristic
ant colony optimisation (ACO) [10, 11, 19, 25]. This paper
explores the application of the iterative metaheuristic dif-
ferential evolution (DE) to such a process. The problem of
creating a meander line is related to two famous problems:
the travelling salesman problem (TSP) [20] and that of cre-
ating self-avoiding walks (SAWs) [16, 22]. It is similar to the
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Figure 1: (a) A 5 × 5 antenna grid. (b) A meander
line RFID antenna defined on that grid. (c) The
complete dipole antenna produced by mirroring the
solution shown in (b); the two halves are joined by
a 6mm bridge.

former as each of the points on the Cartesian grid is to be
connected to make a path (although viable antennas need
not use every point). However, the major difference is that
for RFID each of the points connects to only four neigh-
bouring points (those directly adjacent) in a horizontal and
vertical direction. In contrast, each point on a TSP has po-
tential connection (albeit at a cost) to every point in the
graph. Thus it may be considered as a severely constrained
version of the TSP. It also resembles a SAW as a meander
line antenna may not cross itself. However, SAWs find com-
mon application in chemistry, where molecules may expand
to infinite space, whereas RFID antennas have a specified
grid size, thus restricting such activity.

This paper examines how a non-constructive metaheuris-
tic may be implemented so that it can solve the problem of
producing efficient antennas that also maximise read range.
Importantly, it also provides much needed comparative re-
sults to the benchmark ACO solvers that have been success-
fully applied to this problem. The remainder of the paper is
organised as follows. Section 2 describes the various itera-
tions of the ACO metaheuristic that have been used. From
this, DE and how it is adapted to solve the constructive
problem is given in Section 3. Section 4 shows the results of
DE, comparing them to those of previous ACO algorithms.
Finally, Section 5 contains the conclusions and outlines fu-
ture research avenues.

2. RFID ANTENNA DESIGN BY ACO
By and large, the family of ACO metaheuristics use al-

gorithms that progressively add components to an initially
empty solution until a complete solution is produced. This

complements how a meander line is constructed, one seg-
ment (between adjacent grid points) at a time. It is therefore
not surprising that ACO was one of the first metaheuristics
used to automatically design RFID antennas. Until that
time, engineers would routinely design them by hand, using
skill and experience to attempt to obtain good antennas.
Gelehdar, Thiele and O’Keefe [6] were the first to explore
the search space of the problem. However, this was done
enumeratively for a 5× 5 antenna (a very small size).

The initial paper by Randall, Lewis, Galehdar and Thiele [19]
outlined the canonical form using the variant of ACO known
as Ant Colony System (ACS). In that work, ants progres-
sively add segments to the meander line until either a com-
plete Hamiltonian path is produced or it becomes trapped
(i.e., another segment cannot be added without crossing the
meander line). In the latter case, the ant discards the solu-
tion and does not perform a pheromone update. A feature
that was found to be necessary was a bias toward straight
line sections of segments. This minimised the chance that
ants would become stuck. Additionally, a cache was kept
that held previously found solutions. This was necessary as
the antenna evaluation software, known as NEC [2], requires
a disproportionally large amount of computational time to
evaluate a solution. Overall, very efficient antennas for a
range of grid sizes (from 5 × 5 to 10 × 10 grid points) were
found.

To further improve the efficiency results, a specialised
form of local search was added, known as backbite [25]. As
the antennas are tightly packed within the grid, it is difficult
to alter an existing design to derive a new and, hopefully,
better one. The backbite operator originated in the SAW
literature and is able to do this by making slight modifica-
tions to the end of the meander line. It could take a meander
line and produce a tree of slightly different alternative solu-
tions. While the application of backbite consumed a modest
amount of computational resources, it, on average, was ca-
pable of increasing efficiencies by a few percent over those
of Randall et al. [19].

The two previous papers only considered efficiency as the
objective measure. Lewis et al. [10, 11] added the extra ob-
jective of minimising resonant frequency. They investigated
both low and high frequency antennas and relaxed the re-
quirement that antennas had to be full Hamiltonian paths.
From this, attainment surfaces of highly efficient antennas
with relatively low resonant frequencies were produced.

Although ACO has produced good results, it is difficult to
determine if they are the best than can be obtained through
heuristic search without having another algorithm for com-
parison. Thus this work investigates the application of the
highly dissimilar metaheuristic differential evolution.

3. DIFFERENTIAL EVOLUTION FOR RFID
ANTENNA DESIGN

Differential evolution (DE) [24] is a population-based search
technique that operates in continuous domains and which
has been applied successfully to many different problems [18].
The operation of the algorithm in a single-objective setting
is described first, followed by a survey of adaptations to mul-
tiobjective problems in Section 3.2 and subsequently details
of its adaptation to the discrete RFID antenna design prob-
lem are presented in Section 3.3.
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3.1 Differential Evolution
In each iteration of the DE algorithm, each member of the

population of solutions is considered in turn as a target for
replacement in the subsequent generation. A new candidate
solution is generated by adding the weighted difference be-
tween two randomly chosen population members (hereafter
referred to as xr2 and xr3, neither of which is the target)
to a third, randomly-chosen population member, referred to
here as the base. Typically, some form of crossover is then
performed between the target and candidate; this further
modified candidate is the one that may replace the target.1

The three main variants of DE are labelled DE/rand/1/*,
DE/best/1/* and DE/target-to-best/1/*, which add (re-
spectively) a difference vector generated from two members
of the population to a randomly chosen individual, the best
individual or to some point between the target and best in-
dividual. The most common, and frequently effective [14],
variant is DE/rand/1/*. The * may be either bin for a uni-
form crossover, where the probability of mutating a com-
ponent follows an approximately binomial distribution, or
exp, where a sequence of vector components is taken, the
length of which follows an inverse exponential distribution.
There also exist other variants that use arithmetic crossover.
In this work the DE/rand/1/exp variant is used (as initial
experimental work found it to be more effective on this prob-
lem than DE/rand/1/bin), so its version of the DE mutation
mechanism will be explained.

Let S = {x1, x2, . . . , x|S|} be the population of solutions.
In each iteration, each solution in S is considered as a target
for replacement by a new solution; denote the current target
by xi. A new point vi is generated according to

vi = xr1 + F · (xr2 − xr3) (1)

where xr1 (i.e., the base), xr2 and xr3 are distinct, ran-
domly selected solutions from S \ {xi} and F is the scaling
factor, typically in (0, 1] although larger values are also pos-
sible. The candidate solution ui is produced by performing
crossover on vi, controlled by the parameter Cr ∈ [0, 1], by
taking a (wrapping) sequence of L components from vi start-
ing at a randomly chosen index k. The length L is deter-
mined by generating, for each component after k, a uniform
random number and comparing it against the crossover pa-
rameter Cr; if the random number is greater than Cr the
remaining components are taken from the target. The prob-
ability that a sequence will have a particular length h is
given by P (L = h) = (1− Cr)Crh−1 [18].

uj
i =

{
vji ifj ∈ {k, 〈k + 1〉, . . . , 〈k + L− 1〉},
xj
i otherwise

(2)

In single-objective DE the target is replaced if the new so-
lution is as good or better.

3.2 Multiobjective Differential Evolution
The following assumes some familiarity with multiobjec-

tive optimisation; good introductions to the topic can be
found in Coello Coello [3] and Deb [4]. In typical applica-
tions of DE to single-objective problems the population of
solutions converges to a single location; indeed, this con-
vergence is often a necessary feature of the algorithm that
allows it to automatically scale the magnitude of moves it

1At a minimum, one randomly chosen vector component will
always come from the initially generated candidate point.

makes in solution space [15]. However, this behaviour is
not desirable in a multiobjective application where a di-
verse range of solutions spread along the non-dominated
front is sought. Mezura-Montes, Reyes-Sierra and Coello
Coello [13] categorise DE algorithms for multiobjective op-
timisation into non-Pareto-based approaches, Pareto-based
approaches and combined approaches, the last of which is
not discussed here. Non-Pareto-based approaches may treat
some objectives as constraints or use aggregation functions
to collapse several objectives into one. As the precursor
studies to that described here do not take this approach,
such DE algorithms are not considered further. Pareto-
based approaches maintain a collection of solutions repre-
senting one or more non-dominated fronts. Mezura-Montes et
al. further divide these into approaches that use Pareto
dominance to select the better solution from target and
candidate, and those that use Pareto ranking, where dom-
inance is used to rank generated individuals by the front
in which they appear. The first is effectively a transla-
tion of the original DE into the multiobjective realm, where
each candidate solution competes only with one of its par-
ents, namely the target. The second is most similar to
other multiobjective evolutionary algorithms, such as Deb
et al.’s NSGA-II [5], involving a (μ + λ)-selection after all
candidate solutions have been produced. Key exemplars of
this approach are Madavan’s [12] Pareto-Based Differential
Evolution (PBDE), which uses a DE/current-to-rand/1/bin
algorithm and the non-dominated sorting and ranking of
NSGA-II, Xue et al.’s [26] Multi-Objective Differential Algo-
rithm (MODE), and Iorio and Li’s [8] Nondominated Sorting
Differential Evolution (NSDE), which is effectively identical
to NSGA-II except the mutation operator is replaced by
DE/current-to-rand/1.2

The algorithm described in this work most closely fol-
lows NSDE. Many previous Pareto-based DE algorithms use
the current-to-rand DE variant, as they are applied to con-
tinuous domains where that operator has some advantages
(e.g., it is rotationally invariant). As this work describes a
novel adaptation of DE to a discrete problem, more tradi-
tional DE mutation operators have been investigated first:
DE/rand/1/bin and DE/rand/1/exp.

3.3 Adapting DE for RFID Antenna Design
Adapting continuous solvers to discrete problem domains

is generally a non-trivial task (see Onwubolu and Daven-
dra [17] for several examples). A näıve approach could be
to treat each discrete decision variable in the problem as a
dimension of the continuous space, with continuous values
mapped to discrete values by rounding or truncation. Yet
in constrained problems this may produce a complex search
space where many positions are infeasible. Rather than en-
code antennas directly in a continuous space, the proposed
approach describes the antenna construction process. As
noted above the problem has some similarities with the TSP
in that a meander line antenna is a sequence of visited nodes.
A common approach taken with permutation problems is to
order vector components by their value, thereby producing
a permutation of the components. Yet while a meander line
antenna can be described as a permutation of the nodes vis-
ited, given the restrictions on which nodes may be connected

2The identifiers current-to-rand and target-to-rand are syn-
onyms; the latter is used by the authors here to match the
use of the label target.
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to each other this approach is considered to be inappropriate
here.

Similar to prior work with ACO [10, 11, 19, 25], antennas
are built via a series of decisions concerning which edge to
add next. However, given the similarity of the antenna de-
sign problem to that of producing self avoiding walks, the
approach here uses relative rather than absolute directions,
as such a representation has previously been found to be
more effective in evolutionary algorithms for the SAW [1].
All solutions are constructed from node 1 (top-left in an-
tenna diagrams used here) with an assumed initial direction
pointing down, and proceed by moving along edges either
(L)eft, (S)traight or (R)ight from successive nodes, until no
further edges can be constructed. The maximum number of
such instructions on an m × m grid is m2 − 1. Thus, each
DE solution is a vector in n = m2 − 1 space, where the
first dimension describes the relative direction to move from
node 1, the second dimension the direction to move from the
next node, and so on. Each dimension is over the (arbitrary)
range [0, 3], and is divided into three areas corresponding to
L, S and R, respectively. To encourage the construction of
longer antennas, the interpretation of a component’s value
is altered adaptively such that only those feasible directions
are represented. For example, if only the directions L and
S are possible from a given node, the corresponding dimen-
sion’s range is considered to be divided in two, the lower half
representing the direction L and the upper half the direction
S. Consequently, a value in [0, 1) represents a tendency to go
left at that point, a value in [1, 2) a tendency to go straight,
etc. In this way the solution representation in continuous
space has an intuitive correspondence with its discrete coun-
terpart. Figure 2 illustrates this solution encoding and how
it is interpreted during antenna construction.

Initial testing revealed that antennas with high efficiency,
η, but poor (high) resonant frequency, f0, are created by the
algorithm relatively easily. Because these solutions are non-
dominated they are maintained in the fixed-size population,
which may prevent the algorithm from properly exploring
the space of solutions with lower f0. To encourage explo-
ration of this space the DE may be run with a constraint on
the minimum length of antennas; the minimum length was
set to half the maximum length. When this constraint is ac-
tive (denoted DEminL) an antenna below half the maximum
length is considered to be dominated by any antenna that
is at or above that threshold. The standard dominance re-
lation is applied between antennas that are either both ‘too
short’ or both acceptable.

To improve the time efficiency of the algorithm a solution
cache was maintained.3 When a previously evaluated solu-
tion is produced its quality is obtained from this cache. In
some runs on the 10 × 10 grid (which has the largest solu-
tion space and longest solution evaluation time), up to 25%
of generated solutions have been previously seen, resulting
in a substantial decrease in runtime.

This proposed approach was found to be the most effective
among a number of competing schemes. These alternatives
are evaluated and compared in a work currently in prepara-
tion and are not discussed further here.

3The previous ACO for this problem also maintains a solu-
tion cache, although the implementations are quite different.
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Figure 2: Decoding a vector in continuous space to
construct an RFID antenna. The shaded portion
of each range indicates the direction chosen. The
range of each dimension [0, 3] is independent of the
grid size.

4. COMPUTATIONAL EXPERIENCE
As this is a novel application of DE to the RFID antenna

design problem a sensitivity analysis was performed to select
appropriate settings for its control parameters. This analysis
is described in the next section, with the experimental set
up and results described in subsequent sections.

4.1 Sensitivity Analysis
DE’s crossover rate Cr has a large impact on the algo-

rithm’s behaviour. Thus an initial sensitivity analysis was
performed to assess the algorithm’s performance at low and
high values. The exp and bin crossover variants were com-
pared as part of the analysis, with Cr ∈ {0.05, 0.9} for bin
and Cr ∈ {0.63, 0.99} for exp so that the probability of mu-
tating a component was equivalent to bin (see Zaharie [28]
for suitable equations). The scale factor F was fixed at 0.8;
low values lead to convergence [27], which is undesirable in
multiobjective optimisation. The different combinations of
low or high Cr and exp or bin were compared in terms of
the quality of the final front achieved as well as the expected
change in antenna length given that of the parent (target).
A common heuristic in RFID antenna design is that longer
antennas are better—certainly there is a correlation between
antenna length and read distance—so measuring the ability
of different settings to promote or maintain long antennas is
important.

Conceivably low values of Cr would be expected to cause
the smallest change to the resultant antenna structure and
thus be less likely to “break” a long structure, but also less
likely to rapidly generate longer antennas. Conversely, high
values of Cr produce larger changes in solutions and thus
would be expected to promote longer antennas with the
attendant risk of generating much smaller structures from
larger ones. Results from the sensitivity analysis confirm
these suppositions: high values of Cr produce the largest
positive changes to initially short antennas while low val-
ues produce smaller changes and are more likely to preserve
long structures. Initial, randomly generated solutions are

676



typically fairly short, so this could suggest that Cr should
be changed dynamically with antenna length. However, the
quality of the final fronts achieved after a fixed number of
function evaluations is similar, regardless of the value of
Cr used. Further, fine tuning of solutions may be better
achieved by the use of a local search heuristic based on the
previously successful backbite operator; this is yet to be inte-
grated with DE. Similarly, as solutions represent a sequence
of construction instructions it was believed that exp may
help preserve contiguous blocks of instructions more faith-
fully than bin and hence perform better overall, yet both
variants achieve comparable results. The speed with which
these results are achieved is, however, not the same, with
exp crossover and Cr = 0.99 producing good results most
quickly. This variant and value of Cr were used in all sub-
sequent experiments.

4.2 Experimental Set Up
The DE algorithm was applied to grid sizes from 5 × 5

to 10 × 10. As in Lewis et al. [11] the track width was
fixed at 1mm and all grids have dimensions 25 × 25mm.
DE/rand/1/exp’s control parameters were Cr = 0.9, F =
0.8 with a population size of 100. While it has been sug-
gested by DE’s creators that population size should be 10
times the number of dimensions—which would correspond
to populations between 240 and 990 here—both initial ex-
periments and previous findings concerning the behaviour
of DE with smaller populations (see, e.g., Montgomery [15])
suggest that a population of 100 provides good performance
on this problem. Note that DE’s fixed population also fixes
the maximum number of solutions that can be held in a
single front.

A random control was implemented and works as follows:
at each iteration all candidate solutions are produced ran-
domly (i.e., as if a new initial population were being cre-
ated) and then non-dominated sorting is performed to keep
the best individuals from those produced in previous itera-
tions and the new solutions. This provides an indication of
how easily certain parts of the front are attained with the
chosen representation and can also indicate if the DE al-
gorithm and its mutation operator confers some benefit on
the search. In tables and charts this approach is indicated
by Rand or RandminL when the minimum length constraint
was used.

The DE and Rand algorithms were each allowed to pro-
duce 10,000 solutions in addition to the initial, randomised
population of 100 individuals. This is 1% more than the
number produced by the prior ACO, which produced 10,000
solutions in total. However, the total number of (costly)
function evaluations is considerably less than 10,000 given
the use of the solution cache. As noted, both ACO and DE
made use of a solution cache to reduce computational cost.

Results from the DE were compared with those from the
earlier ACS algorithm used in [10, 11] run with three dif-
ferent levels of greediness: q ∈ {0.1, 0.5, 0.9}.4 These three
variants are designated ACOq1, ACOq5 and ACOq9, respec-
tively. It has been common practice to run each of the three
ACO variants concurrently and aggregate the results. As
may be noted by inspection of the results obtained, this con-
fers some slight improvement in quality of results obtained,
particularly for larger grids.

4In ACS, the parameter q is the probability that a greedy
decision is made instead of a probabilistic one.
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4.2.1 Implementation Differences Affecting the Com-
parison

Although the comparison presented in the next section is
intended to be fair to both DE and prior ACO there are
some key differences in the approaches and results that will
affect the comparison:

• In the current DE all antennas start from node 1, while
in the previous ACO antennas may start from any node
on the edge of the grid; antenna designs are then ro-
tated such that the starting point is in on the midline of
the mirrored dipole antenna structure. This limitation
of the current DE will impact the range of solutions it
can explore. A future version will support antennas
that start from other nodes.

• Available ACO results were produced by an ACO al-
gorithm that makes use of the backbite local search
operator, which is not yet employed by the DE. Local
search will be incorporated into a future version of the
DE.

• The NEC evaluation software is under active develop-
ment, with the DE-produced antennas evaluated against
the version available in late October 2010. ACO results
were produced using an earlier version that evaluates
the same antenna structures slightly differently. To
ensure a fair comparison the solutions obtained from
Lewis et al. [11] have been re-evaluated against the
same version of NEC as used by the DE, with these re-
vised values used in the next section. In some cases re-
evaluated solutions are now dominated by other front
members; these newly-dominated solutions have been
removed from the comparisons.
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4.3 Results
Attainment surfaces (i.e., the final fronts) were compared

using hypervolume (also called the S-metric) and the C-
metric (see, e.g., Zitler and Thiele [29]). Hypervolume mea-
sures the volume (area in this instance) of dominated space
under an attainment surface. The C-metric, denoted C(A,B),
describes the proportion of points in the surface produced
by B that are dominated by at least one point produced by
A. In hypervolume calculations here the objective of min-
imising f0 was transformed into a maximisation objective by
subtracting values from 2,250.5 In addition, η values, which
have a natural upper bound of 100, were multiplied by 20
to produce modified objective values of similar magnitude.
Reported hypervolumes were normalised by the maximum
possible—but not practically achievable—area determined
by these upper bounds of 2,250 for η and 20 · 100 = 2, 000
for f0.

Hypervolume results are shown in Figure 3. The up-
ward trend with grid size is because larger grids allow for
longer antennas, which expands the solution space and, con-
sequently, dominated objective space for f0. Both hyper-
volume and C-metric results indicate that DE outperforms
Rand, with DE’s attainment surfaces typically dominating
many or all points produced by Rand or RandminL (i.e.,
C(DE, Rand) = 0.4 for the 5 × 5 grid and C(DE, Rand) >
0.85 for 6 × 6 and larger grids; C(Rand, DE) < 0.01 across
all grid sizes). This strongly suggests that the DE mutation
mechanism is able to generate novel and improving solutions
for this problem using existing solutions. This is an impor-
tant finding, given that the proposed solution encoding with
DE search is not a ‘natural’ approach to this problem, in
particular when compared with the direct construction of
solutions used in the earlier ACO algorithms.

On grids 5× 5 through 7 × 7, DE performed similarly to
ACO in terms of hypervolume achieved, with poorer per-
formance on larger grids. C-metric values comparing DE
and ACO, presented in Table 1, show that DE compares

5A single outlier point was removed from four of the 42
attainment surfaces examined to ensure the upper bound of
2,250 was a good fit to the majority of points.
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favourably on grids 5×5 and 6×6, but its solutions tend to
be dominated on larger grids, even though the attainment
surfaces are very close. This is further illustrated in Fig-
ure 4, which shows the outline of the attainment surfaces on
grids 5× 5, 8× 8 and 10× 10.

If only the hypervolume and C-metric results are consid-
ered, DEminL appears to perform poorly in relation to DE.
Certainly this is the case on the large grids of 9 × 9 and
10 × 10, where it is possible that it retards the search by
eliminating solutions that are necessary parents for good
solutions. Further, in the relatively small search spaces of
grids 5×5 and 6×6 DE and DEminL perform almost equiv-
alently, sharing 83% and 47% of final solutions, respectively.
However, on grids 7 × 7 and 8 × 8, use of the minimum
antenna length constraint has a positive impact on the dis-
tribution of solutions, achieving its aim of producing more
solutions with a relatively low f0. Figure 5 presents the
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proportion of solutions in attainment surfaces produced by
DE and ACO where f0 ≤ 600 and illustrates its efficacy
on these grid sizes. If only points where f0 ≤ 600 are
considered, C(DEminL,DE) = 0.83 for the 7 × 7 grid and
C(DEminL,DE) = 0.71 for the 8 × 8 grid, the latter being
substantially higher than when the entire front is considered.
In future work, the use of the minimum length constraint at
a later stage in the search will be investigated.

Visual inspection of the attainment surfaces produced by
DE (and DEminL) on the largest grid size suggests that the
algorithm will continue to make improvements if afforded
more function evaluations. DE and DEminL were rerun on
the 10 × 10 grid and allowed to produce 20,000 solutions.
Results from these double-length runs show that they do
continue to improve, although their final results are still
dominated by those of ACO. Since the ACO shows improved
performance when its backbite-based local search procedure
is employed, the use and efficacy of this technique with the
DE algorithm will be a subject of future investigation.

5. CONCLUSIONS
ACO was the first metaheuristic to be applied to the prob-

lem of designing generalised meander-line RFID antennas
for high efficiency and low resonant frequency. It appeared
an obvious choice, due to the natural fit between the con-
structive nature of the algorithm and the necessary task of
constructing the path for an antenna element as part of the
optimisation problem. The continuous solver DE is not a
natural fit to this problem and thus required development
of a suitable solution encoding and antenna construction
scheme. A novel encoding and construction mechanism have
been described that not only map from continuous to dis-
crete space, but also deal with the severe move limitations
that characterise this problem. This clearly demonstrates
that it is possible to implement a non-constructive meta-
heuristic for a problem that is essentially constructive in
nature. Moreover, the described DE produces results that
are competitive with ACO.

Without another algorithm for comparison, until now it
has been difficult to confirm that the previous ACO algo-
rithms were producing attainment surfaces that approached
the true Pareto front for this problem. This is the first study
to present such a comparison. Results here confirm that both
methods can create good antenna designs and lend support
to the claim that ACO’s results are approaching the true
Pareto front.

Considering the limitations of the current DE (outlined
in Section 4.2.1), its comparative performance is impressive.
At present the quality of results delivered by ACO are bet-
ter than those of DE, particularly on larger grids at lower
resonant frequencies. However, it may be noted that, in the
experiments reported in this work, DE makes use of a pop-
ulation of 100 trial solutions, while ACO only uses 10 ants
in each iteration. This implies that, given sufficient parallel
resources, DE can deliver results of comparable quality sig-
nificantly faster than ACO due to its greater concurrency.
While it is reasonable to assume that increasing the size of
the ant population may accelerate evolution of solutions, the
extent to which this effect might be observed is a subject for
further investigation.

This work expands the range of available techniques for
generating antenna designs. It is conceivable that the same
approach can be used with other continuous metaheuristics,

Table 1: C-metric comparisons for DE and ACO.
Cell (row, col) corresponds to C(A,B), which is the
proportion of solutions produced by B that are dom-
inated by solutions produced by A

5× 5 DE DEminL ACOq1 ACOq5 ACOq9

DE — 0 0.03 0.2 0.17
DEminL 0.04 — 0.01 0.16 0.15
ACOq1 0.22 0.17 — 0.29 0.34
ACOq5 0.04 0.04 0.08 — 0.15
ACOq9 0.04 0.04 0 0.04 —
6× 6 DE DEminL ACOq1 ACOq5 ACOq9

DE — 0.2 0.33 0.39 0.51
DEminL 0.16 — 0.29 0.39 0.47
ACOq1 0.14 0.24 — 0.3 0.43
ACOq5 0.17 0.24 0.14 — 0.43
ACOq9 0.1 0.13 0.08 0.13 —
7× 7 DE DEminL ACOq1 ACOq5 ACOq9

DE — 0.17 0.33 0.18 0.18
DEminL 0.73 — 0.31 0.23 0.27
ACOq1 0.56 0.39 — 0.28 0.24
ACOq5 0.63 0.47 0.24 — 0.22
ACOq9 0.53 0.39 0.21 0.12 —
8× 8 DE DEminL ACOq1 ACOq5 ACOq9

DE — 0.47 0.16 0.26 0.34
DEminL 0.34 — 0.02 0.08 0.25
ACOq1 0.78 0.77 — 0.4 0.59
ACOq5 0.69 0.65 0.25 — 0.51
ACOq9 0.66 0.58 0.09 0.19 —
9× 9 DE DEminL ACOq1 ACOq5 ACOq9

DE — 0.88 0.17 0.25 0.3
DEminL 0.09 — 0.01 0.04 0.15
ACOq1 0.82 0.98 — 0.57 0.61
ACOq5 0.73 0.97 0.17 — 0.54
ACOq9 0.66 0.84 0.1 0.16 —
10× 10 DE DEminL ACOq1 ACOq5 ACOq9

DE — 1 0.11 0.2 0.39
DEminL 0 — 0 0 0.01
ACOq1 0.89 1 — 0.41 0.7
ACOq5 0.81 1 0.4 — 0.66
ACOq9 0.65 0.95 0.12 0.1 —

such as PSO. Future work will investigate the relative per-
formance of both algorithms, addressing limitations of the
current implementation of DE by allowing antennas to be
built from a range of starting points and investigating the
use a backbite-based local search operator, and assessing the
effect of increased population sizes in ACO.
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