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ABSTRACT 
Recently distance minimization problems in a two-dimensional 
decision space have been utilized as many-objective test problems 
to visually examine the behavior of evolutionary multi-objective 
optimization (EMO) algorithms. Such a test problem is usually 
defined by a single polygon where the distance from a solution to 
each vertex is minimized in the decision space. We can easily 
generate different test problems from different polygons. We can 
also easily generate test problems with multiple equivalent Pareto 
optimal regions using multiple polygons of the same shape and 
the same size. Whereas these test problems have a number of 
advantages, they have no clear relevance to real-world situations 
since they are artificially generated unrealistic test problems. In 
this paper, we generate a distance minimization problem from a 
real-world map. Our test problem has four objectives, which are 
to minimize the distances to the nearest elementary school, junior 
high school, railway station, and convenience store. Using our test 
problem, we examine the behavior of well-known and frequently-
used EMO algorithms in terms of their diversity maintenance 
ability in the two-dimensional decision space. 

Categories and Subject Descriptors 
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods, 
and Search – Heuristic Methods. 

General Terms 
Algorithms. 

Keywords 
Evolutionary multiobjective optimization (EMO), many-objective 
optimization problems, decision space diversity.  

1. INTRODUCTION 
Many-objective optimization is a hot issue in the research field of 
evolutionary multi-objective optimization (EMO). This is because 

well-known EMO algorithms such as NSGA-II [6] and SPEA [25] 
do not work well on multi-objective problems with four or more 
objectives. Whereas a large number of EMO algorithms have 
been proposed in the literature [3]-[5], [18], most algorithms can 
be characterized by the following three common features: Pareto 
dominance-based fitness evaluation, diversity maintenance, and 
elitism. Those EMO algorithms do not work well on many-
objective problems since almost all solutions in the current 
population become non-dominated with each other under many 
objectives. That is, Pareto dominance-based fitness evaluation 
cannot generate strong selection pressure toward the Pareto front 
as pointed out by many studies [8], [10], [11], [14]. 

In the implementation of an EMO algorithm (also evolutionary 
algorithms in general), the point is to find a good balance between 
convergence improvement and diversity maintenance. When an 
EMO algorithm is applied to a two-objective problem, we can 
visually examine the convergence-diversity balance by depicting 
all solutions in each generation in the two-dimensional objective 
space. Such a visual examination of the EMO algorithm in the 
objective space is of great help in its appropriate implementation. 
However, it is very difficult to visually examine the behavior of 
the EMO algorithm in the objective space when it is applied to a 
many-objective problem.  

Recently distance minimization problems in a two-dimensional 
decision space have been used as many-objective test problems to 
visually examine the behavior of EMO algorithms [12], [17]. 
Such a test problem is defined by a single polygon where the 
distance from a solution to each vertex is minimized in the 
decision space. Thus the number of objectives is equal to the 
number of vertices of the polygon. So we can easily generate test 
problems with an arbitrary number of objectives. All points in the 
polygon (including points on the sides) are Pareto optimal 
solutions. Such a test problem in a two-dimensional decision 
space can be generalized as many-objective problems in a high-
dimensional decision space [16]. By using multiple polygons with 
the same size and the same shape, we can also generate many-
objective problems with multiple equivalent Pareto regions [9], 
[15]. Test problems with multiple equivalent Pareto regions are 
used to examine decision space diversity of obtained non-
dominated solutions by EMO algorithms. Diversity maintenance 
in EMO algorithms has been mainly discussed in the objective 
space in order to find uniformly distributed non-dominated 
solutions along the Pareto front. However, some recent studies 
discussed decision space diversity to search for a variety of non-
dominated solutions in the decision space [13], [15], [19]. 
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Whereas distance minimization problems have a lot of advantages 
as many-objective test problems, they have no clear relevance to 
real-world situations. They are artificially generated unrealistic 
test problems. As a result, such a test problem cannot show the 
importance of decision space diversity in an understandable 
manner. In this paper, we generate a distance minimization 
problem from a real-world map (instead of polygons). Our test 
problem has four objectives, which are related to four different 
types of facilities in the map: elementary schools, junior high 
schools, railway stations, and convenience stores. Each objective 
is defined by the distance to the nearest facility in each group. 
Using our test problem, we examine the behavior of well-known 
and frequently-used EMO algorithms: NSGA-II [6], SPEA2 [24], 
MOEA/D [21], and SMS-EMOA [2]. NSGA-II and SPEA2 are 
standard Pareto dominance-based EMO algorithms. MOEA/D is a 
scalarizing function-based EMO algorithm while SMS-EMOA is 
an indicator-based EMO algorithm. These two algorithms do not 
use Pareto dominance-based fitness evaluation schemes. 

This paper is organized as follows. First, we briefly explain multi-
objective distance minimization problems in a two-dimensional 
decision space in Section 2. Next, we show our test problem 
generated from a real-world map in Section 3. Then, we examine 
the behavior of NSGA-II, SPEA2, MOEA/D and SMS-EMOA in 
Section 4 through computational experiments on some distance 
minimization problems with polygons and our test problem. The 
focus of our study is placed on decision space diversity of 
obtained non-dominated solutions by each algorithm. It is shown 
that each algorithm has different behaviors between polygon-
based and map-based test problems. It is also shown that intuitive 
evaluation of decision space diversity is somewhat different from 
hypervolume-based evaluation of solution sets in the objective 
space. Finally, we conclude this paper in Section 5. 

2. POLYGON-BASED TEST PROBLEMS 
In this section, we explain distance minimization problems with 
multiple polygons. Let us assume that we have m polygons with k 
vertices. These polygons can be different in their shape and size 
whereas we first explain test problems with multiple polygons of 
the same size and the same shape. We denote the vertices of the 
jth polygon by Aj, Bj, ... (j = 1, 2, ..., m) as shown in Fig. 1. The 
number of objectives is the same as the number of vertices (i.e., k). 
For example, Fig. 1 shows a three-objective test problem defined 
by four triangles of the same size and the same shape. 
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Figure 1. A polygon-based three-objective test problem. 

The ith objective to be minimized is the distance from a solution 
to the nearest ith vertex over the given m polygons. For example, 
the three-objective test problem in Fig. 1 (m = 4) is written as 

f1(x) = min {d(x, A1), d(x, A2), d(x, A3), d(x, A4)},      (1) 

f2(x) = min {d(x, B1), d(x, B2), d(x, B3), d(x, B4)},      (2) 

f3(x) = min {d(x, C1), d(x, C2), d(x, C3), d(x, C4)},      (3) 

where x is a solution in the two-dimensional decision space (i.e., 
x = (x1, x2)), and d(x, A) is the Euclidean distance from x to A. 

When all polygons are the same and they are not too close, all 
points inside the polygons (including the sides) are Pareto optimal. 
Pareto optimal solutions in a polygon are overlapping with those 
in another polygon in the objective space. 

As a two-dimensional decision space, we use [0, 100] [0, 100] in 
all test problems in this paper. In Fig. 2 and Fig. 3, we show other 
test problems. While four rectangles in Fig. 2 are the same, Fig. 3 
has two different trapezoids. As a result, a part of the inside of 
each trapezoid is not Pareto optimal. In each trapezoid, the shaded 
region is Pareto optimal. The shaded region in one trapezoid is 
not overlapping with the shaded region of the other trapezoid in 
the objective space except for (75, 83.125) and (25, 16.875). We 
examined the Pareto optimality of each of the 2001  2001 points 
(x1 = 0.00, 0.05, 0.10, ..., 100.00; x2 = 0.00, 0.05, 0.10, ..., 100.00) 
in the decision space [0, 100] [0, 100]. 

x1

x2
100

50

100500

Rectangle 1 Rectangle 2

Rectangle 3Rectangle 4

D1 C1

A1 B1

D2 C2

A2 B2

D3 C3

A3 B3

D4 C4

A4 B4

 

Figure 2. A polygon-based four-objective test problem. 
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Figure 3. A four-objective problem with different trapezoids. 
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3. OUR MAP-BASED TEST PROBLEM 
In Fig. 4, we show our map-based test problem generated from an 
actual real-world map. Our test problem includes six elementary 
schools (red circles), three junior-high schools (blue circles), 13 
convenience stores (green circles), and three railway stations 
(purple circles). Four objectives to be minimized are defined 
using the Euclidean distance from a solution x in the decision 
space (i.e., a point in the map) as follows: 

f1(x): Distance to the nearest elementary school (red circle), 
f2(x): Distance to the nearest junior-high school (blue circle),  
f3(x): Distance to the nearest convenience store (green circle), 
f4(x): Distance to the nearest railway station (purple circle). 

In Fig. 5, we show the Pareto optimal regions of our test problem. 
Our test problem has three disconnected Pareto optimal regions. 
As in Fig. 3, we examined the Pareto optimality of each of the 
2001  2001 points (x1 = 0.00, 0.05, 0.10, ..., 100.00; x2 = 0.00, 
0.05, 0.10, ..., 100.00) in the decision space [0, 100] [0, 100] to 
depict the Pareto optimal regions in Fig. 5. 
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Figure 4. Our map-based four-objective test problem with six 
elementary schools (red circles), three junior-high schools 
(blue circles), 13 convenience stores (green circles), and three 
railway stations (purple circles).  
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Figure 5. Pareto regions of our map-based test problem. 

In Fig. 4, the location of each school (store, station) is specified as 
follows according to the actual real-world map: 

Elementary schools: (3, 37), (42, 96), (45, 60), (50, 25), (83, 72), 
 (98, 38), 

Junior-high schools: (40, 20), (51, 60), (95, 51), 

Convenience stores: (10, 55), (15, 15), (15, 78), (15, 88), (20, 23), 
(20, 70), (32, 42), (35, 60), (40, 76), (52, 78), 
(52, 96), (55, 33), (75, 27),  

Railway stations:  (17.5, 82.5), (55.5, 82.5), (94.5, 6.5). 

4. EXPERIMENTAL RESULTS 
In this section, we examine the behavior of EMO algorithms by 
applying them to the polygon-based test problems in Section 2 
and our map-based test problem in Section 3. 

4.1 Algorithms and Parameter Specifications 
We applied NSGA-II, SPEA2, MOEA/D and SMS-EMOA to 
each test problem 100 times using the following specifications:    

Total number of examined solutions: 20,000,  
Initial population: Generated by random real numbers in [0, 100], 
Population size: 200 (NSGA-II, SPEA2, and SMS-EMOA), 
            210 (MOEA/D for the three-objective problems), 
            220 (MOEA/D for the four-objective problems), 
Crossover probability: 1.0 (SBX with c = 15),  
Mutation probability: 0.5 (Polynomial mutation with m = 20),  
Reference point in MOEA/D:  
     Minimum value of each objective in the current population,  
Reference point in SMS-EMOA: 1.1   
     Maximum value of each objective in the current population, 
Neighborhood size in MOEA/D: 10% of the population size. 

MOEA/D was implemented with no archive population using the 
Tchebycheff (Chebyshev) function. In MOEA/D, the population 
size is the same as the number of weight vectors. Due to the 
combinatorial nature of the number of uniformly distributed 
weight vectors, the population size cannot be arbitrarily specified 
in MOEA/D (for details, see Zhang and Li [21]). We used the 
closest integer to 200 among the possible values as the population 
size for MOEA/D (i.e., as the number of uniformly distributed 
weight vectors in MOEA/D). The same termination condition (i.e., 
20,000 solution examinations) was used in all algorithms.  

4.2 Performance Evaluation by Hypervolume 
Each EMO algorithm was applied to each test problem 100 times. 
The average value of the hypervolume was calculated over 100 
runs. The standard deviation was also calculated. In the 
hypervolume calculation, a reference point for each test problem 
was specified as “ (the maximum value of each objective in 
the true Pareto front)”. When  =1.1, our reference point 
specification is the same as in SMS-EMOA. We examined 
various values of  :   =1.0, 1.1, 2.0 and 3.0. We also examined 
other two specifications of the reference point: (200, 200, 200, 
200) and (400, 400, 400, 400). When the reference point is far 
from the Pareto front, extreme solutions around the edges of the 
Pareto front have large effects on the hypervolume calculation. 
When the reference point is very close to the Pareto front, 
solutions around the center region of the Pareto front have large 
effects on the hypervolume calculation. 
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Figure 6. Obtained solutions by a single run of NSGA-II. 
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Figure 7. Obtained solutions by a single run of SPEA2. 
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Figure 8. Obtained solutions by a single run of MOEA/D. 

In Figs. 6-9, we show an obtained solution set by a single run of 
each EMO algorithm. From visual comparison among Figs. 6-9, 
we can see that the best results with respect to decision space 
diversity were obtained by SPEA2 in Fig. 7. In Table 1, we show 
the hypervolume of the solution set in each figure. The smallest 
value (i.e., the worst result) for each reference point is highlighted 
in boldface in Table 1. Whereas Fig. 7 by SPEA2 looks very good, 
the worst results in Table 1 were obtained by SPEA2 in many 
cases. To examine why the solution set in Fig. 7 does not have a 
high hypervolume value, we calculated the hypervolume of each 
solution set after including the green, red and blue circles around 
30 < x1 < 52 and x2 =  60. These three points were added to each 
solution set in Figs. 6-9. Experimental results are shown in Table 
2. By including the three points, the hypervolume of the solution 
set in Fig. 7 was clearly improved in Table 2 from Table 1. 
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Figure 9. Obtained solutions by a single run of SMS-EMOA. 

 
Table 1. Hypervolume of each solution set in Figs. 6-9. The 
smallest value for each reference point is highlighted by bold. 

Reference 
Point 

NSGA-II
Figure 6

SPEA2 
Figure 7 

MOEA/D
Figure 8

SMS-EMOA
Figure 9 

 =1.0 5.799E+05 5.801E+05 5.873E+05 6.048E+05 
 =1.1 9.542E+05 9.518E+05 9.625E+05 9.856E+05 
 =2.0 1.479E+07 1.467E+07 1.478E+07 1.490E+07
 =3.0 8.107E+07 8.051E+07 8.096E+07 8.131E+07

(200, ...) 1.571E+09 1.564E+09 1.571E+09 1.572E+09
(400, ...) 2.548E+10 2.541E+10 2.547E+10 2.548E+10

 

Table 2. Hypervolume of each solution set in Figs. 6-9 after 
the three points are included.  

Reference 
Point 

NSGA-II
Figure 6

SPEA2 
Figure 7 

MOEA/D
Figure 8

SMS-EMOA
Figure 9 

 =1.0 5.824E+05 5.857E+05 5.933E+05 6.055E+05 
 =1.1 9.579E+05 9.617E+05 9.716E+05 9.867E+05 
 =2.0 1.482E+07 1.483E+07 1.485E+07 1.491E+07
 =3.0 8.118E+07 8.120E+07 8.123E+07 8.137E+07

(200, ...) 1.572E+09 1.572E+09 1.572E+09 1.573E+09
(400, ...) 2.548E+10 2.549E+10 2.548E+10 2.549E+10
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In Fig. 10, we show obtained solutions around the added three 
points. Each plot in Fig. 10 is the same as a small part of each 
figure in Figs. 6-9. From Fig. 10, we can see that SPEA2 found no 
solutions on the blue circle whereas the other algorithms found 
solutions on the blue circle. Those points on the blue circle in Fig. 
10 (a), (c) and (d) are non-dominated solutions with the best value 
for the second objective (since the distance to the junior-high 
school is zero). That is, only SPEA2 did not find extreme 
solutions with the best value of the second objective. As a result, 
the hypervolume of the solution set in Fig. 7 by SPEA2 is not 
high while decision space diversity in Fig. 7 looks very good. In 
Fig. 10 (c), we can see that no solution was obtained by MOEA/D 
around the green circle. That is, MOEA/D did not find another 
extreme solution. This may be the reason why high hypervolume 
values were not obtained in Table 1 for the solution set in Fig. 8 
(and also the reason for the improvement from Table 1 to Table 2). 

In Table 3, we show the average hypervolume value over 100 
runs of each algorithm together with the standard deviation in 
parentheses. Except for the case of  =1.0 (i.e., when the 
reference point was very close to the Pareto front), the worst 
results were obtained by SPEA2 for all the other cases. As shown 
in Fig. 7, SPEA2 found solution sets with good decision space 
diversity. However, SPEA2 was not highly evaluated in Table 3. 
The best results in Table 3 were obtained by SMS-EMOA. 
However, the decision space diversity in Fig. 9 is not so good.  
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Figure 10. Obtained solutions around the added three points. 
Only a small part of each figure in Figs. 6-9 is shown. 

Table 3. Average hypervolume over 100 runs of each EMO 
algorithm. Standard deviation is shown in parentheses. 

Reference 
Point 

NSGA-II SPEA2 MOEA/D SMS-EMOA

 =1.0 
5.797E+05 

(5.021E+03)
5.806E+05 

(3.234E+03) 
5.870E+05 

(3.497E+03)
6.049E+05

(4.489E+02)

 =1.1 
9.542E+05 

(6.904E+03)
9.518E+05 

(4.733E+03) 
9.625E+05 

(4.792E+03)
9.856E+05

(6.821E+02)

 =2.0 
1.479E+07 

(3.608E+04)
1.466E+07 

(4.490E+04) 
1.478E+07 

(3.268E+04)
1.478E+07 

(3.268E+04)

 =3.0 
8.106E+07 

(9.725E+04)
8.046E+07 

(1.921E+05) 
8.094E+07 

(1.198E+05)
8.129E+07 

(3.449E+04)

(200, ...)
1.571E+09 

(5.765E+05)
1.564E+09 

(2.398E+06) 
1.570E+09 

(1.288E+06)
1.572E+09 

(5.233E+05)

(400, ...)
2.548E+10 

(3.477E+06)
2.541E+10 

(2.162E+07) 
2.546E+10 

(1.166E+07)
2.548E+10 

(4.742E+06)
 

Hypervolume has been frequently used in indicator-based EMO 
algorithms [2], [20], [22], [23]. Its property has also been actively 
studied [1], [7], [19]. Our experimental results in this section 
suggest that the relation between the hypervolume and the 
decision space diversity will be an interesting research issue. 

4.3 Examination of Decision Space Diversity 
As shown in Figs. 5-9, our test problem has three disconnected 
Pareto optimal regions in the decision space. The smallest one is 
around the railway station in the top-left corner of the decision 
space. The second smallest one is around the center of the 
decision space. After each run of each EMO algorithm, we 
counted the number of obtained solutions in each Pareto optimal 
region. Experimental results are summarized in Fig. 11 for the 
smallest Pareto optimal region and Fig. 12 for the second smallest 
Pareto optimal region. The horizontal axis of these figures shows 
the number of solutions in each Pareto optimal region while the 
vertical axis is the number of runs from which a particular 
numbers of non-dominated solutions were obtained. In Fig. 11 
and Fig. 12, 100 runs of SMS-EMOA found no solutions in these 
small Pareto optimal regions. MOEA/D found no solutions in 
each small Pareto optimal region for about 90 runs. 
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Figure 11. Number of obtained solutions in the smallest 
Pareto region of our test problem.  
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Figure 12. Number of obtained solutions in the second 
smallest Pareto region of our test problem. 

 

From Fig. 11 and Fig. 12, we can also see that NSGA-II found at 
least four solutions in each of the small Pareto optimal regions in 
about 90 runs. SPEA2 found at least one solution in the smallest 
Pareto optimal region in about 90 runs in Fig. 11 and in the 
second smallest Pareto optimal region in almost all runs in Fig. 12. 

For comparison, we also performed the same computational 
experiments on the three test problems in Section 2. In Fig. 13, we 
show obtained solutions by a single run of each EMO algorithm 
on the triangle-based three-objective test problem with the 
equivalent Pareto optimal regions. Since the four Pareto optimal 
regions in Fig. 13 are exactly the same in the objective space, it is 
very difficult for EMO algorithms to find solutions uniformly 
distributed over the four triangles.  
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   (a) NSGA-II.            (b) SPEA2. 
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   (c) MOEA/D.       (d) SMS-EMOA. 

Figure 13. Obtained solutions by a single run of each 
algorithm on the triangle-based test problem. 
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Figure 14. Number of obtained solutions in Triangle 1. 
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Figure 15. Number of obtained solutions in Triangle 2. 

 

In Fig. 14 and Fig. 15, we show the number of obtained solutions 
in Triangle 1 and Triangle 2, respectively. The number of 
obtained solutions along the horizontal axis is discretized into 11 
intervals as [0, 0], [1, 20], [21, 40], ..., [181, 200]. Since we have 
the four triangles and a population of 200 individuals, we may 
have 50 solutions in each triangle in an ideal situation. In Fig. 14 
and Fig. 15, MOEA/D and NSGA-II found no solutions in a 
particular triangle in about 30 runs and 5 runs, respectively. SMS-
EMOA found at least one solution in each of Triangle 1 and 
Triangle 2 in their 100 runs.  

From Figs. 13-15, we can see that good decision space diversity 
was obtained by SMS-EMOA for the triangle-based test problem. 
This observation clearly contrasts with the behavior of SMS-
EMOA in Fig. 11 and Fig. 12 where no solutions were found in 
the two disconnected small Pareto optimal regions by its 100 runs.  

For comparison, we also report experimental results of a single 
run of each algorithm on the rectangle-based test problem in Fig. 
16. The number of obtained solutions in Rectangle 1 is shown in 
Fig. 17. From experimental results in Fig. 16 and Fig. 17, we can 
see that good decision space diversity was obtained by SMS-
EMOA. We obtained the same observation from Figs. 13-15 for 
the triangle-based test problem and a totally opposite observation 
from Fig. 11 and Fig. 12 for our map-based test problem.  
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   (a) NSGA-II.              (b) SPEA2. 

Rectangle 1

Rectangle 3Rectangle 4

Rectangle 2

x2

x1
0 20 40 60 80 100

20

40

60

80

100

  

Rectangle 1

Rectangle 3Rectangle 4

Rectangle 2

x2

x1
0 20 40 60 80 100

20

40

60

80

100

 
   (c) MOEA/D.       (d) SMS-EMOA. 

Figure 16. Obtained solutions by a single run of each 
algorithm on the rectangle-based test problem. 
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Figure 17. Number of obtained solutions in Rectangle 1. 

 

In Fig. 18, we show experimental results of a single run of each 
algorithm on the trapezoid-based test problem. The two Pareto 
optimal regions in this problem are not equivalent. Thus the 
diversity maintenance in each EMO algorithm in the objective 
space should have some effect on the decision space diversity. 
The number of obtained solutions in Trapezoid 1 is shown in Fig. 
19. From Fig. 19, we can see that 81-120 solutions were always 
obtained by SMS-EMOA. We can also see from Fig. 19 that 41-
100 solutions were almost always obtained by NSGA-II. As in the 
case of the triangle-based and rectangle-based test problems, good 
decision space diversity was obtained by SMS-EMOA for the 
trapezoid-based test problem in Fig. 18 and Fig. 19. This 
observation clearly contrasts to the behavior of SMS-EMOA on 
our map-based test problem in Fig. 11 and Fig. 12.  

x1

x2

0 20 40 60 80 100

20

40

60

80

100

Trapezoid 1

Trapezoid 2

  

Trapezoid 1

Trapezoid 2

x1

x2

0 20 40 60 80 100

20

40

60

80

100

 
     (a) NSGA-II.               (b) SPEA2. 
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     (c) MOEA/D.            (d) SMS-EMOA. 

Figure 18. Obtained solutions by a single run of each 
algorithm on the trapezoid-based test problem. 
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Figure 19. Number of obtained solutions in Trapezoid 1. 

 

5. CONCLUSIONS 
In this paper, we first generated a distance minimization problem 
from an actual real-world map. Our map-based test problem has 
three disconnected Pareto optimal regions in a two-dimensional 
decision space. Next we applied NSGA-II, SPEA2, MOEA/D and 
SMS-EMOA to our test problem. We observed in computational 
experiments that good decision space diversity was obtained by 
SPEA2. However, the hypervolume of a solution set with good 
decision space diversity by SPEA2 was the worst among the four 
EMO algorithms. Further examination showed that some extreme 
solutions with the best value of a single objective were not 
obtained by SPEA2. This may be the reason why the 
hypervolume of solution sets by SPEA2 for our test problem was 
the worst among the examined four EMO algorithms. We also 
examined the decision space diversity using other test problems 
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with multiple polygons. An interesting observation is that SMS-
EMOA showed the best diversity maintenance ability in the 
decision space for the three polygon-based test problems while it 
showed the worst decision space diversity for our map-based test 
problem. It is left for future studies to examine why totally 
different results were obtained by SMS-EMOA.   
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