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ABSTRACT
Typically, optimization attempts to find a solution which
minimizes the given objective function. But often, it might
also be useful to obtain a set of structurally very diverse solu-
tions which all have acceptable objective values. With such
a set, a decision maker would be given a choice of solutions to
select from. In addition, he can learn about the optimization
problem at hand by inspecting the diverse close-to-optimal
solutions.

This paper proposes NOAH, an evolutionary algorithm
which solves a mixed multi-objective problem: Determine
a maximally diverse set of solutions whose objective values
are below a provided objective barrier. It does so by iter-
atively switching between objective value and set-diversity
optimization while automatically adapting a constraint on
the objective value until it reaches the barrier. Tests on an
nk-Landscapes problem and a 3-Sat problem as well as on
a more realistic bridge construction problem show that the
algorithm is able to produce high quality solutions with a
significantly higher structural diversity than standard evo-
lutionary algorithms.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search

General Terms
Algorithms
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1. INTRODUCTION
Often, optimization of complex systems is not only con-

cerned with finding a single solution which minimizes an
implicitly or explicitly defined objective function. Rather,
one is interested in a set of solutions that explore different
options while still being of an acceptable quality with respect
to the objective function.

Consider the case that an engineer wants to design the
electronic system in a car. He is given a fixed cap on the
cost which he must satisfy. There are a few standard de-
signs which the engineer could use, e.g. a centralized system
where each subsystem is controlled by a central processor,
or a distributed design where each subsystem has its own
processor. Nevertheless, the engineer would like to know
whether there are any other, possibly non-standard designs
that satisfy the cost cap, such that he can then select the
design which can best be integrated into the given car fam-
ily. To this end, an algorithm is required that returns a set
of designs (i.e. solutions) which are structurally as diverse
as possible, but still satisfy the cost cap.

In general, there may be several reasons for an optimiza-
tion scenario where not a single best solution is of interest
but a set of diverse high-quality solutions. At first, the result
of the optimization may be only a single step in a complex
design process, as in the engineering example above. Due to
unknowns in the whole decision process, one would rather
be interested in various possible options that explore the so-
lution space and can be evaluated further (maybe based on
additional criteria). Secondly, a set of diverse (almost) opti-
mal solutions as the result of an optimization may be used to
learn more about the system to be optimized. Finally, opti-
mizations are usually based on a suitable abstraction of the
problem, for example in form of an analytic model or a sim-
ulation. These models typically contain simplifications and
need appropriate parameterizations. This modeling process
introduces uncertainties in the objective function. Other
reasons for such uncertainties are unknown or time-varying
system parameters. An optimization process which yields
a single solution may not be sufficient in this case as it re-
flects only a single possible problem instance. Rather, one
would be interested in a diverse set of solutions that provide
appropriate decision support.

The above informal problem definition can be interpreted
as a special kind of multiobjective optimization, denoted as
mixed multiobjective problem, where the first goal is to gen-
erate solutions which optimize some objective function, and
the second goal is to have a final set of solutions which is as
diverse as possible with respect to some diversity measure.
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In contrast to typical multiobjective problems, where a vec-
tor of objective functions is associated to each individual so-
lution, mixed multiobjective problems have a different struc-
ture: One objective can be described by a function which
maps individual solutions to objective values whereas the
other objective is defined by a set indicator which maps sets
of solutions to objective values. The present paper explores
models and methods for this kind of mixed multiobjective
optimization.

There exists a large body of methods which integrate di-
versity preservation into evolutionary search methods, see
for example [9, 20]. Most of these methods try to maintain
diverse solutions in order to fight the problem of premature
convergence during the optimization. To our best knowl-
edge, none of the existing methods explicitly tries to gener-
ate a diverse set of solutions as described above. Moreover,
known approaches do not directly optimize diversity as a set
measure, but rather have some implicit diversity preserva-
tion, e.g. through the maintenance of different niches, see
also [9]. Section 1.2 will provide a more detailed overview
about comparable approaches, including methods that de-
termine solutions which are robust towards uncertainties in
the objective function or solutions that reflect sets of local
minima.

The following new results are described in the paper:

• An evolutionary algorithm (NOAH) is proposed to solve
the mixed multiobjective optimization problem, i.e. it
determines a set of solutions which (a) have objective
values below a provided barrier value and (b) maximize
a set diversity measure.

• An algorithm is described that, given a set of solu-
tions, selects a subset of these solutions such that the
chosen diversity measure (Solow-Polasky) of the sub-
set is maximum. The algorithm has a low computa-
tional complexity such that NOAH has an acceptable
run-time behavior.

• An extensive experimental investigation shows the ef-
fectiveness of the new approach compared to other evo-
lutionary algorithms.

The paper is structured as follows: Section 1.1 provides a
formal problem statement and introduces a simple example
to illustrate the problem. Section 1.2 describes relevant re-
lated work, whereas Section 2 proposes NOAH, an algorithm
to solve the given problem. Section 3 introduces the chosen
diversity measure and describes a computationally efficient
update procedure. Finally, in Section 4 we experimentally
compare our algorithm to other evolutionary algorithms and
apply it to a more realistic bridge construction problem.

1.1 Problem Statement and Intuition
We are considering the minimization of a single objective

function f : X → R. Here, X denotes the feasible set of
solutions in the decision space, i.e. the set of alternatives of
the decision problem. A single alternative x ∈ X will be
denoted as a solution x. The image of X under f is denoted
as the feasible set in the objective space Z = f(X ) = {y ∈
R | ∃x ∈ X : y = f(x)}. Therefore, the objective value of a
single solution x is f(x).
There are no assumptions about the structure of the de-

cision space, except that a symmetric distance measure d :
X 2 → R between two solutions is required. Based on the

0 0.2 0.4 0.6 0.8 1
0.4

0.5

0.6

decision variableob
je

ct
iv

e 
fu

nc
tio

n
(m

in
im

iz
e)

Figure 1: Simple objective function with decision
space on x-axis and objective space on y-axis. Cir-
cles show solutions found by the NOAH algorithm
with barrier 0.5 (dashed horizontal line).

distance measure we define a diversity measure D : P(X ) →
R. It is defined on the powerset of the decision space, i.e. all
possible subsets of the decision space, and determines for
a subset of the decision space its corresponding diversity.
Finally, a provided barrier value v is used to determine a
constraint on the objective values.

The mixed multiobjective optimization problem we are try-
ing to solve can therefore be stated as follows:

Determine a population P ⊆ X with a given size |P | = n
which maximizes the diversity measureD while satisfying
the provided barrier v on the objective values:

max
P⊆Xv,|P |=n

D(P ) where Xv = {x ∈ X | f(x) ≤ v} (1)

In other words, we are trying to find a population P which
only contains solutions which are better or equal than the
barrier v and which maximizes the diversity measure D.
Note that this is not the same as multi-modal optimization,
where multiple local optima are seeked without considering
their quality, see e.g [17]. Neither are we looking for robust
solutions or solutions insensitive to change as for example in
dynamic environments [3]. Also, we do not consider diver-
sity as an additional independent objective, as we are not
interested in diverse but low-quality solutions. Instead, we
want diverse solutions that satisfy a certain quality bound.

Let us now present a very simple example. Consider a
minimization problem with a one-dimensional real-valued
decision space. The objective function is depicted in Figure
1. We would like to find a maximally distributed set of so-
lutions below a given barrier value (horizontal line). Figure
1 shows the case that the decision maker finds all solutions
which have an objective value of 0.45 or lower to be accept-
able. One possible set of solutions that satisfy the quality
constraint and that are well distributed in decision space are
shown as circles in the Figure1.

1.2 Related Work
As stated in the introduction, one of the main reasons

why a diverse, close-to-optimal set of solutions is beneficial
is that there are uncertainties in the design process and in
the modeling of a system. The handling of uncertainties dur-
ing optimization has been treated before, for an overview see
e.g. [12]. Four different categories of uncertainties are distin-

1These solutions have been generated using the NOAH algo-
rithm as defined in Algorithm 1 for 450 function evaluations,
with the following parameters: n = 8, v = 0.5, g = 10,
r = 4, c = 20 (see Section 2 for more details), using Eu-
clidean distance as a distance measure and using the Solow-
Polasky measure as defined in Section 3 for calculating the
diversity D.
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guished: (1) Subsequent evaluations of the same individual
yield different objective values. (2) There are uncertainties
in the decision variables. Both categories are usually treated
by repeatedly evaluating a single individual in order to get
an estimation of its fitness. Further categories are: (3) Un-
certainties introduced by the usage of a simplified model of
a real-world problem. (4) Objective functions that change
over time. Methods dealing with dynamically changing ob-
jective functions usually try to introduce or maintain a cer-
tain degree of diversity, which will be discussed next.

There are many algorithms which attempt to preserve di-
versity during an optimization run. The motivation for these
methods usually comes from optimizing multimodal prob-
lems, where evolutionary algorithms can get stuck in local
optima due to genetic drift, see e.g. [9, 20]. One method
is to run several populations in parallel with the goal that
they will explore different regions in the search space. Is-
land model EAs and parallel EAs fall into this category as
well. Usually, there is some exchange between the different
populations in the runs, and the main difference between ex-
isting algorithms is on how often individuals are exchanged
and which individuals are exchanged [9]. Other algorithms
run several EAs in sequence, and pass information from one
run to the next in order to prevent the following runs to find
the same local optimum, see e.g. [2].

Other approaches are based on speciation, an observation
from nature which states that first, only individuals from the
same species can mate to produce offspring and second, there
is a certain amount of geographic separation between indi-
viduals from the same species, and only neighboring indi-
viduals are eligible for mating. Examples for corresponding
algorithmic techniques are assigning individuals to species
prior to any selection step and to restrict competition, see
[16], or placing mating restrictions on the individuals by as-
signing a geographic location of each individual, see e.g. [9],
or by only allowing individuals within a certain distance of
each other to mate [7]. Other methods use fitness shar-
ing, see [10], such that individuals which have a lot of close
neighbors have a reduced fitness. Another approach is to use
crowding, see [5], where individuals can only be replaced by
neighboring individuals.

Many of these algorithms do not optimize diversity explic-
itly by means of a set measure. Maintaining diversity is used
to increase the probability to find the global optimum, or at
least different local optima. In this paper, we determine a
set of maximally diverse solutions, with the constraint that
the solutions must have a certain quality with respect to
the given objective function. Note that of course to be able
to appropriately set that quality constraint, any standard
single-objective optimizer can be used prior to the diversity
optimization to calculate the best achievable objective value.

2. NOAH ALGORITHM
In this paper, we propose a new algorithm called NOAH

to solve the mixed multiobjective problem. Remember from
Section 1.1 that we assume that there is a certain objec-
tive value, called the barrier, below which all solutions are
acceptable. This barrier value can be flexibly chosen. The
algorithm we propose in this paper then generates a popu-
lation which only contains solutions that are better or equal
than this barrier and that are as diverse as possible, see also
(1). In case the barrier is set to a value lower than any value
the algorithm is able to achieve, then NOAH performs a con-

ventional single objective optimization where solutions with
a better objective function value are always more desirable
than those with a worse value.

The NOAH algorithm uses two key concepts to solve the
above defined mixed multiobjective optimization problem:
bound adaptation and diversity optimization. Its main struc-
ture is shown in Algorithm 1. Each iteration consists of three
steps, namely the optimization of the objective function f
by means of objOpt, the bound adaptation using bound-
Change and the diversity optimization of maxD(P ) in di-
vOpt. The iteration stops if all solutions p in the population
P have objective value f(p) ≤ v or some other termination
criterion is satisfied.

Algorithm 1 Mixed multiobjective optimization algorithm
NOAH. Input parameters: population size n; barrier value v;
minimization of objective function is done for g generations;
r solutions remain in the population after bound adaptation;
the population diversity converged if it did not improve for
a total of c generations.

function NOAH(n, v, g, r, c)
Initialize population P randomly with n solutions
b = ∞
while (b > v)∧(termination criterion not reached) do

P : = objOpt(P , g, b)
(P, b) : = boundChange(P , b, r)
P : = divOpt(P , n, b, c)

end while
return P

end function

The rationale behind NOAH will be described in some
more detail. As mentioned above, in each loop a standard
evolutionary algorithm operates for g generations, then the
bound is adapted and finally diversity is optimized until it
converges. In other words, objective value and population di-
versity are jointly optimized by transforming the mixed mul-
tiobjective problem into a constrained set diversity optimiza-
tion. The constraint is the bound b on the objective values
which is adaptively reduced until it reaches the provided
barrier value v. The diversity optimization divOpt results
in a population which is optimized with respect to its diver-
sity D(P ) but respects the constraint imposed by the bound
b.

Subalgorithms objOpt and boundChange are responsi-
ble for optimizing the population with respect to the ob-
jective function f . objOpt receives a population P with
n elements and objective values f(p) ≤ b and uses a stan-
dard evolutionary algorithm for g generations to optimize it.
Any optimization algorithm can be used as long as the solu-
tions in the resulting population also have objective values
f(p) ≤ b.

In order to balance diversity optimization and objective
value optimization, a bound value b is monotonically de-
creased during the run in boundChange. The new bound
value is set in such a way that at least r individuals in the
population are still on or below the new bound. These indi-
viduals form the new population.

Finally, divOpt maximizes the diversity D(P ) under the
constraint that the resulting population has again n ele-
ments whose objective values are at or below b, i.e. f(p) ≤ b.
The iterative optimization in divOpt terminates if the di-
versity did not improve for a total of c generations. As a
result we can state that in each iteration objOpt optimizes
the population for g generations with respect to the objec-
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tive function f , then boundChange adaptively adjusts the
objective value bound b such that r solutions are on or below
the new bound b, and divOpt maximizes the diversity while
maintaining the bound b. Now, some more details about the
different aspects of NOAH are provided.
The objective value optimization objOpt uses a simple

{μ + λ} evolutionary algorithm with μ = λ = n which re-
spects the bound b, see Algorithm 2. The variation func-
tion variatePop may use any appropriate combination of
mutation and crossover operators in order to generate a re-
sulting population with n solutions. Its only difference to a
standard variation of a given population is that it returns
only solutions that have an objective value not worse than
b. For example, the internal elementary operators are called
as many times as necessary to generate enough feasible indi-
viduals. Selection function selectObj selects a population
of n solutions according to some (possibly standard) selec-
tion criterion that ensures selection pressure. Note that any
other refined strategy can be used for objOpt as long as the
bound b is respected in the resulting population.

Algorithm 2 Objective value optimization objOpt. Input
parameters: population P ; number of generations g; bound
b.

function objOpt(P , g, b)
n : = |P |
for g iterations do

P ′ : = variatePop(P , b, n)
P : = selectObj({P ∪ P ′}, n)

end for
return P

end function

The strategy to adaptively change the bound value b is
described in Algorithm 3. In boundChange, the new bound
is set to the minimal value such that at least r solutions are
still on or below it. The resulting subset of the population
contains all elements with objective values equal or below
this new bound.

Algorithm 3 Adaptive change of bound boundChange.
Input parameters: population P ; current bound b; minimal
number of solutions in resulting population r.

function boundChange(P , b, r)
b : = minimal x s.t. |{p|p ∈ P, f(p) ≤ x}| ≥ r
P ′ : = {p ∈ P |f(p) ≤ b}
return (P, b)

end function

The optimization of diversity divOpt is described in Al-
gorithm 4. At first, the already described variation opera-
tor variatePop is called which generates a population P ′

by any appropriate combination of mutation and crossover
operators. Again, it returns only solutions that have an ob-
jective value not worse than b. The number of generated
solutions is chosen such that {P ∪ P ′} has 2n solutions (re-
member that we have chosen μ = λ = n). In the selection
phase the solutions are selected according to their diversity
contribution using the operator selectDiv which will be de-
scribed in much more detail in Section 3. This is in contrast
to the standard evolutionary algorithm shown in Algorithm
2, where solutions are selected according to their objective
values. Moreover, the diversity optimization is run until
there have been c generations in total without an increase
in diversity. Note that as soon as the adaptive bound b has

reached the user-specified barrier value v, diversity is opti-
mized one more time until it converges and the algorithm
NOAH is stopped.

Algorithm 4 Diversity optimization divOpt. Input pa-
rameters: population P ; population size n; bound value b;
the total number of generations the diversity did not change
for convergence c.

function divOpt(P , n, b, c)
i : = 0
while i < c do

P ′ : = variatePop(P , b, 2n − |P |)
P ′′ : = selectDiv({P ∪ P ′}, n)
if D(P ′′) > D(P ) then

P : = P ′′

else
i : = i + 1

end if
end while
return P

end function

3. DIVERSITY OPTIMIZATION

3.1 Diversity Measure
For the optimization of the diversity in Eq. (1), an appro-

priate diversity measure D : P(X ) → R has to be selected.
In [19] desirable properties of diversity measures are dis-
cussed and several measures are compared with respect to
these properties. To begin with we do not want to restrict
the class of decision spaces that can be considered in NOAH,
for example we do not assume that the solutions are given in
Euclidean Space. Therefore, we assume only the existence
of a symmetric distance measure d : X 2 → R between two
solutions. Following [19] we require the following additional
conditions:

Monotonicity in Varieties The diversity of a set of solu-
tions P should increase when adding an individual p
not yet in P. This fundamental property assures that
additional solutions increase the diversity, i.e. it as-
sures that increased species richness is reflected in the
diversity measure.

Twinning Diversity should stay constant when adding an
individual p already in P . Intuitively, if diversity is
understood as the coverage of a space by a set of solu-
tions, adding duplicates should not increase the cover-
age.

Monotonicity in Distance If all pairs of solutions in a
population P are at least as dissimilar (measured by
d) as those in another population P ′, the diversity of
P should not be smaller than the diversity of P ′.

It has been found that the measure proposed by Solow
and Polasky [18] fulfills the requirements best and can be
computed with reasonable computational complexity.

The Solow-Polasky measure D(P ) of a population P ⊆ X
is determined as follows: Suppose P contains the n solutions
p1, ..., pn where |P | = n. Furthermore, d(pi, pj) denotes the
distance between solutions pi and pj . Then we can define
the (n, n)-matrix M = (mij) with elements

mij = exp(−θ · d(pi, pj)) for all 1 ≤ i, j ≤ n
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Then, the Solow-Polasky measure can be given as

D(P ) = eM−1eT

where e = (1, 1, . . . , 1) and eT denotes its transpose. In other
words, D(P ) is the sum of all matrix elements of M−1.

The Solow-Polasky measure yields real values in the in-
terval [1, |P |], which can be interpreted as the number of
different species found in the population, where individuals
which lie close to each other belong to the same species. The
parameter θ normalizes the relationship between distance d
and the number of species. As the selection of a distance
d is problem domain specific, the value of θ has to be ap-
propriately set. Following our experimental evaluations, the
choice of θ is not critical as long as the matrix elements of
M are in a reasonable interval, i.e. 10−5 ≤ mij � 1, ∀i, j,
i 
= j.

3.2 Diversity-based Selection
In the NOAH algorithm, the diversity measure is used

as a selection criterion, see Algorithm 4. According to Eq.
(1), the operator selectDiv should preferably select the
subset P ′′ ⊂ {P ∪P ′} with n elements which maximizes the
diversity

D(P ′′) ≥ D(P ′′′) for all P ′′′ ⊂ {P ∪ P ′}, |P ′′′| = n

where P ′′ = selectDiv({P ∪ P ′}, n).
As testing all possible subsets is infeasible due to combina-

torial explosion, we suggest to use the usual greedy strategy
which removes one solution after another from the popula-
tion P until only n solutions remain. In each step, the so-
lution which contributes least to the diversity is discarded.
Here, the contribution of a solution p ∈ P to the diversity of
the set P is defined as D(P )−D(P\{p}), i.e. the difference
between the diversity of the whole set and the diversity of
the set without the solution p.
The computational complexity of the calculation of an op-

timized subset in selectDiv is now determined by the fact
that we have to remove n solutions and for each of them,
we have to test between n + 1 and 2n candidates. Each
candidate evaluation for p necessitates the computation of
D(P\{p}) whose complexity is dominated by the matrix in-
verse calculation, which is O(n3).

As a result, the computational complexity of selectDiv
is reduced to O(n5) in comparison to an exponential com-
plexity, while giving up on the optimality of the obtained
subset. Unfortunately, the computational complexity still
is unacceptable for practical purposes, i.e. large population
sizes. The next subsection describes an improved algorithm
which reduces the complexity to O(n3).

3.3 Fast Diversity-based Selection Algorithm
As described above, the complexity of O(n5) to deter-

mine an optimized subset with maximal diversity is still a
serious performance bottleneck. In the following we there-
fore suggest a novel way to (a) calculate the contributions of
solutions to the Solow-Polasky measure and (b) to update
the measure after removing a solution which only requires
one matrix inversion in the whole selection process, therefore
reducing its complexity to O(n3).
First, we provide some definitions and known relations

from linear algebra which will be used. Assume that we
have a symmetric matrix M and its inverse M−1 which are

partitioned in the following form:

M =

(
A b
bT c

)
, M−1 =

(
Ā b̄
b̄T c̄

)

where c and c̄ are single elements, b and b̄ are column vectors
and bT and b̄T denote their transpose. We also make use
of the notion Σ(M) =

∑
i,j mi,j which is the sum of all

elements of the matrix M . Finally, we use the well known
result for the block matrix inverse of M :

A−1 = Ā− 1

c̄
· b̄ · b̄T

We now want to calculate the contribution of a single so-
lution to the Solow-Polasky measure. Remember that the
Solow-Polasky measure is the element-wise sum of the in-
verse M−1 of the transformed pairwise distance matrix M of
all solutions, i.e. D(P ) = Σ(M−1). Note that M can be de-
scribed in the partitioned form as M is symmetric due to the
symmetry of the distance measure, i.e. d(pi, pj) = d(pj , pi)
for all pi, pj ∈ X .

If a solution is discarded from P , its corresponding row
and column are deleted from the distance matrix M . As-
sume without loss of generality that the solution we want to
discard corresponds to the last row and column of M , i.e. we
want to delete the last row and the last column from M and
determine the impact on the Solow-Polasky measure. This
difference in the measure can now be calculated as follows:

Σ(M−1)− Σ(A−1) = [Σ(Ā) + 2Σ(b̄) + c̄]

− [Σ(Ā)− 1

c̄
(Σ(b̄))2]

=
1

c̄
[2c̄Σ(b̄) + (c̄)2 + (Σ(b̄))2]

=
1

c̄
(Σ(b̄) + c̄)2

The term 1
c̄
(Σ(b̄) + c̄)2 can be interpreted as the normal-

ized squared sum of the last column’s elements of M−1. By
comparing all of these terms we can determine the solution
which leads to the least difference in the diversity measure
by O(n2) operations.

Afterwards, we have to delete from M the solution with
the smallest contribution and set the new distance matrix
M ′ to the corresponding submatrix. If we again suppose
without loss of generality that the solution with the smallest
loss in diversity was associated to the last column, we have
M ′ = A. In order to repeat this process for further solutions
we would have to determine the inverse M ′−1 = A−1 which
would need O(n3) computations in a naive implementation.
But using the above results on block matrix inverses, we
can reduce this computation to O(n2) computations. As a
result, the removal of one element needsO(n2) computations
which leads to the desired O(n3) complexity for the whole
subset computation in selectDiv.

4. EXPERIMENTS

4.1 Evaluation and Comparison
In this section we compare NOAH to several other stan-

dard evolutionary algorithms with and without diversity pre-
servation mechanisms. The purpose of this experimental
evaluation is to see whether the considered set of algorithms
is able to reach a given barrier, and if so, what conclusion
can be drawn about the diversity of the final populations.
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Name Diversity Mating Selection Environmental Selection
Preserving

NOAH yes Random without replacement see Section 2
DetC yes Random without replacement Deterministic crowding [14]
ResT yes Random with replacement Restricted tournament [11]
Diff yes Random without replacement Diffusion model [9]
Clear yes Random without replacement Clearing procedure [16]
Share yes Fitness sharing [10, 9] Pairwise tournament
Tour no Random without replacement Pairwise tournament
Random no n/a n/a

Table 1: Compared algorithms.

NOAH DetC ResT Diff Clear Share Tour Random

3-Sat v = 2 22 4.2073 28 1.8041+ 30 3.6416 30 3.5026 30 3.6582 28 1.1309+ 30 1.3328+ 0 NaN

3-Sat v = 5 29 6.6118 30 4.8804+ 30 4.6674+ 30 4.7193+ 30 4.6985+ 30 1.726+ 30 1.6693+ 9 1.5593+

3-Sat v = 10 30 7.0279 30 6.1889+ 30 5.272+ 30 5.3353+ 30 5.3159+ 30 2.306+ 30 1.9727+ 27 6.9609
nk-L. v = 23 10 1.1847 0 NaN 0 NaN 0 NaN 0 NaN 1 1 1 1.023 0 NaN
nk-L. v = 25 30 2.2627 4 1 7 1 7 1.1227 6 1 8 1.0057 7 1.0033 0 NaN

nk-L. v = 30 30 6.9834 30 6.1128+ 30 6.0892+ 30 6.0347+ 30 6.1159+ 30 1.1042+ 30 1.1273+ 0 NaN

Table 2: Experiment results of 30 runs. Columns show the different algorithms, rows the different problems
(with the corresponding barrier value v). For each problem/barrier value pair and each algorithm there are
two values, where the left one is the number of runs that had at least one solution on the barrier, and the
right number is the mean diversity of the solutions that reached the barrier. A +/− beside the diversity
means that the diversity of NOAH is significantly better/worse than the diversity of that particular algorithm.

Optimization Problems
For the comparison, we selected two well-known test prob-
lems: The nk-Landscapes problem [13] and the 3-Sat prob-
lem [15]. In the nk-Landscapes problem, there are n deci-
sion variables (in our case, n = 100). Each decision variable
is influenced by k (in our case k = 10) randomly chosen
other decision variables. The decision variables are binary,
i.e. they can either take the value 0 or 1. Each decision vari-
able together with the influencing decision variables codes
an index in a randomly generated fitness matrix. The over-
all fitness then is the sum of the fitness values coded by each
decision variable.

The 3-Sat problem is a specific Boolean satisfiability prob-
lem. In our case, the Boolean expression which has to be
satisfied consists of 200 clauses with 3 elements each. A
clause is true if any of its elements is set to one, and the
whole expression is true if all clauses are true. As an ob-
jective function, we use the number of false clauses, leading
to a minimization problem which has an optimal value of 0
(which can only be reached if the expression is satisfiable).
Our problem has 50 decision variables, where each clause
contains 3 randomly selected decision variables as its ele-
ments.

Both optimization problems that we consider have binary
search spaces. We here suggest to use the Hamming dis-
tance between decision vectors as a distance measure. For
example considering the 3-Sat problem, we want not only
to be able to find out whether the expression is satisfiable,
but also to find a whole set of assignments that satisfy the
Boolean expression. These assignments should be as diverse
as possible in terms of differing decision variables.

As a variation operator, we first apply a two-point crossover
with probability 0.5. Then, each solution undergoes a one-
point bitflip mutation, i.e. one of its (binary) decision vari-
ables is selected at random and set to its inverse value (1
instead of 0 and vice versa).

Compared Algorithms
All algorithms that we compare are listed in Table 1. Mat-
ing selection denotes the step where the parents that will be
recombined and mutated are selected. During environmen-
tal selection the individuals which are to survive (from the
pool of parents and offspring) are chosen. The NOAH algo-
rithm optimizes according to Algorithm 1, with parameters
n = 20, g = 20, r = 10, c = 10, and with pairwise tourna-
ment for selectObj in Algorithm 2. All algorithms use a
population size of 20.

During deterministic crowding, offspring are generated by
recombining and mutating 2 parents, and then, a pairwise
tournament between each offspring and its more similar par-
ent takes place, see [9]. In restricted tournament, offspring
are generated in a standard manner, and then each offspring
replaces the most similar parent, if it is better than said par-
ent. In the Diffusion Model Evolutionary Algorithm, the so-
lutions are located on a grid in a fixed manner, where each
solution has 8 neighbors. During variation, each individ-
ual is recombined with one of its neighbors. The offspring
which is more similar to the neighbor replaces the current
individual if it is better. The Clearing Procedure generates
offspring in a standard way. Then, it performs a pruning
on the offspring in order to find the κ best individuals in
each niche. Niches are defined by a parameter σ, which in
our case is set to 0.2 for all problems. Also, we use κ = 1,
i.e. we use only one representative per niche. This represen-
tative then replaces the most similar parent, if it is better
than that parent. When using fitness sharing, the fitness
of each individual is decreased prior to selection, depending
on the closeness and number of neighbors. Random selec-
tion with replacement is just a random selection of parents,
where each individual can be selected multiple times. In
the same selection without replacement, each individual can
only be selected once. In pairwise tournament, pairs of so-
lutions are selected and the better one is kept. Finally, the
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random algorithm simply generates random solutions and
keeps the 20 best ones (if more than 20 individuals have the
same best value, the most diverse ones are kept).

Experimental Setup
We test each problem with different barrier values. We com-
pare the number of runs that achieved at least one solution
with the barrier value, and the diversity of the solutions that
reached the barrier value. In order to be able to fairly com-
pare the different algorithms, all objective values below the
barrier are set to the barrier, such that there is no selection
pressure below the barrier. This way, the algorithms are free
to optimize the diversity of the population after the barrier
has been reached.

For each problem, the number of objective function eval-
uations fEvals is fixed. Note that NOAH terminates as soon
as its bound reaches the barrier value, or when fEvals func-
tion evaluations have been performed, whichever happens
first. For the nk-Landscapes and the 3-Sat problem, fEvals
was set to 5 · 105 and 3 · 106, respectively.

The algorithms were run 30 times on each problem/barrier
value pair. To test the resulting diversity values for sig-
nificant differences, a Kruskal-Wallis test as described in
[4] has been carried out, using the Conover-Inman proce-
dure, Fisher’s least significant difference method performed
on ranks and a significance level of 1%.

Results
The results are shown in Table 2. For the two higher bar-
rier values of 3-Sat, the algorithms mostly reach the barrier
value, and the resulting diversity of NOAH is always sig-
nificantly better than that of the other algorithms (except
random search). For the lowest barrier value, NOAH some-
times does not reach the barrier, which can be explained
with the fact that it spends a considerable amount of func-
tion evaluations on diversity optimizations. Furthermore,
the diversity of NOAH is only significantly better than that
of DetC, Tour and Share, whereas there is no significant
difference to the diversity of ResT , Diff and Clear. This
can be explained by the fact that when the barrier value is
low, only small parts of the decision space are on or below
the bound, and therefore diversity cannot be optimized as
much as if the barrier was higher.

For the nk-Landscapes problem it is interesting to note
that for the lowest barrier value, most algorithms cannot
reach that barrier (except Tour and Share, which reach the
barrier once). This is in contrast to NOAH, which reaches
the barrier every third time. This indicates that diversity
might help identifying the global optimum by covering as
many local optima as possible. This can still be seen for
the second lowest barrier value, which is always reached by
NOAH, whereas it is only reached in about 24% of the cases
by the best other algorithms (Tour and ResT ). For the
highest barrier value, all algorithms always reach it (except
random search), but NOAH’s diversity is always significantly
better than the other algorithms diversity.

4.2 Bridge Construction
In order to qualitatively interpret the simultaneous op-

timization of the objective function and the set diversity
(mixed multiobjective optimization), we applied the algo-
rithm NOAH to a more realistic problem. Here, we would
like to see whether truss bridges constructed and optimized

Figure 2: Distance calculation between two bridges
(upper row, the first/second bridge is in the
first/second column). The Gaussian curve calcula-
tion is shown for a specific vertical slice (dotted line
in the upper row). For each crossing connection,
a Gaussian is drawn (solid line in lower row). The
maximum of these Gaussians is then used for the
distance calculation (dashed line in lower row).

by NOAH ’look’ more diverse than bridges produced by a
standard evolutionary algorithm.

Optimization Problem
As an optimization problem, we selected the bridge con-
struction problem [1]. The goal is to build a truss bridge
which is able to carry a given load and which is as ’cheap’ as
possible. Costs are computed by adding the necessary ma-
terial to build the bridge (total length of connections mul-
tiplied by their cutting area). Except for the fixed main
horizontal deck on which the load is applied, the bridge can
be constructed arbitrarily, i.e. connections and nodes can be
added, moved and removed. Note that there is only muta-
tion and no recombination in the variation operator for the
bridge optimization, see [1].

As mentioned in Section 1.1, a distance measure in deci-
sion space is needed. But how can the distance between two
bridges be measured? We found that the following distance
measure which is also depicted in Figure 2 yields good re-
sults: Both bridges are cut into a fixed number of vertical
slices. For each slice, there are certain connections of differ-
ent widths (that correspond to the cross-section area of the
connection) which cross that slice. For each connection, we
draw a Gaussian with a given variance (in our case 5) and
the mean at the point where the connection cuts the slice,
multiplied with the thickness of the connection. For each
point on the slice we then take the maximum of the Gaus-
sians of all connections that cut the slice, which gives us one
curve per bridge. The difference between these curves of two
bridges, summed up over all vertical slices, determines the
distance of the two bridges. For an illustration see Figure
2. It can be seen that the slice shown in the Figure does
not contribute much to the distance of the two bridges, as
those two bridges both have the same largest deck (the thick
horizontal deck).

Experimental Setup
As the optimum bridge is not known, we first run a a stan-
dard evolutionary algorithm that uses pairwise tournament
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Figure 3: Upper: Best bridge optimized with stan-
dard EA. The horizontal deck is fixed, and carries
the load which the bridge must be able to sustain.
Lower: Most distant bridge to upper bridge, also
optimized with the standard EA.

Figure 4: Three diverse bridges determined by
NOAH using a barrier objective value which is 20%
higher than the cost of an EA-optimal bridge.

for 200’000 function evaluations and with a population size
of 20. Then we optimized the same bridge problem with
NOAH, where we set the barrier value to 20% above the
cost of the best bridge found by the standard evolutionary
algorithm. NOAH was run with parameters n = 20, g =
10, r = 10, c = 5. Note that NOAH’s bound reached the
barrier after 19’000 function evaluations.

Results
The best bridge found by the standard evolutionary algo-
rithm as well as the bridge with the largest distance to this
best bridge in the population2 is depicted in Figure 3. As
can be seen, these two bridges are very similar, hence there is
not much diversity in the population. Figure 4 on the other
hand shows three diverse bridges found by NOAH. These
bridges are visually much more different than the bridges
found with the standard EA and provide the decision maker
with multiple alternative bridges that can carry a given load
and that do not cost more than 20% of the cheapest bridge
found by a standard evolutionary algorithm.

5. CONCLUSIONS AND OUTLOOK
This paper proposes a method to generate a set of maxi-

mally diverse solutions which are better in terms of objective
value than a certain fitness value. All solutions beyond this
barrier are supposed to be acceptable to the decision maker.

To this end, we propose an algorithm called NOAH which
alternates between optimizing the population for diversity
and for objective value, and which uses an adaptive con-

2Note that in the final population we only consider bridges
that cost up to 20% more than the best bridge. Due to the
stochastic nature of the selection process, the population can
contain a few very expensive bridges, which we do not want
to consider here.

straint to ensure the quality of the solutions. Also, a new
algorithm has been described that substantially reduces the
computational complexity for the diversity optimization.

NOAH is compared to standard evolutionary algorithms
with and without diversity preservation on the nk-Landscapes
and the 3-Sat problem. It could be seen that NOAH achieves
most of the time a significantly better diversity than the
other algorithms, and never worse. On the nk-Landscapes
problem it appears that the diversity preservation helps iden-
tifying better local optima, as NOAH achieves better fitness
values than the other algorithms. Finally, NOAH was ap-
plied to a truss bridge construction problem. It was able
to determine diverse bridges if 20% more costs are allowed
than the cost of the best solution found with a standard
evolutionary algorithm.

An important feature of NOAH is its ability to adaptively
reduce its current bound value during optimization. In the
future, it would be desirable to automatically tune the pa-
rameters of NOAH, especially the number of generations for
which the optimization of fitness values takes place, as this
parameter decides on the tradeoff between diversity and fit-
ness optimization speed.

6. REFERENCES
[1] J. Bader. Hypervolume-Based Search for Multiobjective

Optimization: Theory and Methods. PhD thesis, ETH Zurich,
Switzerland, 2010.

[2] D. Beasley, D. Bull, and R. Martin. A sequential niche
technique for multimodal function optimization. Evol.
Comput., 1:101–125, 1993.

[3] L. Bui, J. Branke, and H. Abbass. Multiobjective optimization
for dynamic environments. In CEC, 2005.

[4] W. J. Conover. Practical Nonparametric Statistics. John
Wiley, 3rd edition, 1999.

[5] K. A. de Jong. An Analysis of the Behaviour of a Class of
Genetic Adaptive Systems. PhD thesis, 1975.

[6] K. Deb. Multi-Objective Optimization Using Evolutionary
Algorithms. Wiley, 2001.

[7] K. Deb and D. E. Goldberg. An investigation of niche and
species formation in genetic function optimization. In Third
international conference on Genetic algorithms, 1989.

[8] K. Deb and S. Tiwari. Omni-optimizer: A generic evolutionary
algorithm for single and multi-objective optimization. EJOR,
185(3):1062–1087, 2008.

[9] A. E. Eiben and J. E. Smith. Introduction to Evolutionary
Computing. Springer, 2003.

[10] D. E. Goldberg and J. Richardson. Genetic algorithms with
sharing for multimodal function optimization. In Second
International Conference on Genetic algorithms and their
application, 1987.

[11] G. Harik. Finding multimodal solutions using restricted
tournament selection. In Sixth International Conference on
Genetic Algorithms, 1995.

[12] Y. Jin and J. Branke. Evolutionary optimization in uncertain
environments-a survey. Evol. Comput., 9(3):303 – 317, 2005.

[13] S. A. Kauffman. Origins of Order: Self-Organization and
Selection in Evolution. Oxford University Press, 1993.

[14] S. W. Mahfoud. Crowding and preselection revisited. In PPSN,
1992.

[15] D. Mitchell, B. Selman, and H. Levesque. Hard and easy
distributions of sat problems. In AAAI, 1992.

[16] A. Petrowski. A clearing procedure as a niching method for
genetic algorithms. In IEEE International Conference on
Evolutionary Computation, 1996.

[17] A. Saha and K. Deb. A bi-criterion approach to multimodal
optimization: Self-adaptive approach. In SEAL, 2010.

[18] A. R. Solow and S. Polasky. Measuring bilological diversity.
Environmental and Ecological Statistics, 1:95–103, 1994.

[19] T. Ulrich, J. Bader, and L. Thiele. Defining and optimizing
indicator-based diversity measures in multiobjective search. In
PPSN, 2010.

[20] X. Yu and M. Gen. Introduction to Evolutionary Algorithms.
Springer, 2010.

648




