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ABSTRACT
Current multivariate EDAs rely on computationally efficient
pairwise linkage detection mechanisms to identify higher or-
der linkage blocks. Historical attempts to exemplify the
potential disadvantage of this computational shortcut were
scarcely successful.

In this paper we introduce a new class of test functions
to exemplify the inevitable weakness of the simplified link-
age learning techniques. Specifically, we show that presently
employed EDAs are not able to efficiently mix and decide be-
tween building-blocks with pairwise allelic independent com-
ponents. These problems can be solved by EDAs only at the
expense of exploring a vastly larger search space of multi-
variable linkages.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods and Search

General Terms
Algorithms, Design, Theory

Keywords
linkage learning, hierarchical functions, pairwise indepen-
dence

1. INTRODUCTION
Estimation of Distribution Algorithms (EDAs) [14, 19,

17] or probabilistic model-building genetic algorithms (PM-
BGAs) [23] extend the classical framework of Evolutionary
Algorithms (EAs) [10] with a novel approach consisting in
learning and exploiting information from selected individu-
als. Global statistical information is extracted from promis-
ing solutions and used to infer a probabilistic model. New
solutions are then sampled from the probability distribution
model in order to generate the next population.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’11, July 12–16, 2011, Dublin, Ireland.
Copyright 2011 ACM 978-1-4503-0557-0/11/07 ...$10.00.

EDAs can be grouped into various classes based on their
linkage learning mechanisms. The most basic ones like the
PBIL [1], cGA [13] and UMDA [19] assume all the vari-
ables in the problem are independent, thus they use univari-
ate probability distributions and do not require any linkage
learning mechanism. Bivariate EDAs, like MIMIC [2] and
BMDA [24], rely only on the pairwise dependencies between
variables. Finally, multivariate EDAs based on the maxi-
mum entropy principle such as ECGA [12], BOA [21] and
its extension hBOA [20], FDA [18], EBNA [7], DSMGA [35]
and DSMGA++ [34], search for the optimal distribution
model among multiple variables. Having the greatest ex-
pressing power, the later, multivariate class of EDAs is the
most suited for solving nearly decomposable problems [29].

Multivariate EDAs, which must exploit the linkage in-
formation to estimate joint probabilities and construct the
models, generally rely on the exploitation of pairwise link-
ages to construct the higher order models, as the exploration
of the whole possible search space of multivariable linkage
is a computationally very expensive task – exponential in
the size of interactions covered. For example, ECGA builds
the marginal product models by merging building-blocks ac-
cording to the Minimum Description Length principle [26].
As only the merging of two building-blocks is considered, in
the very beginning of model building the method can only
exploit pairwise dependency. BOA also relies on pairwise
dependency as only one addition or deletion of an edge is
considered in each step.

As the “innovation time” (linkage learning) of recombina-
tive algorithms must be less than the “takeover or conver-
gence time”(mixing and decision making between competing
building-blocks) [11], the precision of the linkage model in
early iterations is critical.

There is a vast literature on the influence of model ac-
curacy on the performance of EDAs, considering both the
underfitting (missing important dependencies) and overfit-
ting (spurious dependencies) of the linkage models [33, 25,
3, 4, 16, 15, 27, 32, 6].

Although it is shown that both types of model inaccuracies
more or less hinder EDAs performance, so far no problem
could be pointed out for which these methods completely
fail. Studies aimed at finding such problems [3, 4], used
allelic pairwise independent functions like the parity func-
tion, where variables appear to be independent when ob-
serving only two of them, albeit there is a strong depen-
dency among bigger groups of variables. Lacking pairwise
dependency that can be immediately exploited, such func-
tions were believed to be difficult for EDAs. However, ex-
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periments demonstrated that the parity function and the
other proposed pairwise allelic independent functions could
still be solved by specific EDAs within a polynomial number
of function evaluations to the problem size [3].

This paper focuses on settling the open question, whether
or not the heavy reliance on pairwise exploitation in present
EDAs implies a weakness on linkage learning for some nearly
decomposable problems – a class of problems for which EDAs
are considered well-suited.

We first review previous work regarding the performance
of EDAs on pairwise allelic independent functions and present
our opinion of why these proposed problems do not pose a
real challenge to EDAs. Then, following these observations
we introduce another allelic pairwise independent function
and experiment on it. Finally, we have some analysis and
conclusions on the empirical results and we also investigate
under which conditions can be the proposed problem effi-
ciently solved.

2. PREVIOUS WORK
One of the simplest ways to design an allelic pairwise in-

dependent function for the binary case is to assign the same
fitness to the individuals with the same parity of unitation.
The parity function is the generalization of the exclusive or
operator and the Walsh transform, being:

parity(X) =

{
Ceven if u(X) is even

Codd otherwise
(1)

where u(X) is the unitation or bit count of string X, and
Ceven and Codd are constants.

Having the parity function as the elementary building-
block, Coffin and Smith [4] described the concatenated parity
function (CPF) and the concatenated parity/trap function
(CP/TF) in their work.

CPF is defined as a concatenation of parity functions:

CPF (X) =

m−1∑
i=0

parity(Xik, Xik+1 . . . Xik+(k−1)) (2)

where m is the number of concatenated parity functions.
A more difficult problem can be derived from the parity

function by concatenating deceptive traps with the CPF,
resulting in the CP/TF:

CP/TF (X) =

m−1∑
i=0

{
parity(xik . . . xik+(k−1) if i is even

trap(xik . . . xik+(k−1) otherwise

(3)
In concatenated trap functions [5], the fitness gradient

leads search away from the solution to each block. Each
block of length k is maximally rewarded if it is contains
all but ones; for the other cases, the fitness of the block is
directly proportional with the number of zeros, the string of
all zeros being a strong local optima:

trap(X) =

{
k if u(X) = k

k − 1− u(X) otherwise
(4)

Coffin and Smith [4] found that the hBOA, scales expo-
nentially on these problems. As hBOA is a state-of-the-
art multivariate EDA which have shown robust and reliable
performance on other nearly decomposable problems, the
authors concluded that CPF exemplifies the class of hard

j l = 2 l = 3
0 1111 11111111
1 1010 10101010
2 1100 11001100
3 1001 10011001
4 11110000
5 10100101
6 11000011
7 10010110

Table 1: Walsh codes

problems for EDAs. However, in a later study Chen and
Yu [3] demonstrated that both the CPF and CP/TF can
be solved by some EDAs in polynomial time. The CPF is
solved by the cGA and ECGA, while CP/TF can be ad-
dressed only by the later method. They also empirically
demonstrated that the overfitting phenomenon may be ac-
countable for the exponential scalability of hBOA on CPF,
as their experiment of artificially injecting spurious linkages
into the ECGA resulted in an exponential runtime. An-
other work [6] had shown that the exact model building in
Bayesian network based EDAs, results in correct linkage de-
tection and efficient solving of the CPF.

In their attempt of designing a problem that deceives link-
age learning and consequently allelic convergence as well,
Chen and Yu [3] constructed a harder test problem, with
fewer global optima, that is based on Walsh codes.

Walsh functions [8, 9] are defined as:

ψ(x) =

{
1 if u(x ∧ j) is even

−1 otherwise
(5)

where x and j are bit-strings of length l and ‘∧’ denotes
bit-wise logical AND operation.

The i-th bit of a Walsh code Wj of length 2l is given by
the following formula:

Wj [i] =
1

2
(ψ(i− 1) + 1) (6)

which converts analog -1 in Walsh functions to digital bit 0.
Table 1 shows the Walsh codes of length 22 and 23. Walsh

codes are allelic-pairwise independent except the first bit,
which is fixed and so are their complements. For any block
size 3 < k < 2l, one can choose from each Wj an almost ar-
bitrary combination of k bits (the first, constant bit should
not be considered), to obtain a group of allelic-pairwise inde-
pendent strings. Since the number of Walsh codes of length
k is much smaller than 2k−1 - the number of binary strings
of same length, containing an even number of ones, Chen
and Yu [3] reasoned that a concatenated function based on
these functions should be much harder to solve. However,
their experimental results showed that cGA still solves the
proposed concatenated Walsh code function in polynomial
time. The authors concluded, that the answer to the ques-
tion regarding the existence of problems which require the
O(l2k) time to build a exact distribution model, must be
postponed.

2.1 EDAs and Problem Difficulty
cGA does not model linkages groups and in [3] it was

shown that the ECGA is not able to learn the linkages in
parity subproblems. However, these methods can solve these
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pairwise allelic independent functions as they have a quite
large number of global optima. For example, half of the
configurations are optimal in the case of the parity function.
Therefore, CPF has 2m(k−1) optima, where m is the number
and k is the size of the parity subfunctions. The Hamming
distance between any configuration and the closest global
optima can not exceed m and on average a randomly gener-
ated binary string would require m/2 successful mutations.

Because the subproblems are completely separable, no
matter which subproblem converges slower, it always re-
quires only polynomial time. In this way the Walsh code
function, where there are fewer optima in each block, can
also be solved.

We think that these functions are not suited to exemplify
hard problems for EDAs, because they target only one kind
of difficulty, the one regarding linkage learning. Goldberg
[11] identifies the three traits for a competent recombinative
framework. Competitive algorithms should:

1. Ensure the identification (supply) of raw subsolutions
or building-blocks.

2. Make good decision between competing building-blocks.

3. Mix subsolutions efficiently so the discovery of even
more fit, higher order building-blocks happens before
irreversible decisions are made at (2). Put in another
way, “innovation time” should be less than “takeover
or convergence time”.

As multivariate EDAs try to incorporate all three traits,
a proper test functions should challenge all these aspects.
So far, the proposed functions targeted only (1), by making
the identification of building-blocks difficult. We asses, that
if hard linkage-learning is combined with te requirement to
mix and decide between building-blocks, EDAs relying on
pairwise independency exploitation will not be able to solve
this kind of problems efficiently.

3. THE HIERARCHICAL PAIRWISE ALLELIC
INDEPENDENT FUNCTION

By embedding pairwise allelic independent functions in a
hierarchical structure, we can build a test function which is
able to challenge the competitive recombinative framework
at all three levels. Pairwise independence makes building-
block identification hard, while the hierarchical structure
demands both efficient mixing and correct decision making
with regard to the building-blocks.

Although having a gross-scale building-block structure, hi-
erarchical problems are hard to solve without proper prob-
lem decomposition as the blocks from these functions are
not separable. The inherent difficulty of hierarchically de-
composable problems arise from the fact that a building-
block can have multiple context-optimal settings. In this
way, there is always more than one way to solve a (sub-
)problem [30], leading to the separation of building-blocks
“fitness”i.e. contribution to the objective function from their
meaning. This conceptual separation induces the non-linear
dependencies between building-blocks: providing the same
objective function contribution, a building-block might be
completely suited for one context whilst completely wrong
for another one. Therefore, the fitness of a building-block
can be misleading if it is incompatible with its context. How-
ever, the contribution of the building-blocks indicate how

can the dimensionality of the problem be reduced by express-
ing one block in a lower level as one variable in the upper
level. The formation of higher order building-blocks from
lower level ones, reduces the problem dimensionality. If a
proper niching is applied and the promising subsolutions are
kept until the method advances to upper levels (where a cor-
rect decision can be made) the hierarchical difficulty can be
overcome. Methods employing multivariate linkage-learning
and a form of niching, like the ECGA, hBOA, DSMGA++
can efficiently solve hierarchical problems like HIFF [30] and
HXOR [31], where the basic building-blocks are the bits of
the binary string.

In our proposed setup, the basic building-blocks for the
hierarchical structure are based on Walsh codes of length k.
This set of elementary building blocks is denoted by W k

j .

We design an another set of competing building blocks W
k
j ,

which are obtained by bit-wise negation of the elements from
W k

j . From the definition of Walsh codes results that the
elements from these sets are orthogonal, thus allelic-pairwise
independent.

The generalized Walshcode rewarding functions is defined
as:

ω(x) =


1 if x ∈W k

j

1 if x ∈W k
j

0 otherwise

(7)

Using ω(x) we define a completely separable problem,
which concatenates m Walsh code based subproblems:

CWCF (X) =

m−1∑
i=0

ω(Xik, Xik+1 . . . Xik+(k−1)) (8)

The CWCF is hard for current model building strategies
in EDAs, thus it should present an adequate challenge to
step (1) of the recombinative framework - the identification
of building-blocks.

For challenging step (2) and (3) we employ a hierarchical
scheme based on the XOR relation, where joint building-
blocks are only rewarded, iff the two composing valid building-
blocks are bit-wise complemental.

However, the Walsh code based subfunctions can not be
directly inputted in the hierarchical scheme. Each subfunc-
tions may have a large number of optimal settings, which
could lead to an exponential number of competing schemata,
which in turn imply the need for an exponentially growing
population. To avoid this, a mapping function is introduced,
which reduces the number of competing schemata to two:

ξ(x) =


0 if x ∈W k

j

1 if x ∈W k
j

− otherwise

(9)

We assume ξ to be a vectorized function, where for multiple
inputs it outputs a string, where the i-th character is the
mapping for the i-th input.

Thus, schemata from W k
j map to 0, schemata from W

k
j

map to 1, while all other schemata are considered invalid
and are mapped as ‘-’. Mapping the solutions to CWCF ,
one obtains a string of length m, just one symbol for each
subproblem and two competing initial schemata, 0 and 1.
The mapped string is evaluated according to HXOR. Invalid
blocks, coded with the ‘-’ are not taken into account.
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Figure 1: Hierarchical Pairwise Allelic Independent Function based on Walsh code subfunctions and HXOR.

Finally, we can formally define a hierarchical pairwise al-
lelic function (HPAIF) as being:

HPAIF (X) = CWCF (X) +HXOR(ξ(X)) (10)

For a complete hierarchical evaluation, where at each level
the number of building-blocks is halved, m must be a power
of two. In this paper we experiment with HPAIF func-
tions based on m = 2h Walsh code based subfunctions,
h = {2, 3, 4} hierarchical levels. The length k of the ba-
sic Walsh code subfunctions take values between 5 and 12.

HPAIF is visually depicted in Fig. 1.
The difficulty of HPAIF increases along both with the

value of k and h. The fraction between W k
j and 2k dimin-

ishes as k increases, thus the task for step (1), discovery
of good schemata, becomes harder and harder. The value
h impacts the difficulty for step (2) and (3), good decision
making and efficient mixing.

HPAIF is a hard problem if a correct linkage model is not
used as there is a non-linear dependence between subfunc-
tions, and without a correct mixing of building-blocks higher
order configurations are very hard to discover.

The function has 2 ∗ |W k
j | global optima, where |W k

j | is
the cardinality of the Walsh code set. This value is 8 for
k ∈ [5, 7] and 16 for k ∈ [8, 12]

4. PERFORMANCE OF ECGA ON HPAIF

4.1 The Extended Compact Genetic Algorithm
The ECGA [12] is a multivariate extension of the Com-

pact Genetic Algorithm [13] based on the key principle that
learning a good probability distribution of the population is
equivalent to the linkage learning process. The measure of a
good distribution is quantified based on minimum descrip-
tion length (MDL) models. MDL is pillared on the concept
that any regularity in a given set of data can be used to
compress the data. The best hypothesis for a given set of
data is the one that leads to the largest compression. Conse-

quently, a tradeoff between model accuracy and complexity
must be found.

MDL restriction reformulates the problem of finding a
good distribution as minimizing both population representa-
tion (population complexity – Cp) and the cost of represent-
ing the model itself (model complexity – Cm). Hence the
combined complexity criterion Cc to be minimized is given
by:

Cc = Cp + Cm (11)

The probability distribution used by the ECGA belongs to
the Marginal Product Model (MPM), a class of probability
model. Subsets of variables can be modeled jointly as par-
titions, providing a direct linkage map. Partitions together
with the products of marginal distributions over them they
form the MPMs.

The MPM concept is illustrated in Table 4.1 over a 3 bit
problem with [1, 3], [2] as partitions. The first and third bit
are jointly distributed while variable [2] is independent. The
compound partition [1,3] can have four settings: {00, 01, 10,
11}. The probability distribution for the partitions is given
by the frequency of the individuals in the population with
those bit values.

Starting from a random population, the ECGA applies the
process of evaluation, selection, MPMs based model-building
and sampling until a halting criterion is met.

In its model-building phase, the ECGA greedily searches
the space of possible partitions guided by the Cc, evaluat-
ing all pairwise partition merges and always retaining the
best one until no more improvements can be made. Given
a partition configuration, their probability distribution are
estimated by counting the frequencies of each different par-
tition setting in the population.

The model building process is outlined in Algorithm 1.
The method has O(n3) complexity over the combined com-
plexity criterion evaluations as line 5 iterates over pairs of
variables. This can be intuitively seen as

(
n
2

)
has complex-
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Algorithm 1: Model-building in the ECGA

1 Build initial model m where each variable is an
independent partition;

2 repeat
3 mbest ← m;

4 foreach [p, q] from the
(|m|

2

)
set of possible pair

partitions of m do
5 Form new model m′ based on m but with p and

q merged into a joint partition;
6 Evaluate combined complexity criterion Cc(m

′);
7 if m′ improves over mbest then
8 mbest ← m′;

9 m← mbest;

10 until No improvement was found ;

ity O(n2). Implementing a cache to avoid recomputation of
MPMs, can decrease the model by one factor.

4.2 Experiments
We conducted scalability experiments on concatenated shuf-

fled HPAIF for ECGA with tournament size 8, where min-
imal population sizes were determined with the bisection
method [22]. cGA was omitted, as it uses an univariate
model, thus is not able to solve hierarchical functions.

We searched for population sizes up to the maximal size
of 409600 (initial population size of 100 doubled 12 times),
for wich 19 out of 20 trial runs are successful, in the bound
of a maximum N = 1000 generations. If such population
size could be determined using the bisection method, we
ran ECGA 50 times for each problem size and averaged the
results from the successful runs.

Experiments considered HPAIF functions with number of
subfunctions m = {22, 23, 24} and basic subfunction size k =
[5− 12].

In a first step we investigated how hard is the proposed
HPAIF function without the linkage learning task. We run
a modified ECGA that is informed about the underlaying
basic structure, with linkage groups for the m subfunctions
hardwired. Knowledge about the hierarchical structure was
not inputted. As the search space is sampled according to
the correct basic linkages, the identification and mixing of
building-blocks is much easier.

Multivariate EDAs can efficiently solve hierarchical prob-
lems. Thus, as expected, the basic structure injected, in-
formed ECGA, solved each test instance quite easily. For the
hardest test case, with k = 12 and m = 32 (total problem

[X1, X3] [X2]
P (X1 = 0 and X3 = 0) = 0.0 P (X2 = 0) = 0.25
P (X1 = 0 and X3 = 1) = 0.5 P (X2 = 1) = 0.75
P (X1 = 1 and X3 = 0) = 0.5
P (X1 = 1 and X3 = 1) = 0.0

Table 2: MPM over 3 variables. X1 and X3 are
linked together defining a joint distribution where
X1 having the same values as X3 has probability 0.0.
This, together with the information that X2 is three
times more likely to be 1 than 0 helps focusing the
search.
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Figure 4: Scaling of the minimal population size
and number of average objective function evaluation
on HPAIF with k={9,10,11,12}, for the linkage in-
formed ECGA and normal ECGA. Results are pre-
sented only for m=4, as for higher values the ECGA
could not perform within the traced domains.

size of 384 bits) the bisection method determined a required
populations size of 22400 with which the method averaged
198240 objective function evaluations until convergence.

While the assumption of hardwired linkages is not realis-
tic, this experiment helps in determining an absolute lower
bound on the performance of ECGA. It also shows, that if
linkages are detected in a timely manner, the efficient solving
of HPAIF is manageable.

The scalability of ECGA regarding minimal population
size on HPAIF for k = {5, 6, 7, 8} and m = {4, 16, 32} is
depicted in Fig. 2. The scaling of the number of average
objective function evaluations for the same k-s and m-s is
presented in Fig 3. As a baseline for comparison, the per-
formance of the linkage informed ECGA is also included.

Contrary to our initial expectation, for k = {5, 6} the
ECGA solved HPAIF for all hierarchical levels, with a scal-
ability proportional to the one depicted by the informed
ECGA. Without an adequate model, solving reliably HXOR
with 4 hierarchical levels, 32 variables is not a trivial task.
A closer look to the MPMs reported through the runs re-
vealed that the ECGA is able to learn some of the good
linkages on HPAIF. This is surprising, as it was believed
that ECGA should be unable to learn the linkages between
variables in the Walsh code subfunctions [3]. The expla-
nation for this result will require a more in-depth analysis.
Our first intuition is, that due to a random sampling bias,
some Walsh codes based schemata are overrepresented in the
selected individuals from the first generations. This invali-
dates the presumption of perfect pairwise orthogonality and
makes possible the detection of some linkages.

For k = 7 the ECGA could successfully solve only the
HPAIF with m = {2, 3}. For m = 4 the method was not
able to attain reliably the global optima. While useful link-
age groups were discovered in this case also, their efficient
combinations was not possible. The formed MPMs were
heavily biased toward few configurations which more often
than not, did not contain complementary, most competing
schemata. For k = 8 the method is only successful form = 4,
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Figure 2: Minimal population sizes on HPAIF with k={5,6,7,8}, for the linkage informed ECGA and normal
ECGA, found with the bisection.

where the building-block mixing requirements for the suc-
cessful solving are low.

This trend holds for k = {9, 10, 11}, where the ECGA
is only able to discover one of the optima for the smallest
m. For k = 12 the method is not able to solve any of the
test instances. Even with the minimum number of four sub-
functions and with a maximum population size of 409600
the method only found a global optima twice in the 20 runs
performed by the bisection procedure.

Performance of the ECGA with regard to the population
size and average number of function evaluations, again us-
ing as a baseline the performance of the informed ECGA, is
depicted in Fig 4. It can be observed that at k = 11 there
is a complexity explosion, with a several orders of magni-
tude increase in the minimal population size and number of
average number of objective function evaluations.

The difficulty of HPAIF is twofold and is controlled by the
parameters k and m = 2h. Bigger k-s stress a method ability
to discover good building-blocks, while higher values for m
require better and more performant building-block mixing
and decision making. In our experiments the ECGA showed
a remarkable and unexpected robustness in tackling bigger
k-s. In the long run it could discover good schemata and
sometimes even deduce parts of their underlaying linkage
map. This is in line with the conclusions of previous exper-
iments [4, 3], that found that it is difficult to design very
hard problems for EDAs by targeting the linkage learning
task.

However, ECGA showed a much higher sensitivity to the
parameter m, which targets task (2) and (3) of the recombi-
native framework. Without a prompt and qualitative model,
the ECGA failed to efficiently mix building-blocks and de-
cide between competing schemata. The experiments showed
that if the correct linkages are not detected in time, efficient
mixing of subfunctions is not possible at higher levels due
to allelic premature convergence.

Relying heavily just on pairwise linkage detection may
heavily prolong the time needed to identify and supply raw
subsolutions or building-blocks. This can fatally hinder the
performance for any problem where efficient discovery of
even more fit, higher order building-blocks is vital.

5. CONCLUSIONS AND FUTURE WORK
Present multivariate EDAs heavily rely on the exploita-

tion of pairwise linkages to construct higher order models,
to avoid the computationally very expensive task of search-
ing through the whole possible search space of multivariable
linkages. Historical attempts to outline scenarios for which
this approach would lead to the failure of the optimization
process were seldom successful.

In this paper we argue that with the current approach
is not possible to efficiently solve problems that require the
mixing and decision making among building-blocks that are
hard to discover using the current approaches as they do not
exhibit pairwise interactions. To demonstrate this, we intro-
duced the Hierarchical Pairwise Allelic Independent function
based on Walsh code subfunctions and hierarchical XOR re-
lation and showed that ECGA can not solve it in an efficient
manner.

We conclude that current model building techniques can
heavily increase the “innovation time” of the methods. This
is problematic for problems where mixing of subsolutions is
required. Here, the takeover and convergence mechanism
will operate on an incomplete set of building-blocks, leading
to allelic premature convergence.

In a future effort, we will investigate how ECGA and other
EDAs can discover Walsh code based linkages. Future work
should also focus on finding computationally cheaper meth-
ods to asses multivariate dependency which preferably can
be implemented in parallel architectures. Previous result
had shown that an efficient parallel EDA could even scale
up to billion bit sized problems [28].
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Figure 3: Number of average objective function evaluations on HPAIF with k={5,6,7,8}, for the linkage
informed ECGA and normal ECGA, using population sizes determined by the bisection method.
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