
Advanced Neighborhoods and Problem Difficulty Measures

Mark Hauschild
Missouri Estimation of Distribution Algorithms

Laboratory (MEDAL)
Dept. of Mathematics and Computer Science

University of Missouri in St. Louis

mwh308@umsl.edu

Martin Pelikan
Missouri Estimation of Distribution Algorithms

Laboratory (MEDAL)
Dept. of Mathematics and Computer Science

University of Missouri in St. Louis

pelikan@cs.umsl.edu

ABSTRACT
While different measures of problem difficulty of fitness land-
scapes have been proposed, recent studies have shown that
many of the common ones do not closely correspond to the
actual difficulty of problems when solved by evolutionary al-
gorithms. One of the reasons for this is that most problem
difficulty measures are based on neighborhood structures
that are quite different from those used in most evolutionary
algorithms. This paper examines several ways to increase
the accuracy of problem difficulty measures by including
linkage information in the measure to more accurately take
into account the advanced neighborhoods explored by some
evolutionary algorithms. The effects of these modifications
of problem difficulty are examined in the context of several
simple and advanced evolutionary algorithms. The results
are then discussed and promising areas for future research
are proposed.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Con-
trol Methods, and Search; I.2.6 [Artificial Intelligence]:
Learning; G.1.6 [Numerical Analysis]: Optimization

General Terms
Algorithms, Performance

Keywords
Genetic Algorithms, Hierarchical BOA, estimation of distri-
bution algorithms, difficulty measures

1. INTRODUCTION
Understanding why certain problems are more difficult

than others would aid researchers greatly in evolutionary
computation. Towards this goal, many different measures
have been proposed to assess problem difficulty for evolu-
tionary algorithms and other metaheuristics. Some of the

most common are the fitness distance correlation [10], the
autocorrelation function [28], the signal-to-noise ratio [7],
and scaling [27]. A number of studies have been done to
measure the effectiveness of these measures on various types
of optimization problems [28, 10, 12, 26]. However, a re-
cent study [17] showed that in many cases these measures
of problem difficulty did not correlate with the actual com-
putational requirements of an advanced evolutionary algo-
rithm, the hybrid hierarchical Bayesian optimization algo-
rithm (hBOA) [18, 19, 16] and there are several studies that
presented critical views on various measures of problem dif-
ficulty [23, 15].

One of the reasons for the lack of correlation between the
measures of problem difficulty and the actual performance
of advanced evolutionary algorithms is that the measures
of difficulty and the evolutionary algorithms use different
neighborhood structures. In most analyses to date, problem
difficulty measures would exclusively use the single-bit flip
neighborhood, in which candidate solutions are represented
by binary strings and any two strings different in exactly
one string position are considered neighbors. This means
that the evolutionary algorithm is assumed to explore the
search space by changing one bit or one variable at a time
and the distance of two solutions is defined by the Hamming
distance. On the other hand, many advanced evolutionary
algorithms are capable of identifying interactions between
problem variables and they use this information to change
groups of bits or problem variables at a time, or they use
other advanced operators capable of performing nontrivial
modifications to solutions strings. It is possible that diffi-
culty measures that use simple distance measures such as
Hamming distance are simply not able to capture the dif-
ficulties inherent to certain types of problems when algo-
rithms are using more complex neighborhoods to explore
the search space.

The purpose of this paper is to explore whether it is pos-
sible to increase the accuracy of the problem difficulty mea-
sures in the context of advanced evolutionary algorithms by
using the neighborhood structures that more closely corre-
spond to the variation operators used. As the starting point,
this paper considers two difficulty measures, the fitness dis-
tance correlation and the correlation length. These mea-
sures are then extended to explore nontrivial neighborhoods
by exploiting linkage information. The resultant measures
are then applied to a large number of random instances of
additively separable problems. To see how closely the result-
ing difficulty measure matches up to advanced evolutionary
algorithms, their accuracy in measuring the difficulty of ran-

625

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’11, July 12–16, 2011, Dublin, Ireland.
Copyright 2011 ACM 978-1-4503-0557-0/11/07 ...$10.00.

domly separable problems is compared to the actual perfor-
mance from an ideal extended compact genetic algorithm
(ECGA) [8] given exact linkage information and the hier-
archical Bayesian optimization algorithm (hBOA) [18, 19,
16]. To provide a point of reference, the results are also an-
alyzed with respect to the performance of the simple genetic
algorithm (GA) with uniform crossover.

The paper is organized as follows. Section 2 outlines the
class of random additively separable problems. Section 3
describes the algorithms tested. Section 4 describes the
problem difficulty measures considered in this paper and
their modifications using nontrivial neighborhoods. Sec-
tion 5 presents the experimental results. Lastly, section 6
summarizes and concludes the paper.

2. RANDOM ADDITIVELY SEPARABLE
PROBLEMS

The fitness of an additively separable problem is defined
by a sum of subfunctions of non-overlapping proper subsets
of its variables [6]:

fsep(X0, X1, . . . , Xn−1) =
m−1∑

i=0

fi(XIi) (1)

where each XIi denotes one of the subsets of
{X0, . . . , Xn−1}, and each fi denotes one subfunction.

In this paper we consider instances of random additively
separable problems (rASP) where each subset is of the same
size k. Each subfunction is defined as a lookup table which
specifies a return value for each combination of bits of the
corresponding subset. This lookup table covers all possible
instantiations of bits in each subfunction and is generated
randomly using the same distribution for each entry in the
table (in our case, the values are generated using the uniform
distribution over the interval [0, 1). Each random instance
is fully described by its total size n, the partition size k and
the lookup tables for each partition.

To make the instances more challenging, string positions
in each instance are shuffled by reording string positions
according to a randomly generated permutation using the
uniform distribution over all permutations. The algorithm
used to solve the rASP instances in this paper is based on
refs. [21, 22].

3. ALGORITHMS

3.1 Simple Genetic Algorithm
The genetic algorithm(GA) [9, 5] evolves a population of

candidate solutions typically represented by binary strings
of fixed length. The starting population is generated at
random according to a uniform distribution over all binary
strings. Each iteration starts by selecting promising solu-
tions from the current population; in this work we use bi-
nary tournament selection without replacement. New solu-
tions are created by applying uniform crossover and bit flip
mutation. These new candidate solutions are then incor-
porated into the population using restricted tournament re-
placement (RTR) [16]. (RTR) is a niching method that helps
to ensure diversity in a population by having new candidate
solutions replace solutions that are similar to themselves in
the population. The next iteration is executed unless some
predefined termination criteria are met. For example, the

run can be terminated when the maximum number of gen-
erations is reached or the entire population consists of copies
of the same candidate solution.

3.2 hBOA
Some of the most powerful evolutionary algorithms are

estimation of distribution algorithms (EDA) [2, 14, 11, 20].
EDAs work by building a probabilistic model of promising
solutions and sampling new candidate solutions from the
built model. The hierarchical Bayesian optimization algo-
rithm (hBOA) [18, 19, 16] is an EDA that uses Bayesian
networks to represent the probabilistic model. The initial
population is generated at random according to the uniform
distribution over the set of all potential solutions. Each it-
eration (generation) starts by selecting promising solutions
from the current population using any standard selection
method of genetic and evolutionary algorithms.

After selecting the promising solutions, hBOA uses these
solutions to automatically learn both the structure (edges)
as well as the parameters (conditional probabilities) of the
Bayesian network. In this paper, a greedy algorithm is used
to learn the structure of BNs with local structures [16]. To
evaluate structures, the Bayesian-Dirichlet metric with like-
lihood equivalence for BNs with local structures [3] is used
with an additional penalty for model complexity [4, 16].

The Bayesian network model is then sampled to generate
new candidate solutions, which are incorporated into the
population with RTR. The next iteration is executed unless
the termination criteria are met. For more details about the
basic hBOA procedure, see [18] or [16].

3.3 Ideal ECGA
The extended compact genetic algorithm (ECGA) [8]

starts by generating a population at random according to
a uniform distribution over all binary strings. Each iter-
ation of the algorithm, ECGA builds a marginal product
model (MPM) that divides the variables into multiple par-
titions, which are processed as independent groups. Once
the model is complete, the algorithm then stores the prob-
ability of any particular instance of a partition. This model
is then sampled to generate new candidate solutions, which
are then incorporated into the population using RTR.

For example, consider a problem with variables
{x1, x2, . . . x8}. After model building the ECGA might di-
vide them up into the disjoint partitions {x1, x4}, {x2, x6}
and {x3, x5, x7, x8}. ECGA would then store the probability
of any particular instance of that partition in the promising
solutions and use that probability to generate new instan-
tiations of the partitions when sampling to generate new
candidate solutions. An example of a MPM dividing the
variables in our example into partitions that are treated in-
dependently is given in Figure 1

While in the regular ECGA the partitions are divided up
according to the MDL metric, in this paper we consider
an idealized version of ECGA in which the model build-
ing phase is replaced by a perfect model built from knowl-
edge of the problem instances being solved. By doing this,
the results should not be biased by incorrect linkage groups
learned during the model building phase. In this way we
can compare the performance of an idealized operator with
fixed linkage groups against the different neighborhood dif-
ficulty operators in section 4. For the separable problems
examined in this paper, each partition will contain all the

626

Figure 1: Graphical example of a MPM model built
by ECGA. The variables are partitioned into inde-
pendent groups.

variables in one of the separable subfunctions of size k. In
the rest of this paper we will refer to this version of ECGA
as ECGAperfect.

3.4 Deterministic Hill Climber
For all GA, hBOA and ECGAperfect runs, a determin-

istic hill climber(DHC) was incorporated to improve per-
formance. DHC takes a candidate solution represented by
a n-bit binary string and performs one-bit changes on the
solution that lead to the maximum improvement. This pro-
cess is terminated when no possible single-bit flip improves
solution quality.

4. PROBLEM DIFFICULTY
A fitness landscape consists of three main components:

(1) A set S of admissible solutions, (2) a fitness function f
that assigns a real value to each solution in S, and (3) a
distance measure d that defines a distance between any two
solutions in S. S and f define the problem being solved.
Specifically, the task is to find argmaxx∈Sf(x). On the
other hand, the distance measure depends on the operators
used. Specifically, d(x, y) defines the number of steps to get
from x to y.

Defining a good distance measure that defines these steps
is not always a trivial matter. For binary strings, Ham-
ming distance is often used, which is equal to the number
of string positions in which the two binary strings differ.
This makes sense for evolutionary algorithms that use sim-
ple variation operators such as bit flip mutation, as solutions
varying in a few bits should always be close to each other
in steps. However, for more complex variation operators,
it is possible that more complex neighborhoods should be
considered. For example, the ECGA manipulates groups of
bits at once when sampling a partition so it is possible that
even though two solutions have many different bits between
them, they should still be considered close. In this paper we
will consider 3 different neighborhoods, which are described
in section 4.3.

4.1 Correlation Length
Consider a random walk through the landscape which

starts in a random solution and moves to a random neighbor
of the current solution in each step (neighbors of a candidate

solution are all solutions at distance 1 from it). To measure
problem difficulty based on random walks, we can use the
random walk correlation function (also called the fitness au-
tocorrelation function) [28], which quantifies the strength of
the relationship between the fitness values of a candidate
solution x and the solutions that are obtained by taking a
given number s of steps starting in x. In other words, the
correlation function quantifies ruggedness of the landscape.
For a random walk of m− 1 steps passing through solutions
of fitness values {ft}t=1...m, the random walk correlation
function ρ(s) for gap s is defined as [28]

ρ(s) =
1

σ2
F (m − s)

m−s∑

t=1

(ft − f̄)(ft+s − f̄), (2)

where s is the number of steps (gap), and f̄ and σF denote
the average fitness and the standard deviation of the fitness
values, respectively. Typically, the larger the value of s, the
weaker the correlations between fitness values; ρ(s) can thus
be expected to decrease with increasing s. Furthermore, the
smaller the value of ρ(s), the more rugged the landscape
is. Therefore, the landscape should be relatively easier to
explore for smaller ρ(s) than for larger ρ(s).

The correlation function can be used to compute the cor-
relation length, which estimates the effective range of cor-
relations between states in a random walk. The correlation
length may be defined as [25]

l = − 1

ln(|ρ(1)|) , (3)

The correlation function ρ(s) can also be used to compute
the autocorrelation coefficient δ = 1/(1−ρ(1)) [1], which has
approximately the same value as the correlation length [13].
The smaller the correlation length or autocorrelation coeffi-
cient, the harder the problem instance.

4.2 Fitness Distance Correlation
Consider a set of n candidate solutions with fitness val-

ues F = {f1, f2, . . . , fn} and a corresponding set D =
{d1, d2, ..., dn} of the distances of these solutions to the
nearest global optimum. The fitness distance correlation
(FDC) [10] quantifies the strength and nature of the rela-
tionship between the fitness value and the distance to the
nearest global optimum as

r =
cF D

σFσD
(4)

where σF and σD are standard deviations of F and D, re-
spectively, and cF D is the covariance of F and D. The
covariance cF D is defined as

cF D =
1

n

n∑

i=1

(fi − f̄)(di − d̄), (5)

where f̄ and d̄ are the means of F and D, respectively. Note
that the computation of FDC necessitates knowledge of all
global optima. FDC takes values from [-1, 1]. In general it
should be easier to find the global optimum for smaller val-
ues of FDC than for larger ones as small FDC values means
high fitness values are more likely to be consistently closer to
the global optima than high FDC values.On the other hand,
higher values of FDC indicate that the fitness may often mis-
lead the search away from the global optimum. Thus, the
smaller the values of r, the easier the maximization problem

627

should be. For example, for onemax, r = -1, whereas for the
fully deceptive trap function of size 20, r ≈ +1 [10].

Since in this paper we are using DHC with all algorithms,
we use a variant where only local optima are considered
when calculating FDC. Each value of fi is one local optima
and di is the distance of that local optima from the closest
global optima.

4.3 Neighborhoods
While using the simple bit-flip neighborhood can be suf-

ficient for many problems, evolutionary algorithms often
modify large numbers of related bits at the same time. In
these cases, the simple bit-flip neighborhoods used could
be misleading the difficulty measures, as solutions far apart
in Hamming distance might be close together in the algo-
rithms search space. For example, when you modify even
just one of the k bits in one partition, it is the same as
if you modified all of them, because they correspond to a
single subfunction and the bits or variables in one partition
may thus be strongly correlated or interdependent. To at-
tempt to isolate the effect of different neighborhoods on the
aforementioned difficulty measures, in this work we consider
3 different neighborhoods for correlation length:

Fixed partition This neighborhood is composed of all
strings that are reachable by changing any combina-
tion of bits in a subfunction. For the rASP instances in
this paper, this is all the strings that are reachable by
changing any of the k bits in one of the subfunctions.

Random partition The neighborhood composed of all so-
lutions that are reachable by changing at most x ran-
dom bits. When used on the rASP instances in this
paper, x = k, so that random neighborhoods of k can
be compared to the strongly correlated neighborhoods
of the fixed partition flip. This neighborhood is in-
cluded to show that any change was not due to simply
increasing the number of changed bits.

Single bit-flip This neighborhood is the simple bit-flip
neighborhood commonly used.

Incorporating these neighborhoods into correlation length
is straightforward. To implement the fixed partition neigh-
borhood, the standard random bit walk is replaced by in-
stead each step modifying randomly all of the variables that
are in a single subfunction in the underlying instance. For
the random partition neighborhood, a random set of size k
is generated and all the variables in this set are modified
randomly.

Incorporating these measures into FDC is more difficult.
We must choose a distance metric such that if two solutions
are next to each other in an advanced neighborhood, they
will be of distance 1 in the metric. To do this, in this paper
we consider 2 metrics when using FDC:

Single bit distance The simple hamming distance most
commonly used with FDC, the sum total of the bit
difference between two strings. This is used to compare
the base fitness distance correlation against one that
uses a more advanced neighborhood.

Partition distance This measures the distance by the
amount of differing partitions in two strings. If the
bits in a partition of one solution string are different

from the corresponding bits in the same partition of
a second solution string, then they are considered at
least one apart. Their total distance from each other
is the sum of how many different partitions they have
from each other.

By comparing the two difficulty measures and the meth-
ods of incorporating different neighborhoods, it should be
possible to see whether changing the type of neighbor-
hood the difficulty measure uses improves the measure.
For example, since the fixed partition flip neighborhood
should strongly correspond to the type of neighborhoods
in ECGAperfect, it should be expected that the difficulty
measures should more strongly correspond to the actual
computational complexity of ECGAperfect when using the
fixed partition neighborhood. On the other hand, it would
be expected that the difficulty measures when used with
the random neighborhoods (single bit-flip and random par-
tition) would be less likely to correspond to the actual
computational complexity of the instances was solved by
ECGAperfect.

5. EXPERIMENTS

5.1 Experimental Setup
For each problem instance, the correlation length was esti-

mated by starting with 100 random walks of 1000 steps each,
with all 3 neighborhood step operators used (bit-flip, ran-
dom set flip and fixed partition flip). The correlation length
and autocorrelation coefficient were estimated and if both
these values were within 1% of their actual value with 99%
probability (assuming Gaussian distribution of their means),
the estimates were used. Otherwise, the random walks were
repeated, this time extended by 1000 points each, with the
maximum length of any walk restricted to one million steps.
If the maximum length was exceeded, then the previous es-
timate is used.

The fitness distance correlation for each instance was cal-
culated by starting with 100 samples of 1000 points each and
then the fitness distance correlation r was computed, with
this being done with all 3 different distance metrics. The
local optima for these solutions was then found using DHC
and the fitness distance correlation rl was computed for the
local optima. These two means were returned if they were
within 1% of their true value with 99% probability. If not,
an additional 1,000 points for each of the 100 samples was
generated and the procedure repeated. As with correlation
length, if the number of points exceeded one million, the
procedure was terminated.

The GA, hBOA and ECGAperfect were applied to all
problem instances. For all GA runs, bit-flip mutation was
used with a probability of flipping each bit of pm = 1/n,
with a probability of crossover of 0.6. All algorithms used re-
stricted tournament replacement (RTR) [16] as the replace-
ment operator.

For all problem instances, bisection [24, 16] was used to
determine the minimum population size to ensure conver-
gence to the global optimum in 10 out of 10 independent
runs, with the results averaged over the 10 runs. The num-
ber of generations was upper bounded according to prelim-
inary experiments by n ∗ 4, where n is the number of bits
in the instance. Each run of GA, hBOA and ECGAperfect

was terminated when the global optimum was found (suc-

628

cess) or when the upper bound on the number of generations
had been reached without discovering the global optimum
(failure).

In this paper instances of rASP of n = 120 are examined,
with k = 3 and k = 5. 1000 random instances were con-
sidered for each of these types. The number of DHC flips
required to solve an instance is used to rank instance diffi-
culty, as using CPU time is not reliable when using a variety
of hardware.

5.2 Correlation Length Results
The relationship between correlation length using the

three different neighborhood types and their actual difficulty
when solving instances with a GA with k = 3 is shown in
Table 1a. The first column is the type of instances ranked
by percentage difficulty (decided by number of local search
steps). The second column shows the number of local search
steps used for its set of instances. The remaining columns
show the correlation length using the various neighborhood
operators, with the ranking of the values shown in brackets.
Noting that correlation length should be higher for the eas-
ier instances, the results show a strong relationship between
correlation length using the bit flip neighborhood and the
random partition neighborhood. In general as the problem
difficulty increases, the correlation length decreases. How-
ever,correlation length using the set partition neighborhood
seems to have no relation to the actual difficulty of the in-
stances when solved with the GA.

The results for correlation length with respect to the in-
stance difficulty when using hBOA to solve separable prob-
lems with n = 120 and k = 3 is shown in Table 1b. In the
case of bit flip and random partition neighborhoods, there
seems to be a very weak correlation between the difficulty of
the instance and the corresponding correlation length. As
with GA, the set partition neighborhood shows no relation,
with the 50% most difficult instances having the lowest cor-
relation length of any of the difficulty classes.

To examine the effect of the different neighborhoods on
correlation length on an algorithm using ideal recombina-
tion, Table 1c shows the results on separable problems of
n = 120 and k = 3 when solved with ECGAperfect. Un-
like the previous two algorithms, correlation length with bit
flip neighborhood and random partition neighborhood does
not show any relation to instance difficulty. The set par-
tition neighborhood did not do any better either, failing to
show any relation between instance difficulty and correlation
length.

To examine the effect of increasing problem difficulty on
the relationship between the different neighborhood types,
algorithms and difficulty classes, instances of separable prob-
lems of n = 120 and k = 5 were examined. Table 2a shows
relationship between the difficulty of instances for the GA
and their corresponding correlation length using the three
neighborhood types. Correlation length with bit-flip neigh-
borhood shows little relation with instance difficulty, with
the highest correlation length given to the 50% hardest in-
stances. The set partition neighborhood also is not effective
in ranking difficulty. However, the random partition does
show a relationship.

In Table 2b the results for hBOA are shown on separable
problems of n = 120 and k = 5. For the bit flip and ran-
dom partition neighborhoods, there is a weak relationship
between their actual difficulty and their correlation length.

The set partition seems ineffective in this case, with the
lowest correlation length going to the 25% easiest instances.

Lastly, the results for ECGAperfect are shown in Table 2c.
The bit flip and random partition neighborhoods are unable
to accurately rank the difficulty of the instances. The set
partition neighborhood is even worse, showing an inverse
relationship from what we would expect if the measure was
working accurately, with higher correlation lengths corre-
sponding to harder sets of instances.

As was suggested by the study of Pelikan [17], correla-
tion length is not a good indicator for problem difficulty for
decomposable problems of fixed size and order of subprob-
lems (although in the study in ref [17], the target class of
problems were NK landscapes with nearest-neighbor inter-
actions). Except for a few isolated cases, the use of advanced
neighborhoods did not seem to improve the situation for any
algorithm.

5.3 Fitness Distance Correlation Results
The relationship between fitness distance correlation for

local optima using the two distance measures and the ac-
tual difficulty when solving instances of separable problems
with k = 3 using a GA is shown in Table 3a. In the case
of FDC, as instance difficulty increases the measure should
also increase. The results show a strong relationship when
using bit distance, with it able to accurately rank the in-
stances. The results using partition distance are also good,
only showing a problem differentiating between the 25% and
10% easiest instances.

When solving the aforementioned instances with hBOA,
FDC when using both distance measures is able to accu-
rately rank instance difficulty, as shown in Table 3b. As the
class of instances becomes more difficult, the fitness distance
correlation increases in all cases. However, Table 3c shows
that when solving the same instances with ECGAperfect, the
measures are unable to accurately differentiate between the
harder classes of instances.

To explore the effects of increasing problem difficulty on
FDC for local optima, instances of size n = 120 and k = 5
were examined. Table 4 shows that for these harder in-
stances, FDC with both distance measures was able to ac-
curately rank all the instances. The results for FDC for local
optima show that FDC was able to accurately rank problem
difficulty for all algorithms using both distance measures
when k = 5. Only when using ECGAperfect on the smaller
instances was FDC unable to accurately rank instance diffi-
culty.

6. SUMMARY AND CONCLUSIONS
Most common problem difficulty measures assume stan-

dard bit flip neighborhoods, where the distance between so-
lutions is measured with Hamming distance. However, many
advanced evolutionary algorithms use more complex search
operators than simple bit flips, which can result in more
complex neighborhoods. By modifying some common mea-
sures of problem difficulty to take into account more complex
neighborhoods, this paper attempted to increase their cor-
respondence with the actual difficulty of problem instances
when solved by evolutionary algorithms. These modified dif-
ficulty measures were then used on separable problems and
compared to the actual computational requirements of the
simple GA, hBOA and an ideal version of ECGA using a
perfect model structure.

629

Table 1: Correlation length using different neighborhood types vs instance difficulty for randomly separable
problems of n = 120 and k = 3. The ranking of the measures is shown in brackets.

(a) Separable problems solved with GA of n = 120, k = 3

desc. of DHC steps for correlation length correlation length correlation length
instances GA using bit flip using random partition using set partition
10% easiest 3130.5 27.722(1) 13.882(1) 29.415(5)
25% easiest 3577.6 27.668(3) 13.851(3) 29.424(1)
50% easiest 4165 27.674(2) 13.855(2) 29.420(3)
all instances 5655.3 27.603(4) 13.818(4) 29.417(4)
50% hardest 7145.6 27.531(5) 13.781(5) 29.413(6)
25% hardest 8545.6 27.519(6) 13.770(6) 29.407(7)
10% hardest 10556 27.479(7) 13.740(7) 29.422(2)

(b) Separable problems solved with hBOA of n = 120, k = 3

desc. of DHC steps for correlation length correlation length correlation length
instances hBOA using bit flip using random partition using set partition
10% easiest 4371.6 27.817(1) 13.922(1) 29.417(4)
25% easiest 4645.4 27.719(2) 13.874(2) 29.419(2)
50% easiest 4890.6 27.685(3) 13.855(3) 29.414(6)
all instances 5540.4 27.603(4) 13.818(4) 29.417(5)
50% hardest 6190.3 27.520(6) 13.781(6) 29.419(1)
25% hardest 6798 27.504(7) 13.777(7) 29.418(3)
10% hardest 7828.5 27.556(5) 13.800(5) 29.412(7)

(c) Separable problems solved with ECGAperfect of n = 120, k = 3

desc. of DHC steps for correlation length correlation length correlation length
instances ECGAperfect using bit flip using random partition using set partition
10% easiest 1487.8 27.581(4) 13.804(5) 29.427(1)
25% easiest 1569.9 27.556(7) 13.794(7) 29.426(2)
50% easiest 1669.3 27.581(5) 13.805(4) 29.426(3)
all instances 1873 27.603(3) 13.818(3) 29.417(5)
50% hardest 2076.7 27.624(2) 13.831(2) 29.407(7)
25% hardest 2201.5 27.577(6) 13.803(6) 29.411(6)
10% hardest 2316.3 27.745(1) 13.875(1) 29.421(4)

For correlation length based on Hamming distance, the
results show a weak relationship between the difficulty of
instances solved by the GA. As problem difficulty increases,
this correlation seems to get even weaker. This pattern is
also repeated for hBOA. Unfortunately, using the more ad-
vanced neighborhoods based on linkage information about
the problem did not seem to improve the results. The results
are even worse with ECGAperfect, with correlation length
using set partition neighborhood actually ranking them in
reverse of their actual difficulty. Fitness distance correlation
had noisy results using both distance measures when rank-
ing difficulties for the algorithms tested when k = 3, but as
problem difficulty increased it was able to accurately rank
all of the different classes of instance difficulty.

We expected that using more advanced neighborhoods in
difficulty measures would help improve their accuracy in
predicting the difficulty of solving these problems with ad-
vanced evolutionary algorithms. However, incorporating a
more advanced neighborhood into correlation length did not
seem to help at all. This could possibly be due to correlation
length not measuring what is actually making some of the
instances more difficult than others. In a similar fashion,
the more advanced distance metric in FDC was only able to
match the simple Hamming distance measure for accuracy.

Many critical studies exist that point out that some of the
most common measures of problem difficulty for evolution-
ary algorithms and other metaheuristics have only little to
do with the actual problem difficulty. Since it turns out that
using advanced neighborhood structures that more closely
correspond to the operators used in evolutionary algorithm
does not seem to improve the results, the question of what
measures to use to assess problem difficulty remains open.
One way to tackle this question would be to learn from the
theoretical studies of scalability of GAs [6, 27], which sug-
gest signal-to-noise ratio, scaling, and fluctuating crosstalk
as some of the major factors influencing problem difficulty.
Nonetheless, these factors and other problem difficulty mea-
sures cannot be studied in isolation; otherwise, each measure
will only have a limited scope and the potential for mislead-
ing results will remain great.

Acknowledgments
This project was sponsored by the National Science Foundation

under CAREER grant ECS-0547013 and by the University of Mis-

souri in St. Louis through the High Performance Computing Col-

laboratory sponsored by Information Technology Services, and

the Research Award and Research Board programs. Any opin-

ions, findings, and conclusions or recommendations expressed in

this material are those of the author(s) and do not necessarily re-

630

Table 2: Correlation length using different neighborhood types vs instance difficulty for randomly separable
problems of n = 120 and k = 5. The ranking of the measures is shown in brackets.

(a) Separable problems solved with GA of n = 120, k = 5

desc. of DHC steps for correlation length correlation length correlation length
instances GA using bit flip using random partition using set partition
10% easiest 13328 19.139(2) 6.399(1) 19.435(7)
25% easiest 16877 19.134(4) 6.395(2) 19.448(1)
50% easiest 21211 19.128(5) 6.395(3) 19.446(5)
all instances 33457 19.137(3) 6.395(4) 19.447(4)
50% hardest 45703 19.145(1) 6.394(5) 19.448(2)
25% hardest 56967 19.124(6) 6.387(6) 19.447(3)
10% hardest 71993 19.073(7) 6.373(7) 19.438(6)

(b) Separable problems solved with hBOA of n = 120, k = 5

desc. of DHC steps for correlation length correlation length correlation length
instances hBOA using bit flip using random partition using set partition
10% easiest 7482.9 19.207(1) 6.416(1) 19.444(5)
25% easiest 7945.3 19.203(2) 6.414(2) 19.440(7)
50% easiest 8399.8 19.179(3) 6.408(3) 19.447(1)
all instances 9311.6 19.137(4) 6.395(4) 19.447(2)
50% hardest 10223 19.095(6) 6.381(6) 19.447(3)
25% hardest 10900 19.066(7) 6.374(7) 19.444(4)
10% hardest 11806 19.119(5) 6.390(5) 19.441(6)

(c) Separable problems solved with ECGAperfect of n = 120, k = 5

desc. of DHC steps for correlation length correlation length correlation length
instances ECGAperfect using bit flip using random partition using set partition
10% easiest 2128.3 19.157(2) 6.396(3) 19.437(7)
25% easiest 2273.6 19.129(5) 6.390(5) 19.443(6)
50% easiest 2428.9 19.112(7) 6.386(6) 19.445(5)
all instances 2770.3 19.137(4) 6.395(4) 19.447(4)
50% hardest 3111.7 19.162(1) 6.403(1) 19.449(3)
25% hardest 3415.5 19.153(3) 6.399(2) 19.452(2)
10% hardest 3869.8 19.121(6) 6.383(7) 19.452(1)

flect the views of the National Science Foundation, the Air Force

Office of Scientific Research, or the U.S. Government.

7. REFERENCES
[1] E. Angel and V. Zissimopoulos. Autocorrelation coefficient

for the graph partitioning problem. Theoretical Computer
Science, 191:229–243, 1998.

[2] S. Baluja. Population-based incremental learning: A
method for integrating genetic search based function
optimization and competitive learning. Tech. Rep. No.
CMU-CS-94-163, Carnegie Mellon University, Pittsburgh,
PA, 1994.

[3] D. M. Chickering, D. Heckerman, and C. Meek. A Bayesian
approach to learning Bayesian networks with local
structure. Technical Report MSR-TR-97-07, Microsoft
Research, Redmond, WA, 1997.

[4] N. Friedman and M. Goldszmidt. Learning Bayesian
networks with local structure. In M. I. Jordan, editor,
Graphical models, pages 421–459. MIT Press, 1999.

[5] D. E. Goldberg. Genetic algorithms in search,
optimization, and machine learning. Addison-Wesley,
Reading, MA, 1989.

[6] D. E. Goldberg. The design of innovation: Lessons from
and for competent genetic algorithms. Kluwer, 2002.

[7] D. E. Goldberg, K. Deb, and J. H. Clark. Genetic
algorithms, noise, and the sizing of populations. Complex
Systems, 6:333–362, 1992.

[8] G. Harik. Linkage learning via probabilistic modeling in the
ECGA. IlliGAL Report No. 99010, University of Illinois at

Urbana-Champaign, Illinois Genetic Algorithms
Laboratory, Urbana, IL, 1999.

[9] J. H. Holland. Adaptation in natural and artificial systems.
University of Michigan Press, Ann Arbor, MI, 1975.

[10] T. Jones and S. Forrest. Fitness distance correlation as a
measure of problem difficulty for genetic algorithms.
International Conf. on Genetic Algorithms (ICGA-95),
pages 184–192, 1995.

[11] P. Larrañaga and J. A. Lozano, editors. Estimation of
Distribution Algorithms: A New Tool for Evolutionary
Computation. Kluwer, Boston, MA, 2002.

[12] P. Merz. Advanced fitness landscape analysis and the
performance of memetic algorithms. Evolutionary
Computation, 12(3):303–325, 2004.

[13] P. Merz and B. Freisleben. Greedy and local search
heuristics for unconstrained binary quadratic programming.
Journal of Heuristics, 8(2):197–213, 2002.

[14] H. Mühlenbein and G. Paaß. From recombination of genes
to the estimation of distributions I. Binary parameters.
Parallel Problem Solving from Nature, pages 178–187, 1996.

[15] B. Naudts and L. Kallel. Some facts about so called
GA-hardness measures. Technical Report 379, Ecole
Polytechnique, CMAP, France, 1998.

[16] M. Pelikan. Hierarchical Bayesian optimization algorithm:
Toward a new generation of evolutionary algorithms.
Springer-Verlag, 2005.

[17] M. Pelikan. NK landscapes, problem difficulty, and hybrid
evolutionary algorithms. In M. Pelikan and J. Branke,

631

Table 3: Fitness distance correlation with local op-
tima using different neighborhood types vs instance
difficulty for randomly separable problems of n = 120
and k = 3. The ranking of the measures is shown in
brackets.

(a) Separable problems solved with GA of n = 120, k = 3

desc. of DHC for FDC FDC
instances GA bit distance partition
10% easiest 3130.5 -0.65915(7) -0.67115(6)
25% easiest 3577.6 -0.65378(6) -0.67190(7)
50% easiest 4165 -0.64500(5) -0.66583(5)
all instances 5655.3 -0.62917(4) -0.65771(4)
50% hardest 7145.6 -0.61334(3) -0.64959(3)
25% hardest 8545.6 -0.60603(2) -0.64778(2)
10% hardest 10556 -0.59750(1) -0.64301(1)

(b) Separable problems solved with hBOA of n = 120,
k = 3

desc. of DHC for FDC FDC
instances hBOA bit distance partition
10% easiest 4371.6 -0.65842(7) -0.68031(7)
25% easiest 4645.4 -0.64346(6) -0.67007(6)
50% easiest 4890.6 -0.63894(5) -0.66447(5)
all instances 5540.4 -0.62917(4) -0.65771(4)
50% hardest 6190.3 -0.61940(3) -0.65095(3)
25% hardest 6798 -0.61141(2) -0.64588(2)
10% hardest 7828.5 -0.60218(1) -0.64098(1)

(c) Separable problems solved with ECGAperfect of n =
120, k = 3

desc. of DHC for FDC FDC
instances ECGAp bit distance partition
10% easiest 1487.8 -0.64460(7) -0.67060(7)
25% easiest 1569.9 -0.63868(6) -0.66548(6)
50% easiest 1669.3 -0.63145(5) -0.66049(5)
all instances 1873 -0.62917(3) -0.65771(3)
50% hardest 2076.7 -0.62689(2) -0.65493(2)
25% hardest 2201.5 -0.62623(1) -0.65466(1)
10% hardest 2316.3 -0.63102(4) -0.65841(4)

editors, Genetic and Evolutionary Computation Conf.
(GECCO-2010), pages 665–672. ACM, 2010.

[18] M. Pelikan and D. E. Goldberg. Escaping hierarchical traps
with competent genetic algorithms. Genetic and
Evolutionary Computation Conf. (GECCO-2001), pages
511–518, 2001.

[19] M. Pelikan and D. E. Goldberg. A hierarchy machine:
Learning to optimize from nature and humans. Complexity,
8(5):36–45, 2003.

[20] M. Pelikan, D. E. Goldberg, and F. Lobo. A survey of
optimization by building and using probabilistic models.
Computational Optimization and Applications, 21(1):5–20,
2002.

[21] M. Pelikan, K. Sastry, M. V. Butz, and D. E. Goldberg.
Performance of evolutionary algorithms on random
decomposable problems. In PPSN, pages 788–797, 2006.

[22] M. Pelikan, K. Sastry, D. E. Goldberg, M. V. Butz, and
M. Hauschild. Performance of evolutionary algorithms on
nk landscapes with nearest neighbor interactions and
tunable overlap. MEDAL Report No. 2009002, Missouri
Estimation of Distribution Algorithms Laboratory,
University of Missour–St. Louis, St. Louis, MO, 2009.

[23] S. Rochet, G. Venturini, M. Slimane, and E. M. E.

Table 4: Fitness distance correlation with local op-
tima using different neighborhood types vs instance
difficulty for randomly separable problems of n = 120
and k = 5. The ranking of the measures is shown in
brackets.

(a) Separable problems solved with GA of n = 120, k =
5

desc. of DHC for FDC FDC
instances GA bit dist. partition
10% easiest 13328 -0.40403(7) -0.44834(7)
25% easiest 16877 -0.39321(6) -0.44414(6)
50% easiest 21211 -0.38170(5) -0.44055(5)
all instances 33457 -0.36075(4) -0.43371(4)
50% hardest 45703 -0.33981(3) -0.42687(3)
25% hardest 56967 -0.32773(2) -0.42079(2)
10% hardest 71993 -0.30975(1) -0.41416(1)

(b) Separable problems solved with hBOA of n = 120,
k = 5

desc. of DHC for FDC FDC
instances hBOA bit distance partition
10% easiest 7482.9 -0.37490(7) -0.45194(7)
25% easiest 7945.3 -0.37354(6) -0.44697(6)
50% easiest 8399.8 -0.36649(5) -0.43962(5)
all instances 9311.6 -0.36075(4) -0.43371(4)
50% hardest 10223 -0.35501(3) -0.42780(3)
25% hardest 10900 -0.35022(2) -0.42226(2)
10% hardest 11806 -0.34699(1) -0.41737(1)

(c) Separable problems solved with ECGAperfect of n =
120, k = 5

desc. of DHC for FDC FDC
instances ECGAp bit distance partition
10% easiest 2128.3 -0.36917(7) -0.443970(7)
25% easiest 2273.6 -0.36651(6) -0.438740(6)
50% easiest 2428.9 -0.36419(5) -0.435860(5)
all instances 2770.3 -0.36075(4) -0.433710(4)
50% hardest 3111.7 -0.35731(3) -0.431560(3)
25% hardest 3415.5 -0.35088(2) -0.426320(2)
10% hardest 3869.8 -0.34526(1) -0.421470(1)

Kharoubi. A critical and empirical study of epistasis
measures for predicting ga performances: A summary. In
Selected Papers from the Third European Conference on
Artificial Evolution, AE ’97, pages 275–286, London, UK,
1998. Springer-Verlag.

[24] K. Sastry. Evaluation-relaxation schemes for genetic and
evolutionary algorithms. Master’s thesis, University of
Illinois at Urbana-Champaign, Department of General
Engineering, Urbana, IL, 2001.

[25] P. F. Stadler. Landscapes and their correlation functions.
Journal of Mathematical Chemistry, 20:1–45, 1996.

[26] A. M. Sutton, L. D. Whitley, and A. E. Howe. A polynomial
time computation of the exact correlation structure of
k-satisfiability landscapes. Genetic and Evolutionary
Computation Conf. (GECCO-2009), pages 365–372, 2009.

[27] D. Thierens, D. E. Goldberg, and A. G. Pereira. Domino
convergence, drift, and the temporal-salience structure of
problems. International Conf. on Evolutionary
Computation (ICEC-98), pages 535–540, 1998.

[28] E. Weinberger. Correlated and uncorrelated fitness
landscapes and how to tell the difference. Biological
Cybernetics, 63(5):325–336, 1990.

632

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

