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ABSTRACT

The particle swarm optimisation (PSO) algorithm suffers
from the possibility of premature convergence. This prob-
lem has historically been addressed ab intra – manipulating
velocity and swarm topology – yet the judicious addition of
external mechanisms has been shown to adjust search be-
haviour to yield significantly improved results across many
problems. This paper introduces an addition to the canon-
ical particle swarm algorithm, designed to preserve the di-
versity typically lost by attraction to suboptimal positions.
The proposed excited PSO method stimulates exploration
upon the discovery of a candidate solution by manipulating
the position to which particles are attracted. It is shown to
maintain a suitable degree of diversity for the duration of an
experiment, as well as an ability for self-scaling. Compar-
isons to the canonical PSO algorithm demonstrate improved
solutions in both unimodal and multimodal spaces.
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1. INTRODUCTION
The particle swarm optimisation (PSO) algorithm has the

ability to dynamically scale the range of a swarm’s search [9].
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Its capacity to perform widespread exploration, yet eventu-
ally converge and exploit a found optimum, within suitable
parameters [12, 2], has made it applicable to a large number
of problems. However, the possibility exists for the swarm
to converge on a local optimum prematurely. The parti-
cle swarm has no precaution against such an event and a
poor solution may result. PSO has undergone significant
research regarding the role of parameters [13] and network
topology [7, 10] so as to determine search behaviour that
may ensure suitable exploration occurs before convergence.
Even so, the tendency for a swarm to rapidly lose diversity
has not been sufficiently addressed.

The dynamics responsible for search in the canonical PSO
algorithm can be considered a negative feedback mechanism
with respect to diversity. The relationship between parti-
cle velocity and said particle’s distance to certain positions
may excessively limit the region in which it may freely travel.
Diversity can be engineered into a swarm through suitably
restrictive interaction between particles via topologies [7].
Nevertheless, a small number of well performing particles
have the potential to bias swarm search in a particular re-
gion. Typical diversity preserving mechanisms seek to main-
tain a large portion of the former diversity of a swarm by
insulating against changes in velocity or provincialising can-
didate solution information. Even so, they are often insuf-
ficient for offsetting the rate of diversity loss in PSO, and
it is often difficult for a swarm to recover from the ensuing
converged state. A viable solution may be to intentionally
but judiciously introduce diversity during search.

This paper presents the excited PSO algorithm (EPSO)
which stimulates exploration slightly upon the discovery of
a candidate solution. Excitation occurs through the ma-
nipulation of lbest – the best known position attributed to a
swarm neighbourhood. Specifically, the position is projected
a prescribed distance in the direction of locally improving
fitness. To avoid persistently deceiving particles, should the
stimulated exploration prove fruitless, the predicted position
is made more similar to the actual lbest as more iterations
pass since its discovery. It is anticipated that the excitation
will stimulate diversity such that the prospect of premature
convergence is reduced, while continuing the typical con-
vergence characteristics and self-scaling ability of canonical
PSO.

To confirm the desired effect of EPSO it is compared to
canonical PSO in three high-dimension problems. The ex-
periment consists of multiple experiments in each algorithm-
problem combination, performed under identical conditions
except for the lbest determination method. In addition to
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the final result quality, the fitness and diversity of each
swarm is captured per iteration for the duration of exper-
iments. Results are discussed and form the basis of a hy-
pothesis concerned with the dynamics of EPSO.
This paper first considers existing, related techniques be-

fore introducing the EPSO algorithm. The effect of the in-
ertia weight, constriction factor and swarm topology on di-
versity preservation are discussed. The experiment is then
detailed, including justification for the selection of objective
functions. In the Results section, algorithm performance is
compared and analysed. A discussion then articulates the
strengths and weaknesses of EPSO compared to canonical
PSO, and considers the search dynamics that contribute to
the difference in performance. The paper concludes by sug-
gesting methods by which the algorithm may be improved,
in light of the findings.

2. BACKGROUND

2.1 The PSO Algorithm
A particle’s search behaviour in canonical PSO is informed

by two positions, lbest and pbest [8, 13]. The highest fitness
position discovered by a particle p is referred to as pbest,
while lbest is typically the highest fitness position discovered
by p’s neighbourhood – the particles with which p shares
pbest information. Commonly, lbest is replaced with gbest,
the highest fitness pbest yet discovered by the swarm. The
path traced through the problem space by a particle is a
weighted stochastic sum of the vectors pointing towards the
lbest and pbest positions, referred to as the social and cogni-
tive components of velocity respectively. A swarm’s objec-
tive is to find the ideal pbest.
The velocity ~v, at time t, generating the motion of a par-

ticle p is equal to:

~v
p
i (t) = ω~v

p
i (t− 1) + ~mi(t) (1)

~mi(t) = φsrs~si(t) + φcrc~ci(t) (2)

~si(t) = ~g
p
i − ~x

p
i (t) (3)

~ci(t) = ~b
p
i − ~x

p
i (t) (4)

applied to each vector dimension i, where ω is the inertia
weight introduced by Shi and Kennedy [13]. The position of

p is denoted by ~x, and ~g and ~b are p’s lbest and pbest posi-
tions respectively. Parameter φ is the prescribed component
weight of the social s and cognitive c influences respectively,
and r is a random number in the range [0, 1], also associated
with said components. Note that new r values are gener-
ated for each vector element transformation. The social and
cognitive components of velocity are ~s and ~c respectively.
Velocity ~v is added to the position vector ~x of the concerned
particle at each iteration. As such, a unit of time typically
corresponds to an iteration.

2.2 Controlling Search Behaviour
When a particle is distant to pbest and lbest (which them-

selves are proximate), ~c · ~s → 1. In the velocity calculation
Equation (1) the vectors“cooperate”to drag the particle into
a region R, in which ~c · ~s < 0. Within R, and in moving to-
wards pbest and lbest, both |~c| and |~s| become smaller. Thus
a particle slows down and the chance that the next found

pbest will be local to the previous is increased. Furthermore,
the |~s| of neighbour particles will not be significantly affected
by the new discovery. The reduced velocity of individual
particles and decreased diversity of swarms in this manner
increasingly confines the region in which swarms search. In
the extreme case, R is recursively subdivided by each new
pbest discovery.

Fortunately the inertia weight setting ω and the swarm
topology employed can partially mitigate the tendency to
search within increasingly small regions. A high ω signifi-
cantly preserves the velocity of a particle, and thus it may
escape R by a greater distance and for longer periods, rather
than immediately converging on the region. Inertia weight,
introduced by Shi and Kennedy, has been found to improve
exploration characteristics [13] and is a simple means to pre-
vent greediness. However, the velocity of a particle is still
largely dependent on the magnitude of ~c and ~s as determined
in Equations (3) and (4). Furthermore, the inertia weight
may prolong periods of high velocity, but makes particles
less able to recover once aggressive exploitation begins.

Kennedy and Shi have demonstrated that the constriction
factor [2] allows swarms to easily switch between exploration
and exploitation, but the algorithm has been found more
susceptible to premature convergence than the judicious ap-
plication of inertia weights and capped velocity [9]. Time to
convergence is reduced, but that swarms are more likely to
converge on suboptimal peaks suggests greediness. It should
be seen that scaling velocity, by either the inertia weight or
constriction factor, as a means to preserve diversity is only a
partial solution. The PSO algorithm has shown itself more
than capable in rapidly reducing |~c| and |~s|, and scaling said
vectors does not sufficiently mitigate this behaviour.

The swarm topology employed can help preserve diversity,
but this capacity is tempered by the possibility for a less in-
formed search. When the network topology is such that the
particles in any given connected pair, i and j, have dissimi-
lar neighbourhoods, all particles experience conflicting lbest
advertisements. For i, an lbest originating from j (the lo-
cation of which will have been influenced by j’s neighbours,
of which i has no knowledge) will be tempered by an lbest
inevitably advertised by another member of i’s neighbour-
hood – the particles of which, in turn, have not been directly
influenced by j. The diversity arising from swarm topology,
then, is perhaps better referred to as competition. A suit-
able topology prevents any one pbest from dominating the
search. It is only when an optimum in the problem space
persistently yields pbests for a number of particles that the
swarm is sufficiently influenced to converge upon it.

Mendes and Kennedy have demonstrated that, in employ-
ing network topologies, there is a tradeoff between the util-
isation of collective intelligence and the preservation of di-
versity – determined by the sharing and provincialisation
of lbest information respectively [10]. The authors note
that the toroidal Von Neumann network topology, notably
a structure affording equally limited social influence among
particles, yields consistently high performance across many
objective problems. Diversity arising from such a network
is to be expected. Even so, it should be anticipated that
one family of spatially related lbests will eventually come to
prominence. Subsequent solutions will be biased to that re-
gion, and the swarm will inevitably experience a rapid loss of
diversity in future iterations. While this convergence is ul-
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timately desirable, the rate at which it occurs is potentially
detrimental.
Each of the methods discussed in this section maintain di-

versity in an unpredictable manner. They also tend to pro-
long the desirable, early configurations of particles – which
are often associated with high mean velocity and spatial di-
versity – but do little to offset the possible negative feedback
loop that can aggressively remove diversity, causing swarm
collapse. It seems apparent that methods for intentionally
introducing diversity to swarms may be utilised to prevent
such outcomes, yet such techniques must not excessively in-
terfere with desired swarm search behaviour. Such methods
should be compatible with the strengths of PSO, permitting
convergence, self-scaling and search efficiency.

3. EXCITED PSO (EPSO)
Algorithms such as the fully-informed particle swarm [11]

have demonstrated improved search ability via manipulation
of the lbest position. Given that this position influences
the magnitude of particle velocity, and thus swarm diver-
sity, judiciously modifying lbest may contribute to reduced
incidence of premature convergence. The excited PSO algo-
rithm attempts to effect this outcome by stimulating parti-
cles when it is apparent that they are within a high fitness
region, so as to mitigate stagnation. This section describes
how EPSO determines an lbest position by which excitation
is achieved.
In the velocity update of a particle p, its current lbest

(~g in Equation (3)) is replaced with the position at which
the next pbest of the reporting particle q is expected to be
found. This position ~e, as it applies to particle p at time tc,
is determined by:

~e(tc) = ~b
q
n + d · (1− tc − tu

g
)a · ~u q

, tc − tu ≤ g (5)

where

~u
q = ~b

q
n −~b

q
n−1

(6)

where b is the index set of pbest positions known to the
particle denoted by the superscript, of which n is the most

recently added element. The iteration at which ~b q
n was dis-

covered is noted by tu, while g, d and a are prescribed values.
Note that q is simply the particle whose pbest represents lbest
for p, and so p and q are neighbours, yet p may also be made
equal to q if desired.
As ~e is not the actual lbest, failing to improve its accuracy

for prolonged periods could potentially misinform search.
Parameter a and g both influence the rate at which ~e be-

comes more similar to ~b q
n : the former determines the degree

to which ~e becomes similar to ~b q
n as lbest ages, the period of

which is determined by the latter parameter g. The magni-
tude of d, however, determines the magnitude of excitation.
As such, it is likely that EPSO search performance is more
sensitive to d than a and g.
Position ~e may actually be a low fitness position for much

of the period described by g. It may, for example, over-
shoot an optimum, or the direction of stimulation ~u q may
be tangential to an optimum. Even so, though EPSO stimu-
lates velocity in the direction of ~e, it does not “scout ahead”
at that position. The benefit of ~e is anticipated to be in
the holistic exploration stimulated in the region local to q’s
pbest, inasmuch as the position suggests a region of high
fitness.

Table 1: PSO parameter settings, corresponding to
Equations (1) and (2), for all objective functions.

Parameter Value
φs 2.0
φc 2.0
ω 0.9
Particles 36
Network topology lbest [11]
Iterations 9,000

Table 2: EPSO parameter settings, corresponding
to Equation 5, for each objective function.

d g a

F1 2.5 45 1
F2 2 45 1
F3 1 45 1

4. EXPERIMENT

4.1 Overview
EPSO was compared to canonical PSO across three ob-

jective functions, all in 100 dimensions:

• Ackley’s function [1] (F1):

f(x) =



−20 · exp(−0.2 ·

√

√

√

√

1

n

n
∑

i=1

x2

i )

− exp(
1

n

n
∑

i=1

cos(2πxi)) + 20 + exp(1)

)

where x ∈ [−32.768, 32.768].

• Griewangk’s function [3] (F2):

f(x) =
1

4000

n
∑

i=1

x
2

i −
n
∏

i=1

cos(
xi√
i
) + 1

where x ∈ [−600, 600].

• Axis-parallel hyperellipsoid function (F3):

f(x) =
n
∑

i=1

[i · x2

i ], x ∈ [−5.12, 5.12]

Note that the subscript of x denotes the ith vector element.
In each function the global optimum of zero resides at the
zero vector. As minimisation problems, high fitness corre-
sponds to low function evaluation values. The experiment
consisted of 100 experiments on each objective function with
both the PSO and EPSO algorithms. When initialising
swarms, particles were randomly placed within the x do-
main of each problem space with zero velocity. Parameters
common between the algorithms are detailed in Table 1. The
parameters specific to EPSO for each objective function are
detailed in Table 2. Also note that “self” was included in
the lbest determination method of EPSO. That is, in Equa-
tion (5), q also responds to its own pbest discovery — p = q

in such cases.
During the course of experiments it was found that the

PSO variant most successful across all objective functions
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is that described by Hendtlass [4], where the sum of social
and cognitive components of the velocity vector are modified
such that:

~v(t) = ω~v(t− 1) + (1− ω) · ~m(t)

where ~m is described by Equation (2). This version of the
PSO algorithm was used for the experiments.
It should be noted that the selection of parameters for

PSO and EPSO is not exhaustive, and more successful pa-
rameters, for both algorithms, may exist. The raw perfor-
mance of the algorithms is not as relevant as their compara-
tive performance for this investigation. Note that, as EPSO
is simply PSO with a modified lbest position, any significant
difference in results can be attributed to the effect EPSO
has on search behaviour.
In addition, lbest, gbest and Von Neumann topologies were

tested. Only the results for lbest are presented, as PSO was
found to be most successful with this swarm topology on the
objective functions considered. A duration of 9000 iterations
was found to be adequate to differentiate EPSO and PSO
performance.

4.2 Objective Problem Selection
Ackley’s function is deceptive to algorithms prone to greed-

iness, as attractive local optima may prevent the discovery
of the global optimum. The relative steepness of the local
optima exacerbate this effect. This function should be con-
sidered a specific test of the effectiveness of EPSO diversity
excitation in mitigating premature convergence.
The Griewangk function significantly increases in diffi-

culty during fine-grained search, as the influence of the sum-
mation component drops near the global optimum. As such,
the quality of solutions in this problem are dependent on
the algorithm’s ability to suitably maintain particle vigour
during exploitation. Diversity stimulation methods risk not
being able to effectively scale their influence to permit such
behaviour.
The hyperellipsoid function is unimodal and thus prema-

ture convergence is not possible. Given the relative simplic-
ity of the function, it is not arrogant to expect the optimum
be found quickly. However, the potential still exists for par-
ticle velocity to drop significantly should mutual attraction
reduce the magnitude of the social component of velocity,
and thus particle speed. Slow search may result.

5. RESULTS AND OBSERVATIONS

5.1 Raw Performance
Tables 3 and 4 present the final fitness results for EPSO

and PSO respectively, where Q represents a quartile de-
noted by the subscript. Immediately apparent is premature
convergence in the PSO F1 algorithm-function pair. Note
that such behaviour is not demonstrated on any problem
by EPSO. EPSO also appears more capable in performing
fine-grained search, evidenced by the difference in F2 and
F3 solution quality. Also notable is the size of the quartile
range (Q3 − Q1) for each algorithm-function pair with re-
spect to the fitness associated with a satisfactory solution.
This is most conspicuous in PSO F1 data, where poor so-
lution quality suggests a high degree of greediness in the
canonical PSO algorithm.
The number of iterations each algorithm took to yield the

presented solutions should also be considered. Tables 5 and

Table 3: Final fitness values for EPSO on each func-
tion

Q1 Q2 Q3 Mean

F1 1.48e−3 1.76e−3 2.45e−3 2.02e−3

F2 6.26e−10 1.37e−9 3.87e−9 9.47e−4

F3 1.16e−11 2.61e−11 6.21e−11 1.01e−10

Table 4: Final fitness values for canonical PSO on
each function

Q1 Q2 Q3 Mean
F1 2.63 2.88 3.13 2.86
F2 2.93e−5 9.94e−3 3.97e−2 4.39e−2

F3 1.31e−4 4.21e−4 1.42e−3 5.52e−3

6 present the iterations required for each algorithm-problem
pair to reach the median fitness values presented in tables 3
and 4. In particular, note the Q3−Q1

Q2
, Θ and ∆ results.

Value Q3−Q1

Q2
suggests the degree of consistency in search,

for which high values correspond to low consistency and vice
versa. The consistently high values of PSO in this met-
ric suggest greediness; convergence occurs rapidly after in-
evitably encountering a local optimum, for which F1 is con-
trived. The only problem in which this doesn’t occur to a
noticeable degree in PSO is F3, yet this problem has a sin-
gle optimum. As such, the comparison between PSO’s F1
and F3 performance highlights the performance character-
istics associated with greediness. If high consistency corre-
sponds to marginalised greediness, then EPSO swarms can
be said to enjoy considerable moderation in all problems.
The consistency of fitness solutions and the time taken to
yield them suggests EPSO is generally resilient to premature
convergence.

The Θ column in Table 5 represents the iteration in which
the median of EPSO swarms’ fitness, measured per iteration,
surpassed that of PSO swarms. Note that no EPSO swarm
was subsequently overtaken by a PSO swarm after the Θ
iteration was passed. In each problem it can be seen that
search takes a greater period than Θ iterations to yield a
satisfactory solution, thus EPSO search is a more efficient
algorithm under the experiment conditions. In this context,
efficiency refers to the rate of fitness improvement over iter-
ations.

Another insight into relative search efficiency is the com-
parison of the median number of iterations each algorithm
took to reach PSO’s median fitness value. The ratio of these
values is presented in the ∆ column of Table 5. For F2 and

Table 5: Iterations to median fitness, averaged over
the EPSO experiments. Θ: iteration in which mean
fitness of EPSO swarms first exceeded that of PSO
swarms. ∆: ratio of the median number of itera-
tions taken by EPSO to that of PSO to reach PSO’s
median fitness solution.

Q1 Q2 Q3 Mean Q3−Q1

Q2
Θ ∆

F1 8712 8843 8898 8789 0.02 1626 1.18
F2 8471 8672 8835 8567 0.04 982 0.65
F3 8599 8771 8873 8720 0.03 572 0.51
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Table 6: Iterations to median fitness, averaged over
the PSO experiments

Q1 Q2 Q3 Mean Q3−Q1

Q2

F1 1040 1434 2373 2022 0.93
F2 4337 5572 6382 5437 0.37
F3 7785 8240 8500 8209 0.09

Figure 1: Comparison of median gbest fitness of
EPSO to PSO swarms per iteration. Note that for
iterations beyond Θ, EPSO has higher mean fitness
than PSO.

F3, where PSO search was not excessively affected by pre-
mature convergence, the ∆ values are small. In both prob-
lems there is a clear efficiency advantage of EPSO. In F3,
this is an interesting result for which the cause will be ex-
pounded upon in subsequent sections. The characteristics
of the F1 problem space exacerbate the greediness in pre-
disposed algorithms. This certainly benefits the efficiency
of PSO solutions, yet only until the peak of the local op-
timum is reached and solution quality fails to improve. It
is deceptive, then, to compare algorithm efficiency in this
problem.

5.2 Performance Across Experiments
Consider the comparison of swarm fitness across the du-

ration of experiments. Figure 1 shows the ratio of EPSO
mean fitness per iteration to that of PSO. The iteration at
which the fitness ratio becomes less than one corresponds to
the Θ values in Table 5. Note that the first 100 iterations
are excluded in the calculation of Θ, as the fitness ratio in
this period is significantly influenced by the initial config-
uration of the swarm rather than algorithm behaviour. In
iterations before Θ, EPSO search was generally less efficient
than PSO.
In all three profiles, shown in Figure 1, the advantage

of EPSO’s moderated search is evident. Some important
features to note are the periods during which PSO swarms
first converged, which generally correspond to the Q2 values
in Table 6. The consistent improvement in EPSO fitness
for iterations thereafter is thus due to the inactivity of PSO
swarms. This is most clear in F1, where the smoothness of
the profile is due to comparison to an effectively fixed value,

since PSO solution fitness fails to improve in the later period
of all experiments. This does not obfuscate the qualities of
EPSO search, however. Not only does EPSO exceed the
solution quality of PSO, but the consistency in which it does
so suggests that modest excitation yields a more effective
search strategy.

The rapid relative improvement to fitness ratio in F2 is
due to the collapse of PSO swarms across the period largely
indicated by the quartile range in Table 6. Once again, a
consistent fitness improvement is evident in EPSO swarms
thereafter. While F2 is not as deceptive as F1, there nev-
ertheless appears to be a general fitness limit beyond which
PSO swarm performance cannot improve. It should be recog-
nised that near the global optimum in F2, local optima be-
come more deceptive as the summation component of the
function contributes less to fitness. It appears that the
prominence of the product component in the fitness eval-
uation of F2 at this search scale increases the difficulty of
search such that the resulting frequency of pbest discovery
is too low for PSO search to effectively persist.

In F3, the lack of local optima may have conceivably re-
sulted in a similar search by both algorithms, but it is appar-
ent that EPSO is consistently more efficient. This problem
is notable given that for all positions, except the global op-
timum, there is a local region containing positions of higher
fitness. However, this region becomes smaller upon approach
to the global optimum, and thus particles may be less able to
discover this region quickly when search becomes too fine-
grained. This appears to be the case in PSO. EPSO, by
consistently stimulating diversity, maintains higher veloc-
ity, which partially accounts for greater efficiency. While
the partial convergence of PSO swarms should be expected
given their governing dynamics, in F3 it is evident that this
may occur even in non-deceptive problem spaces.

It should be noted that EPSO swarms are conspicuously
inefficient compared to PSO swarms in the first 250 iter-
ations of the experiments. This may be a result of large
|~u| values (see Equation (5)) in this period due to the ini-
tially excessive diversity of particles. As high diversity cor-
responds to high velocity, and thus high |~u|, the ensuing
excitation by EPSO may be so extreme as to be detrimen-
tal.

5.3 Relative Diversity
Having considered performance across experiments, the

factors that influenced such results are now discussed. The
diversity Φ of a swarm of n particles at iteration t in exper-
iment i is calculated as the mean distance of particles from
the swarm centroid:

Φi(t) =
1

n

n
∑

j=1

∣

∣

∣

∣

∣

~xj(t)−
1

n

n
∑

k=1

~xk(t)

∣

∣

∣

∣

∣

where ~x is the position vector of the particle denoted by
a subscript. This was measured per iteration to create a
“diversity profile” of the experiment. Profiles were then av-
eraged across all experiments for each algorithm-function
pair. This gives some insight into the diversity characteris-
tics of the search. The integral of the mean diversity across
experiments, per iteration, is given by:

Ω =

9000
∑

t=0





1

|s|

|s|
∑

i=1

Φi(t)




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Figure 2: Distribution of diversity per iteration for
EPSO on each problem

Figure 3: Distribution of diversity per iteration for
CPSO on each problem

where i iterates over the set of experiments s. Plotting

1

|s|

∑|s|
i=1

Φi(t)

Ω

for t ∈ [0, 9000] in each algorithm-function pair yields the
profiles in figures 2 and 3.
Each profile represents the polarisation between explo-

ration and exploitation experienced by swarms, as indicated
by the profile’s gradient. A large range suggests a moder-
ated search. An ideal example of this is EPSO F3, which
demonstrates a smooth, consistent scaling of diversity; from
that due to the initial random placement of particles, to fine-
grained search in the late period of experiments. It should
be observed that despite the lack of local optima in F3,
which may have otherwise exacerbated premature conver-
gence, PSO swarms do not have a similarly equitable distri-
bution of diversity to EPSO swarms. This is corroborated
in previous results where PSO is shown to be less efficient
in this search space, which is consistent with the evidence
that reduced diversity correlates to reduced velocity.
It is instructive to consider the opposite case to EPSO F3.

PSO F1 is marked by a sharp decline in the first 1000 itera-
tions followed by two periods of effectively no change in the
diversity distribution. A sharp decline followed by constancy
is symptomatic of the premature convergence demonstrated
in previous results, as the profile indicates that exploration

almost immediately transitioned to swarm collapse. It should
be noted that the swarm cannot converge to zero diversity
due to the conditions of pbest discovery, but the swarm has
effectively done so as the magnitude of diversity is not suf-
ficient to allow other optima to be discovered.

PSO F2 should be observed as the algorithm-function pair
in which search was most strongly polarised. Despite this,
PSO can be said to have effectively solved F2, though it
should be noted that F2 is not difficult in 100 dimensions.
For the majority of search in F2, a swarm may be expected
to improve performance despite little diversity given the pro-
nounced global fitness trend. However, once F2 fitness eval-
uations become sensitive to the product component of the
function, it is apparent that the diversity dynamics of PSO
are not sufficient to allow search to persist.

At approximately 5500 iterations, EPSO swarms increase
diversity and maintain it thereafter. This corresponds to
swarm fitness proceeding below 0.0001, thus swarms occupy
the region in which the product component dominates fit-
ness evaluation in F2. The feedback from the fitness surface
is polarised in this region, as beneficial change in a single di-
mension results in less fitness improvement, but movement
in a generally beneficial direction can be expected to sig-
nificantly (relatively) improve fitness. EPSO should thus
be expected to yield higher quality solutions than PSO in
F2 due to higher diversity. The fixed duration that such
excitation applies, controlled by g and a (Equation (5)), is
also likely to benefit search performance. More generally, it
should be seen that EPSO swarms were able to significantly
modify search behaviour, as evident in Figure 1, as the char-
acteristics of the local fitness surface, or the fitness feedback
from the space, changed.

6. DISCUSSION

6.1 EPSO Dynamics
It may seem contradictory to stimulate exploration when

exploitation appears to be most valuable, as EPSO does.
However, the corollary suggests that immediate convergence
is an acceptable search strategy. Implicit in the presenta-
tion of the EPSO algorithm is the suggestion that particles
should be excited upon discovery of a high fitness region, and
continue to be stimulated as long as the region continues to
yield pbests. EPSO demonstrates such behaviour.

In a multimodal problem space, any given optimum dis-
covered is unlikely to be the global. However, a pbest discov-
ery generally suggests a region of high fitness, an optimum;
let this be region R. It may also indicate a global fitness
trend, or be near to higher fitness optima, and so it might
be more effective to search a region larger than R; let this
be S, and R ∈ S. If diversity, and thus velocity, is stimu-
lated such that a swarm can briefly explore S, higher fitness
solutions may be discovered without having to first exploit
or migrate through R, upon which swarms might also other-
wise prematurely converge. PSO’s polarisation in diversity
suggests that search is typically confined to R once an ex-
ploitation phase begins. Even so, if exploration in S fails
to yield a new pbest, convergence on R is appropriate, as
it is a known region of high fitness, within which swarms
may refine solutions. It seems that, if diversity excitation is
proportional to the frequency of pbest discovery, a suitable
degree of diversity can be maintained, appropriate to the
local fitness surface, thus increasing search efficiency.
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EPSO appears to demonstrate this behaviour. It is read-
ily apparent that excitation stimulates diversity upon pbest
discovery, as the manner of lbest modification frequently
yields a greater |~s| (Equation (3)), especially where d > 1
(Equation (5)). Thus a greater |~v| (Equation (1)) results,
inevitably increasing spatial diversity. A greater |~v| also
increases the distance between fitness evaluation positions.
Should pbest discovery immediately occur in this period of
excitation, then, a larger |~u| (Equation (5)) can be expected.
This increases |~s|, and so the process repeats. This potential
for a positive feedback mechanism regarding diversity may
significantly offset the negative diversity feedback mecha-
nism apparent in PSO.
The dynamics arising from |~u| have an identifiable effect

on results. Consider in F1 that the early period of search
is dominated by exploitation of an attractive yet ultimately
poor optima, to which PSO swarms succumbed in a short
period. The similar fitness of EPSO swarms in this period
suggests that some exploitation of local optima occurred.
However, given that this optima is attractive, one may ex-
pect frequent pbest discovery to occur. Should this activate
the positive feedback mechanism in |~u| to some degree, it
is likely that EPSO swarms would be excited to an extent
that perhaps ensured the discovery of higher fitness optima.
It is notable that no EPSO swarm prematurely converged
in this problem space. While the positive feedback mecha-
nism need not strictly apply for EPSO to avoid premature
convergence, the frequent discovery of pbests is nevertheless
evident in EPSO’s moderated diversity loss in this problem.
Should excitation fail to yield a new pbest, the time-based

nature of the EPSO effect can be seen to permit conver-
gence under canonical PSO. Specifically, where tc − tu = g,

~e = ~bn (see Equation (5)), and thus EPSO behaviour is
identical to canonical PSO in such cases. Note that the
condition tc − tu ≤ g prevents exploration from being stim-
ulated when the period of excitation g elapses. In relation
to the feedback mechanism described above, it can be seen
that excitation is only reinforced if it continues to be useful,
otherwise typical exploitation occurs. Furthermore, during
typical convergence, after the period of excitation elapses,
the next pbest should be expected to be found near to the
previous. If this occurs |~u| will be small, thus the magnitude
of EPSO influence is decreased, reducing its interference in
exploitative behaviour.
This residual influence of |~u| still appears to serve a valu-

able role, however. Consider that persistent fine-grained
search relies on the discovery of a new pbest in an increas-
ingly small region of higher fitness. As such, the probabil-
ity that a particle’s velocity will carry it into this region is
reduced as exploitation progresses and convergence occurs.
Should a particle fail to find the region immediately, it may
be expected that it will do so as it slows and approaches the
previous pbest, as positions immediately local to this for-
mer pbest are likely to have similar fitness. But in doing
so, a particle significantly loses velocity and the efficiency of
search is reduced.
The temporary yet fixed duration of particle excitation

under EPSO may maintain the diversity that PSO swarms
would otherwise lose in this scenario. This increases the
chance that the region will be found while a particle has rel-
atively high velocity, without first requiring excessive con-
vergence. This may be responsible for the inherent advan-
tage of EPSO in search efficiency on each problem, after

the Θ period of iterations. Specifically, in F3 swarms were
persistently involved in the scenario described above, and
consistently higher efficiency is observed in EPSO. Results
in F2 suggest that the fineness required for search to per-
sist eventually became too great for PSO swarms to con-
tinue to improve performance, for whom collapse would have
been exacerbated by infrequent pbest discovery. Slight, tem-
porary diversity stimulation during exploitation appears to
have permitted EPSO swarms to further refine solutions in
such conditions. That this behaviour is permitted at such a
scale is also a positive reflection on the scaling effect of |~u|,
despite the fixed d parameter used in experiments.

6.2 Further Experimentation
The experiment performed in this investigation has con-

centrated on three objective functions for the purpose of con-
firming the viability of EPSO as a diversity preserving mech-
anism. It has been shown to meet this aim, but the selected
problems are only a small subset of the objective functions
typically employed to test heuristic performance. EPSO has
demonstrated similar results on the rotated hyperellipsoid
function and Rastrigin’s function, yet careful selection of ob-
jective function in future investigations may yield a greater
understanding of the dynamics of EPSO search.

While the experiment detailed in this paper has suggested
evidence for the dynamics assumed to be responsible for
EPSO search behaviour, additional experiments have not
yet been designed to confirm the hypothesis. Preliminary
testing has confirmed that EPSO particles have consistently
higher mean velocity than their PSO counterparts, corre-
sponding to increased diversity, during all periods of exper-
iments. Whether this affects the distance between consec-
utive pbests has not yet been investigated, but should be
considered a natural consequence of higher mean particle
velocities. Nevertheless, a specific experiment may confirm
this and also provide more insight into the nuanced aspects
of EPSO search behaviour.

Another potential line of enquiry observes that the EPSO
algorithm interferes minimally with the structure of the canon-
ical PSO algorithm. As such, it could be subjected to the
same mechanisms as canonical PSO, such as inertia weight
tweaking, choice of swarm topology and integration with
other particle behaviours such as WoSP [5]. Sensitivity
to canonical PSO parameter choice has not been tested in
EPSO. A focused investigation may improve understand-
ing of the difference between EPSO and PSO dynamics by
highlighting differences in their performance as a result of
common parameter adjustment.

6.3 Algorithm Refinement
Two main areas are recognised for algorithm refinement:

(A) determination of the direction in which exploration is
stimulated and (B) mitigation of the counteractive behaviour
evident in the early period of search. In (A), this refers to
the composition of position ~u in Equation (5). There exist
similar methods of similar computational complexity that
may serve the same role. However, the relationship between
the current determination method of ~u and EPSO’s ability
to self-scale should also be considered. |~u| may be critical to
this, but the direction of ~u may not. A survey of ~u deter-
mination methods and the sensitivity of scaling to |~u| would
be prudent.

In Figure 1 there is a period, before the Θ iterations, in
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which EPSO’s performance is suboptimal to PSO. It was
argued that this is due to EPSO’s attempt to leverage lo-
cal information, which is less useful when particles occupy
distant regions of the problem space – presumably only ben-
efiting search when the fitness surface is varied in such cases.
Although EPSO soon overtakes PSO in efficiency, one should
consider that fitness evaluations are nevertheless taking place
during EPSO’s period of suboptimality, and such evalua-
tions may dominate the processing load of the experiment [6].
Addressing concern (B), a candidate solution is to scale

the distance between the advertised lbest — ~e in Equa-
tion (5) — and the actual lbest according to the proximity
of particles, so as to advertise an accurate lbest to distant
particles and a modified position when neighbour particles
are proximate. This, however, may also interfere with the
ability of EPSO to effectively scale diversity, as externally
modifying the position ~e indirectly scales |~u|. A better solu-
tion may be to place a limit on the upper magnitude of ~u.
This may allow the swarm to effectively scale, but extreme
exploration arising from an excessive |~u| is avoided.

7. CONCLUSIONS
The excited PSO algorithm has been shown to be a viable

method for reducing the rate at which diversity in swarms is
lost in some problem domains, with respect to solution qual-
ity. Furthermore, the algorithm has demonstrated a greater
ability to self-scale than canonical PSO on said problems. In
the results presented, EPSO has exhibited the properties of
a robust heuristic; appropriate diversity, consistency among
experiments, reduced risk of premature convergence and rel-
atively high search efficiency. Particle excitation differs from
traditional diversity preservation methods in that modifying
the social component vector of particle velocity reduces the
dependence of diversity at any given iteration from that of
the immediately previous iteration. Opportunity exists for
further investigations to confirm the hypothesis arising from
the observations made in this paper. Additionally, the prac-
ticalities and applicability of EPSO should be determined
with respect to canonical PSO parameter choice across a
broader range of objective functions. Finally, given that this
is the initial presentation of the algorithm, it may yet benefit
from modification to the intricacies of its construction, but
the manner of diversity introduction has nevertheless been
demonstrated to be useful.
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