
Use of Infeasible Individuals in Probabilistic Model
Building Genetic Network Programming

Xianneng Li
Graduate School of

Information, Production and
Systems

Waseda University, Japan
sennou@asagi.waseda.jp

Shingo Mabu
Graduate School of

Information, Production and
Systems

Waseda University, Japan
mabu@aoni.waseda.jp

Kotaro Hirasawa
Graduate School of

Information, Production and
Systems

Waseda University, Japan
hirasawa@waseda.jp

ABSTRACT
Classical EDAs generally use truncation selection to esti-
mate the distribution of the feasible (good) individuals while
ignoring the infeasible (bad) ones. However, various re-
search in EAs reported that the infeasible individuals may
affect and help the problem solving. This paper proposed
a new method to use the infeasible individuals by studying
the sub-structures rather than the entire individual struc-
tures to solve Reinforcement Learning (RL) problems, which
generally factorize their entire solutions to the sequences
of state-action pairs. This work was studied in a recent
graph-based EDA named Probabilistic Model Building Ge-
netic Network Programming (PMBGNP) which can solve
RL problems successfully. The effectiveness of this work is
verified in a RL problem, i.e., robot control, comparing with
some other related work.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Problem Solving, Control Meth-
ods, and Search

General Terms
Algorithms

Keywords
EDA, probabilistic model building genetic network program-
ming, infeasible individuals, reinforcement learning

1. INTRODUCTION
Various EDAs have been proposed in Evolutionary Com-

putation to draw its success. Despite many different imple-
mentations, EDAs can be summarized below: 1) Randomly
generate an initial population; 2) Construct the probabilis-
tic model from the feasible (good) individuals; 3) Use the
probabilistic model to generate the new population; 4) Go
back to step 2) until the terminal conditions.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’11, July 12–16, 2011, Dublin, Ireland.
Copyright 2011 ACM 978-1-4503-0557-0/11/07 ...$10.00.

Most of the current EDAs use truncation selection to es-
timate the distribution of the feasible individuals, while ig-
noring the infeasible ones1. However, many studies have re-
ported that utilizing the infeasible individuals would benefit
the evolution process in both of EAs [25] and EDAs [2].

In general, there are two ideas to utilize the infeasible in-
dividuals in EDAs. The first idea is directly taking into ac-
count the infeasible individuals to the construction of prob-
abilistic models. In certain aspects, this work is related to
the selection mechanisms of EDAs, since it can be trans-
formed to the problems of how to select the individuals to be
estimated with respect to the true distribution of the search
space. In [2], the authors selected a part of infeasible indi-
viduals to the model construction and obtained better per-
formance in some problems, where the probabilistic model is
unlikely to perfectly match with the fitness function. How-
ever, for many other problems, the infeasible individuals will
break the useful information of feasible ones to construct an
inaccurate model. Another attempt called EDAs without
explicit selection [24, 15] uses the entire population to esti-
mate the probabilistic model, where each individual is given
a weight w.r.t. its fitness value. However, one important
drawback is that it sometimes does not achieve good per-
formances since it is hard to control the weights of different
individuals.

The second idea is to use the infeasible individuals to fil-
ter sample errors [14, 7]. [14] divides the entire population
to several groups and Bayesian classifiers are built to cre-
ate new individuals taking into account the characteristics
of the best classes and avoiding those of the worst classes.
Similarly, [7] proposed a method that estimates two proba-
bilistic models corresponding to the feasible and infeasible
individuals, where the feasible model is used to sample new
individuals and the infeasible one is applied to filter sample
errors. These research showed some advantages of conver-
gence speed over standard EDAs.

This paper proposed a novel method to use infeasible in-
dividuals. The point is to extract the useful information
of infeasible individuals and utilize them to the probabilis-
tic modeling, where the useful information can be repre-
sented as sub-structures of individuals. We can easily ob-
serve that if the useful sub-structures are extracted, they can
be directly taken into account for the probabilistic modeling,

1In the paper, the feasible individuals denote a set of indi-
viduals with the highest fitness values in the current gener-
ation, while infeasible individuals represent a set of individ-
uals with the lowest fitness values.

601

which benefits the problem solving. Therefore, in certain as-
pects, if adopting this idea to EDAs, the selection step of
EDAs can be transformed to the problem of how to identify
and extract the useful sub-structures of individuals. One way
to achieve this task is to design the fitness functions which
can explicitly identify the useful sub-structures, such as [3].
However, for most problems whose fitness functions are de-
signed to evaluate the quality of the entire individuals, this
task becomes hard to achieve.

In the case of Reinforcement Learning (RL) problems, its
property that generally factorizes the entire solution to a se-
quence of state-action pairs makes it possible to identify and
extract useful sub-structures, where the part of the state-
action pairs can be identified as useful sub-structures. In this
paper, a method to extract the useful sub-structures of infea-
sible individuals is proposed by introducing a RL technique
named Sarsa learning [22] to a novel EDA called Proba-
bilistic Model Building Genetic Network Programming (PM-
BGNP) [11, 10], and it is expected that another viewpoint
would be provided to EDAs from this approach. The use-
ful sub-structures are represented as the state-action pairs
with higher Q values than the others, where the Q values
are calculated by Sarsa learning. The proposed method are
evaluated by applying to a RL problem, Khepera robot [1]
control, and compared with some other methods of utilizing
infeasible individuals proposed in EDAs community.

The paper is organized as follows: Section 2 presents the
overview of PMBGNP; Section 3 introduces the proposed
method in details; Section 4 describes the other methods of
using the infeasible individuals in PMBGNP for comparison,
which are inspired by the other work of this topic in EDAs
community. The experimental study is carried out in section
5. Finally, we conclude this paper.

2. PMBGNP

2.1 Overview of PMBGNP
Probabilistic Model Building Genetic Network Program-

ming (PMBGNP) is a novel algorithm that extends EDAs
to the graph-based EAs. It uses the directed graph struc-
ture of Genetic Network Programming (GNP) [8, 6], which
is a kind of graph-based EAs, to represent its chromosome.
Some previous research has shown the superiority of graph-
based EAs in terms of stronger expression and evolution
ability than that of conventional GP in many problems [23,
13, 6]. Different from the other graph-based EAs, GNP is
firstly designed for solving some RL problems, such as agent
control problems. It consists of judgment and processing
nodes to evolve relatively small structures to obtain compact
programs. The previous research on GNP has shown its su-
periority over classical EAs in agent control problems [6, 12,
16]. Meanwhile, it has been applied to various real-world
problems, such as data mining [21] and elevator system con-
trol [5]. Comparing with conventional EDAs that mostly
proposed in the field of GA [9, 18] and GP [19, 20], PM-
BGNP inherits the advantages of GNP to evolve compact
programs.

Another challenge in EDAs is to explore them to many
other problems. Recently, a novel algorithm named EDA-
RL [4] has been proposed to extend EDAs to solve Rein-
forcement Learning (RL) problems. Using the behavior se-
quences of agents (episodes) to form its own chromosome,
EDA-RL applies CRFs to represent its probabilistic model

Judgment

function

t2 Ki IDi tit1
S

i

S

t

Ci1 ti1 Ci2 ti2 ...

P1 t1 t12

J2 t2 t23 t25

P2 t3 t36

LIBRARY

Processing

function

J1 P1

J2 P2

Figure 1: Directed graph structure.

and show some advantages to solve RL problems. On the
other hand, the distinguishing directed graph structure of
GNP can realize the repetitive processes, where the nec-
essary nodes are executed repeatedly and create compact
programs to avoid bloat problem of GP. GNP has been
proven to successfully solve some RL problems and obtain
better performances than conventional GP and EP [6, 12,
16]. Thus, such distinguishing features of the GNP structure
provide the fundamental basis to ensure that it is possible
for PMBGNP to handle RL problems well. The previous
research of PMBGNP proved that it can also solve some RL
problems, i.e., robot control, successfully and obtain better
performances than conventional EAs [10].

Therefore, there are mainly two primary features of PM-
BGNP:

• Graph structure based EDA.

• Ability to handle RL problems.

2.2 Directed graph structure
PMBGNP uses the directed graph structure of GNP to

represent its individuals, which can be illustrated by the
phenotype and genotype expression. Phenotype shows the
directed graph structure, while genotype demonstrates the
encoding of GNP. As shown in Fig. 1, for node i, Ki defines
the type of node i such as start node, judgment node and
processing node. IDi identifies the node function, such as
judgment function and processing function. Cin denotes the
node which is directly connected from branch n of node i.
ti and tin are the delay time, which are required to execute
node i and to transit from node i to node Cin, respectively.

Generally, one start node, a fixed number of judgment
nodes and processing nodes composes the structure of GNP.
The start node is only used to decide the first node to tran-
sit and fixed during the evolution process. The judgment
and processing nodes save some functions corresponding to
the concrete problem and these nodes can be connected ar-
bitrary. For agent control, each judgment node works as
”if-then” type decision making functions to judge the envi-
ronment to make a decision, while processing nodes preserve
the action functions to determine the agent’s action. By sep-
arating judgment and processing functions, GNP can han-
dle various combinations of judgment and processing. That
is, GNP can efficiently evolve the compact programs by se-
lecting the necessary judgements and processings to control
agents.

Each judgment node consists of multiple branches con-
necting to different nodes, where the next node to tran-

602

i bi j bj bk

),(jbP i

lk

),(kbP j),(lbP k

Figure 2: Probabilistic model of PMBGNP.

sit is determined by the judging result of the environment.
Processing node has only one branch, since the processing
functions only determine the agent’s actions. Therefore, the
agent is controlled by transiting the nodes until the task is
solved. Generally, when solving problems, the number of
judgment and processing nodes, the number of branches in
judgment nodes and the time delays are predefined. Thus,
the size of the GNP structure is fixed during evolution.
Although the GNP structure is fixed, the number of used
nodes generally varies by making use of the necessary nodes
sequentially and repeatedly, which can represent compact
programs to control the agents successfully.

2.3 Probabilistic model construction
The model construction of PMBGNP is inspired by most

of the classical EDAs, which is to directly study its graph-
based chromosome structure. PMBGNP estimates the prob-
abilities of connections between the nodes. Thus, pairwise
interactions can be estimated explicitly. The probabilistic
model P is composed of a set of probabilities P (bi, j), where
P (bi, j) represents the connection probability from branch bi

of node i to node j, as shown in Fig. 2. For each branch in
the graph structure, the probability to connect to the next
node is calculated as follows:

P (bi, j) =

N∑
n=1

(
δn(bi, j) + ησn(bi, j)

)
∑

j′∈A(bi)

N∑
n=1

(
δn(bi, j′) + ησn(bi, j′)

) , (1)

where,
N : the number of feasible individuals.
A(bi): set of suffixes of nodes connected from branch bi of

node i.
δn(bi, j): value defined by

δn(bi, j) =

{
1 if branch bi of node i in individual

n is connected to node j,
0 otherwise.

η: coefficient.
σn(bi, j): value defined by

σn(bi, j) = � if the transition from branch bi of node i
to node j in individual n occurs � times.

Eq. (1) inspires that both of the information on the
node connections and reusability of the node connections
are taken into account to construct the probabilistic model
of PMBGNP. The previous work on PMBGNP has testi-
fied its superiority to solve some problems over conventional
algorithms, such as data mining [11] and robot control [10].

3. THE PROPOSED METHOD
As most of the other EDAs, PMBGNP applies truncation

selection to bias the population towards feasible individuals,
while the infeasible individuals are ignored. In this section,
a new method is proposed to take into account infeasible
individuals to the probabilistic modeling, where the useful
sub-structures of infeasible individuals are extracted.

3.1 Factorization of individuals
Fig. 3 shows an example of GNP runs when applying it

to the agent control problems. In each GNP individual, the
agent is controlled by following the node transitions of the
individual to solve the task, which can be considered as an
episode of RL. After obtaining an episode, the transition can
be factorized to a sequence of state-action pairs, due to the
characteristics of RL. The state and action in GNP structure
are defined as follows:

Definition 1. State: A state is defined as a branch in
GNP structure. Therefore, the set of states S refers to the
set of branches of GNP structure.

Definition 2. Action: An action is defined as a node in
GNP structure. Therefore, the set of actions A refers to the
set of nodes of GNP structure.

Concretely speaking, an activated branch corresponds to
the current state, and the selection of the next node in the
current state corresponds to an action. For example in Fig.
3, at time step t3, when the agent stands in the current state
i.e., branch 2 of node 5, it decides an action, i.e., to select
node 6 to transit. Therefore, the states and actions can be
substituted by the set of branches and set of nodes in the
GNP structure, respectively.

Generally, suppose the population size is M . In one gen-
eration, after making M individuals execute the task, we
can obtain M episodes, which is further factorized to the se-
quences of state-action pairs. The state-action pairs (S ,A)n

of individual n can be represented as follows:

(S,A)n =
{

(s1, a1)n, (s2, a2)n, ..., (sT , aT)n

}
, (2)

where,
T : the total number of time steps of (S ,A)n.

The factorization of individuals to (S ,A) makes it possi-
ble to identify and extract useful sub-structures in infeasible
individuals, since the state-action pairs are actually the sub-
structures of GNP individual. The task is achieved by cal-
culating the Q values of the state-action pairs, i.e., Q(S ,A),
using RL techniques.

3.2 Identification of useful sub-structures

3.2.1 Sarsa learning
In this paper, an on-policy RL technique named Sarsa

learning [22] is used to calculate the Q values of state-action
pairs of the GNP structure. In Sarsa learning, Q values are
updated based on the true actions the agent takes rather
than taking the action which gives the maximal reward in
Q learning. At time step t, the updating function of Q
values depends on the current state st of the agent, the
current action at of the agent, reward rt the agent gets,
the next state st+1 and the next action at+1, as shown in
the following:

Q(st, at)← Q(st, at) + α
(
rt + γQ(st+1, at+1)−Q(st, at)

)
, (3)

where, Q(st, at) represents the Q values of state-action pair
(st, at). α (0 < α ≤ 1) is the learning rate, and γ (0 ≤ γ < 1)
represents the discount factor.

603

time step

Factorizationapply to execute task

S

1 2

4 6

3

5

7 8 9

1 21 2 5

1

2

1

9 6

1

2

A GNP individual
Node transitions

(episode)

)9,1(

)6,2(

)5,2(

)2,1(

464

353

222

111

==→
==→

==→
==

as

as

as

as

Sequence of state -action pairs

t1

t2

t3

t4

state-action pairs

Figure 3: An example of GNP runs. The example shows the procedures of factorizing a GNP individual to
the sequence of state-action pairs.

During the interactions between agents and environments,
Sarsa learning updates Q(st, at) by maximizing the expected
sum of the future discounted rewards. Sarsa learning has
been proven to converge to the optimal solution and work
efficiently in large state-spaces [22]. Meanwhile, Sarsa learn-
ing has also been proven to be easily applied to the GNP
structure, where a variant named GNP-RL [12] was pro-
posed. GNP-RL tends to change the structures of GNP by
introducing sub-nodes in each node, and the definitions of
the state and action are based on the introduced sub-nodes.
However, in this paper, we do not change the GNP structure
and use another way to define the state and action. On the
other hand, the calculated Q values are particularly used for
identifying the useful sub-structures of infeasible individuals
of PMBGNP, which is also quite different from GNP-RL.

3.2.2 Calculation of Q values
In the first generation, a Q table which consists of a set of

Q(S ,A) for all possible combinations of state-action pairs is
generated and the Q values are initialized to 0. During the
task executions, Sarsa learning is applied to update the Q
values. Suppose the population consists of M individuals,
the procedure to update Q values in each generation is as
follows:

1: n = 1
2: while n ≤ M do
3: execute individual n, obtain the sequence of state-

action pairs (S ,A)n

4: update Q(S ,A) based on (S ,A)n using Sarsa learn-
ing

5: n + +
6: end while
In one generation, Sarsa learning is applied to update the

Q table M times. With Definition 1 and 2, each Q(s, a)
implies the quality of transitions between two nodes in the
GNP structure. Suppose the state of individual n at time
t is branch bi and its corresponding action is node j, which
means the state-action pair can be formed by (st, at)n =
(bi, j). Meanwhile, the state-action at time t+1 is (st+1, at+1)n

= (bj , k). Then, during the execution of individual n, the Q
value of (bi, j) can be updated as follows:

Q(bi, j)← Q(bi, j) + α
(
rj + γQ(bj , k)−Q(bi, j)

)
, (4)

The immediate reward rj can be defined flexibly depend-
ing on different problems. In this paper, we use the following
rule to define rj :

1. If node j is a processing node, then rj is given after
processing node j, which is defined depending on the
concrete problem.

2. If node j is a judgment node, then rj = 0.

Eq. (4) inspires that good state-action pairs are given
higher Q values since they can obtain higher immediate re-
ward and expected future reward, while bad state-action
pairs tend to obtain lower Q values. Therefore, Q(bi, j) can
explicitly judge whether state-action pair (bi, j) is good or
not.

3.2.3 Extraction of useful sub-structures
Given state bi, the procedure to extract the set of good

actions A(bG
i) is as follows:

Input: the set of Q values: Q(bi,A)
the number of good actions: NG

Output: the set of good actions: A(bG
i)

1: count = 0
A(bG

i) = NULL
2: while count < NG do
3: ĵ = arg max

j∈A
Q(bi, j)

4: save ĵ into A(bG
i)

remove Q(bi, j
′) from Q(bi,A)

5: count + +
6: end while
The procedure is repeated for all states S , and finally all

good state-action pairs (S ,AG) can be extracted. It means
that the good actions for each state can be extracted from
the action space based on the Q values of state-action pairs,
while NG can be defined to control the number of good
actions.

As discussed in the previous sections, infeasible individ-
uals may include some useful sub-structures to control the
agent successfully. The extracted good state-action pairs
(S ,AG) can be directly denoted as useful sub-structures.
Therefore, such kind of (S ,AG) existed in infeasible individ-
uals can be extracted and viewed as useful sub-structures,
which are further incorporated into the probabilistic model.

3.3 Proposed probabilistic model
The population consisting of M individuals are separated

to two classes, which consists of N feasible individuals and
M−N infeasible individuals. By utilizing useful sub-structures
of M − N infeasible individuals to the probabilistic model,
Eq. (1) can be rewritten as follows:

P (bi, j) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

Z(bi)

(
M∑

n=1

(
δn(bi, j) + ησn(bi, j)

))
if j ∈ A(bG

i),

1
Z(bi)

(
N∑

n=1

(
δn(bi, j) + ησn(bi, j)

))
otherwise,

(5)

604

where Z(bi) is the normalization function calculated as fol-
lows:

Z(bi) =
∑

j′∈A(bi)

N∑
n=1

(
δn(bi, j

′) + ησn(bi, j
′)
)
+

∑
j′∈A(bG

i)

M∑
n=N+1

(
δn(bi, j

′) + ησn(bi, j
′)
)
,

It implies that the good sub-structures of infeasible indi-
viduals are taken into account for the probabilistic model
construction. For example, if action j at state bi is identi-
fied as an good action (which means j ∈ A(bG

i)), (bi, j) will
be denoted as a good sub-structure and all (bi, j) in infea-
sible individuals will be directly taken into account for the
probabilistic model construction.

4. THE COMPARED METHODS
The following are the methods to compare with the pro-

posed method:

• GNP: the standard GNP which uses crossover and mu-
tation to evolve the population.

• PMBGNP: the standard PMBGNP which only uses
truncation selection to select feasible individuals for
model construction.

Meanwhile, in order to testify the proposed method, the
other methods to utilize infeasible individuals in EDAs com-
munity are also designed into the PMBGNP framework for
comparison. The following three methods are adopted into
PMBGNP.

• Method 1: some of the worst individuals are selected
for the probabilistic model construction [2].

• Method 2: all individuals are taken into account for the
probabilistic modeling, but each individual is given a
weight of its fitness value for P (bi, j) calculation:

P (bi, j) =

M∑
n=1

((
δn(bi, j) + ησn(bi, j)

)
fit(n)

)
∑

j′∈A(bi)

M∑
n=1

((
δn(bi, j′) + ησn(bi, j′)

)
fit(n)

) ,

where fit(n) is the fitness value of individual n.

• Method 3: the method is designed based on [7]. In
this method, two probabilistic models are constructed
by standard PMBGNP which are called feasible model
P F and infeasible model P I . Feasible model is con-
structed by estimating the probabilities from the fea-
sible individuals, while infeasible model by infeasible
individuals. P F is used to sample new individuals,
which is the same as standard PMBGNP. However,
P I also plays an important role to filter the sample
errors. For example, given individual n generated by
P F , we calculate two probabilities that individual n
can be sampled from P F and P I , respectively, denoted
as P F (n) and P I(n). These two probabilities are com-
pared. If P F (n) ≥ P I(n), individual n is generated
successfully, otherwise it is denoted as a sample error.

3

1

Sensor

6

 Right wheel

(a). Khepera robot (b). Simulation environment

Start

2

4

5

8 7

 Left wheel

Figure 4: Khepera robot and simulation environ-
ment.

5. SIMULATIONS
A comparative study is carried out in a RL problem,

Khepera robot [1] control. Khepera robot (Fig. 4) is a
mobile robot including 8 infrared sensors to detect the prox-
imity of objects around it by reflection. Each sensor returns
a value ranging from 0 to 1023, where 0 means that there is
no object in front of the sensor and 1023 means that an ob-
ject is very close to the sensor. Two motors corresponding to
the left and right wheel can take speed values ranging from
-10 to +10, where different combinations of the two speeds
would control the robots for different moving behaviors.

Khepera robot is controlled to solve the wall following
problem. The reward and fitness functions of the wall fol-
lowing problem are designed based on [17] and shown as
follows:

Reward =
vR + vL

20

(
1−

√
|vR − vL|

20

)
C, (6)

Fitness =

Smax∑
step=1

Reward

Smax
, (7)

where,
vR, vL: the speed of right and left wheels,
Smax: the user predefined steps. Smax could show the

robot’s running time, which is equivalent to the
problem size.

C =

⎧⎨⎩
1 all the sensor values are less

than 1000, and at least one of
them is more than 100,

0 otherwise.
Figure 4 shows the environment used in this paper. The
aim of the fitness evaluation is to control the robot to move
following the wall as fast as and as straight as possible, until
the predefined steps Smax reaches. Three simulations are
adopted, where Smax ∈ {100, 300, 500}.

In the context of the wall following problem, given a popu-
lation consisting of a set of candidate individuals, although
some of them are denoted as infeasible individuals due to
their low fitness values, we can easily observe that some good
state-action pairs still exist in these infeasible individuals for
providing high reward values to move the robot successfully.
If these good state-action pairs can be extracted correctly,
the problem solving process will be sped up. Accordingly,

605

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 3.75E+04 7.5E+04 1.125E+05 1.5E+05

F
itn

es
s

No. of fitness evaluations

GNP
PMBGNP
Method 1
Method 2
Method 3
Proposed

(a) Smax = 100

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 3.75E+04 7.5E+04 1.125E+05 1.5E+05

F
itn

es
s

No. of fitness evaluations

GNP
PMBGNP
Method 1
Method 2
Method 3
Proposed

(b) Smax = 300

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 3.75E+04 7.5E+04 1.125E+05 1.5E+05

F
itn

es
s

No. of fitness evaluations

GNP
PMBGNP
Method 1
Method 2
Method 3
Proposed

(c) Smax = 500

Figure 5: Fitness curves in three wall following problems.

Table 1: Node functions used for Khepera robot.
Function ID Function
J1, J2, ..., J8 Judge the value of the sensor of

1, 2, ..., 8
P1(−10), P1(−5), P1(0), P1(5), P1(10) Determine the speed of the right

wheel like -10, -5, 0, 5 or 10
P2(−10), P2(−5), P2(0), P2(5), P2(10) Determine the speed of the left

wheel like -10, -5, 0, 5 or 10

the objective of this paper and the effectiveness of the pro-
posed method can be verified by the simulations.

5.1 Experimental settings

5.1.1 Settings of directed graph structure
The node functions of GNP are shown in Table 1. There

are a total of 8 judgment functions to simulate the corre-
sponding sensors of the robot. The number of branches
of each judgment node is set at 2 to efficiently implement
IFLTE(a, b, c, d) function, where a is the return value of
the simulated sensor. b is the user-defined threshold that
determines which branch should be selected to transit. c
and d denote the two branches of the judgement nodes. In
this paper, b is set at 1000. Therefore, if the return value a
is above 1000, branch c will be selected to transit, otherwise
branch d will be selected. Each processing node determines
the speed of the left or right wheel, i.e., P1(−10) means that
the speed of the right wheel is changed to −10. The robot
will take one step of actions if a processing node is transited.
Therefore, in each step, GNP judges the sensor values to de-
termine the speed of the wheels to control the movement of
the robot and to obtain a reward calculated by Eq. (6).
The reward is also used to define the value of the immediate
reward rj in Eq. (4). One individual execution ends when
the step exceeds Smax.

The number of judgment nodes for each judgment func-
tion is set at 5, so there are a total of 5 × 8 = 40 judgment
nodes in each individual. The number of processing nodes
for each processing function is set at 2, which means each
individual consists of 2 × 10 = 20 processing nodes. There-
fore, the total number of nodes is 60 and that of branches is
40 × 2 + 20 = 100 in each individual.

5.1.2 Settings of different methods
The population size of GNP is set at 300, which consists

of 1 elite individual, 120 crossover individuals and 179 mu-
tation individuals. The crossover and mutation rates are set
at 0.1 and 0.01, respectively, which is the best settings de-
fined by hand-tuning. The population size of PMBGNP is
set at 2000. In PMBGNP and its variants, such as Method

Table 2: The fitness (std. dev.) results over 20
independent runs.

Smax = 100 Smax = 300 Smax = 500

GNP
0.89 0.82 0.66

(0.012) (0.128) (0.106)

PMBGNP
0.89 0.87 0.68

(0.022) (0.017) (0.087)

Method 1
0.88 0.87 0.64

(0.010) (0.016) (0.068)

Method 2
0.82 0.72 0.60

(0.077) (0.121) (0.101)

Method 3
0.87 0.87 0.68

(0.012) (0.017) (0.074)

Proposed
0.89 0.87 0.68

(0.012) (0.020) (0.092)

1, 2, 3 and the proposed method, the top 50% individu-
als are denoted as feasible individuals, and η is set at 0.01.
PMBGNP directly uses feasible individuals to construct the
probabilistic model. On the other hand, Method 1 further
selects the worst 20% individuals as infeasible individuals to
combine with feasible individuals for model construction. In
Method 3, the remaining 50% individuals are denoted as in-
feasible individuals for infeasible model construction. In the
proposed method, the learning rate α and discount factor
γ are set at 0.1 and 0.9, respectively, which are determined
by experiments, while the number of good actions NG is set
at 15. The terminal condition is defined by the maximal
number of fitness evaluations, i.e., 150,000 in this paper.

5.2 Simulation results

5.2.1 Fitness results
Table 2 shows the average fitness and standard deviation

over 20 independent runs, and the fitness curves are shown
in Fig. 5.

The results show that among three problems, PMBGNP
achieves better performances than GNP. On the other hand,
the methods that utilize the infeasible individuals for prob-
abilistic modeling are summarized as follows:

(1) Method 1: In simple problems, i.e., Smax = 100 or
300, Method 1 can achieve similar performance with PM-
BGNP. However, in the case of Smax = 500, Method 1 can-
not obtain good result. This is because the worst individu-
als are treated equally with the feasible individuals for the
probabilistic modeling, which sometimes provides wrong in-
formation and destroy the probabilistic model. [2] also men-
tioned that Method 1 can only work well in some problems.

(2) Method 2: In Method 2, one important drawback is

606

 0

3

6

9

12

 0 3.75E+04 7.5E+04 1.125E+05 1.5E+05

N
o.

 o
f s

am
pl

e
er

ro
rs

No. of fitness evaluations

Method 3

Figure 6: Average number of sample errors gener-
ated during the evolution process by Method 3.

that it is hard to control the weights of different individu-
als, which will highly affect the performances. Among three
problems, Method 2 used in this paper achieves the worst
results. The results show that although Method 2 allows
fast convergence speeds, it quickly falls into local optimum.

(3) Method 3: In Method 3, the feasible model P F

is constructed to generate new individuals, while infeasible
model P I is used to filter the sample errors. The fitness re-
sults show it achieves the similar performances to PMBGNP.
However, one important drawback of Method 3 is that it
becomes more and more hard to generate valid individuals
during the evolution, since P I becomes more and more sim-
ilar to P F . Fig. 6 shows the average number of sample
errors generated during the evolution process by Method 3.
It shows that in the later generations, almost 10 sample er-
rors are generated for sampling one valid individual, which
takes a long time.

(4) Proposed: Among three problems, the proposed
method obtains the similar fitness results to that of PM-
BGNP. However, we can see that the convergence speed
of the proposed method is much faster than PMBGNP es-
pecially in the complicated problems like Smax = 300 and
Smax = 500 as shown in Fig. 5. On the other hand, com-
paring with the other methods that utilize the infeasible in-
dividuals, the proposed method can obtain the best fitness
results.

5.2.2 Required fitness evaluations
We further compared the average number of required fit-

ness evaluations of different methods to control the robot
moving around the wall successfully. The average number
of required fitness evaluations is calculated as follows: For
each successful simulation run, the exact number of fitness
evaluations is counted, while the maximum number of fit-
ness evaluations, i.e., 150,000, is used for each failed run.
Then, these numbers of 20 independent runs are averaged.
Particularly, the number of sample errors are also counted
in Method 3, since they also cost much time.

The average numbers of required fitness evaluations for
the three wall following problems are shown in Fig. 7, and
the results of the t-test are shown in Table 3. The simulation
results indicate that the proposed method shows the fastest
convergence to solve the task successfully for the three wall
following problems with different complexities among the
methods. In addition, the results of the t-test (one-side)
show that there are statistically significant differences be-
tween the proposed method and the other ones.

 0

3.75E+04

7.5E+04

1.125E+05

1.5E+05

 100 300 500

N
o.

 o
f r

eq
ui

re
d

fit
ne

ss

 e
va

lu
at

io
ns

Smax

GNP
PMBGNP
Method 1
Method 2
Method 3
Proposed

Figure 7: Comparison of the required fitness evalu-
ations.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 3.75E+04 7.5E+04 1.125E+05 1.5E+05

F
itn

es
s

No. of fitness evaluations

NG=5
NG=10
NG=15
NG=60

Figure 8: Effect of parameter NG in the problem of
Smax = 100.

5.2.3 Effect of parameter NG

In the proposed method, one important parameter NG

should be set appropriately to control the number of good
actions, as discussed in section 3.

Fig. 8 shows the fitness curves of the proposed method
with different settings of NG in the problem of Smax = 100.
When the value of NG is small, the actions with higher Q
values are highlighted in the probabilistic model. In that
case, the proposed method works as a greedy policy which
has high possibility to cause the premature convergence. On
the other hand, if the value of NG is set at a large value,
many actions with low Q values are also counted in the
probabilistic modeling, which will decrease the convergence
speed. In the problem of Smax = 100, the appropriate set-
ting of NG is 15.

6. CONCLUSIONS
In this paper, a novel method has been proposed in PM-

BGNP to utilize infeasible individuals. The conventional
methods of utilizing infeasible individuals in EDAs commu-
nity showed some disadvantages, such as premature conver-
gence and difficulty of parameter control, while the proposed
method provides another approach to utilize infeasible indi-
viduals. That is, the proposed method applies Sarsa learn-
ing to identify and extract useful sub-structures of infeasible
individuals, while the sub-structures are used in the proba-
bilistic modeling of PMBGNP. The effectiveness of the pro-
posed method is testified in a RL problem, i.e., robot control.
The simulation results show that the proposed method can
achieve better performances than standard PMBGNP and
the other methods of utilizing infeasible individuals.

607

Table 3: The average number of required fitness evaluations (std. dev.) and t-test results.
GNP PMBGNP Method 1 Method 2 Method 3 Proposed

Smax = 100
mean 14250 9600 12700 15200 13208 7200
(std. dev.) (9423) (4285) (8688) (14014) (10449) (4175)
t-test (p value) 1.70 × 10−3 4.83 × 10−2 1.20 × 10−2 1.18 × 10−2 8.14 × 10−3 —

Smax = 300
mean 82650 49000 59350 131000 122625 36150
(std. dev.) (58695) (25236) (34654) (44710) (37599) (19343)
t-test (p value) 2.85 × 10−3 5.27 × 10−2 7.31 × 10−3 5.56 × 10−8 6.22 × 10−9 —

Smax = 500
mean 115890 89200 123900 145100 150000 64400
(std. dev.) (42673) (48815) (32272) (16293) (0) (38741)
t-test (p value) 2.43 × 10−4 4.47 × 10−2 6.05 × 10−5 1.79 × 10−8 3.19 × 10−9 —

7. REFERENCES

[1] Webots software. http://www.cyberbotics.com/.

[2] S. Brownlee, J. McCall, Q. Zhang, and D. Brown.
Approaches to selection and their effect on fitness
modelling in an estimation of distribution algorithm.
In Proc. of the IEEE Congress on Evol. Comput.,
pages 2621–2628, 2008.

[3] B. Chen, L. Li, and J. Hu. A novel EDAs based
method for HP model protein folding. In Proc. of the
IEEE Congress on Evol. Comput., pages 309–315,
2009.

[4] H. Handa. EDA-RL: Estimation of distribution
algorithms for reinforcement learning problems. In
Proc. of the Genetic and Evol. Comput. Conf., pages
405–412, 2009.

[5] K. Hirasawa, T. Eguchi, J. Zhou, L. Yu, and
S. Markon. A double-deck elevator group supervisory
control system using genetic network programming.
IEEE Trans. on Systems, Man and Cybernetics, Part
C, 38(4):535–550, 2008.

[6] K. Hirasawa, M. Okubo, H. Katagiri, J. Hu, and
J. Murata. Comparison between genetic network
programming (GNP) and genetic programming (GP).
In Proc. of the IEEE Congress on Evolut. Comput.,
pages 1276–1282, 2001.

[7] Y. Hong, G. Zhu, S. Kwong, and Q. Ren. Estimation
of distribution algorithms making use of both high
quality and low quality individuals. In Proc. of the
IEEE Int’l Conf ’ on Fuzzy Systems, pages 1806–1813,
2009.

[8] H. Katagiri, K. Hirasawa, and J. Hu. Genetic network
programming -application to intelligent agents. In
Proc. of the IEEE Int’l Conf. on Systems, Man and
Cybernetics, pages 3829–3834, 2000.

[9] P. Larran̂aga and J. A. Lozano. Estimation of
Distribution Algorithms. A New Tool for Evolutionary
Computation. Kluwer Academic Publishers, 2002.

[10] X. Li, S. Mabu, and K. Hirasawa. Towards the
maintenance of population diversity: A hybrid
probabilistic model building genetic network
programming. Trans. of the Japanese Society for Evol.
Comput., 1(1):89–101, 2010.

[11] X. Li, S. Mabu, H. Zhou, K. Shimada, and
K. Hirasawa. Genetic network programming with
estimation of distribution algorithms for class
association rule mining in traffic prediction. In Proc.
of the IEEE Congress on Evol. Comput., pages
2673–2680, 2010.

[12] S. Mabu, K. Hirasawa, and J. Hu. A graph-based
evolutionary algorithm: Genetic network programming

(GNP) and its extension using reinforcement learning.
Evol. Comput., 15(3):369–398, 2007.

[13] J. F. Miller and P. Thomson. Cartesian genetic
programming. In Proc. of the 3rd European Conf. on
Genetic Programming, pages 121–132, 2000.

[14] T. Miquélez, E. Bengoetzea, and P. Larran̂aga.
Evolutionary computation based on bayesian
classifiers. Int’l J. of Appl. Math. Comput. Sci.,
14(3):335–349, 2004.

[15] M. Munetomo, N. Murao, and K. Akama. Introducing
assignment functions to bayesian optimization
algorithms. Information Sciences, 178(1):152–163,
2008.

[16] T. Murata and T. Nakamura. Multi-Agent
cooperation using genetic network programming with
automatically defined groups. In Proc. of the Genetic
and Evol. Comput. Conf., pages 712–714, 2004.

[17] P. Nordin, W. Banzhaf, and M. Brameier. Evolution
of a world model for a miniature robot using genetic
programming. Robotics and Autonomous Systems,
25:105–116, 1998.

[18] M. Pelikan, D. E. Goldberg, and E. Cantu-Paz.
Linkage problem, distribution estimation, and
bayesian networks. Evol. Comput., 8(3):311–341, 2002.

[19] R. P. Salustowicz and J. Schmidhuber. Probabilistic
incremental program evolution. Evol. Comput.,
5(2):123–141, 1997.

[20] Y. Shan, R. I. McKay, D. Essam, and H. A. Abbass. A
survey of probabilistic model building genetic
programming. Studies in Computational Intelligence,
33:121–160, 2006.

[21] K. Shimada, K. Hirasawa, and J. Hu. Genetic network
programming with acquisition mechanisms of
association rules. Journal of Advanced Computational
Intelligence and Intelligent Informatics, 10(1):102–111,
2006.

[22] R. S. Sutton and A. G. Barto. Reinforcement
Learning: An Introduction. MIT Press, 1998.

[23] A. Teller and M. Veloso. PADO: Learning tree
structured algorithms for orchestration into an object
recognition system. Tech. Report. No.
CMU-CS-95-101, Carnegie Mellon University, 1995.

[24] K. Yanai and H. Iba. Estimation of distribution
programming based on bayesian network. In Proc. of
the IEEE Congress on Evol. Comput., pages
1618–1625, 2003.

[25] Y. Yu and Z. H. Zhou. On the usefulness of infeasible
solutions in evolutionary search: A theoretical study.
In Proc. of the IEEE Congress on Evol. Comput.,
pages 835–840, 2008.

608

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

