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ABSTRACT

In this paper, a new Estimation of Distribution Algorithm
(EDA) is presented. The proposed algorithm employs a de-
pendency tree as a graphical model and bivariate copula
functions for modeling relationships between pairwise vari-
ables. By selecting copula functions it is possible to build a
very flexible joint distribution as a probabilistic model. The
experimental results show that the proposed algorithm has a
better performance than EDAs based on Gaussian assump-
tions.

Categories and Subject Descriptors

I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Heuristic methods; G.1.6 [Numerical
Analysis]: Optimization—Global optimization, Unconstrained
optimization

General Terms

Algorithms, Design, Performance

Keywords

Dependence trees, Bivariate copula functions, EDAs

1. INTRODUCTION
Estimation of Distribution Algorithms (EDAs) are a new

class of evolutionary optimization techniques that employ
probabilistic models as a representation of the relationships
between variables in the population. This recent paradigm
in Evolutionary Computation does not use genetic opera-
tors such as crossover and mutation. The goal in EDAs is to
model the dependencies in the best individuals and transfer
them into the next population. A pseudocode for EDAs is
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Algorithm 1 Pseudocode for EDAs

1: assign t←− 0
generate the initial population P0 with N individuals at
random

2: select a collection of M solutions St, with M < N , from
Pt

3: estimate a probabilistic modelMt from St

4: generate the new population by sampling from the dis-
tribution of St.
assign t←− t + 1

5: if stopping criterion is not reached go to step 2

shown in Algorithm 1.

The performance of an EDA can be improved by the prob-
abilistic model used. Since EDAs appeared, the research
has been conducted in proposing and enhancing probabilistic
models. Nowadays, there are several EDAs for optimization
problems in discrete and continuous domains. The EDAs
can be classified as univariate, bivariate or multivariate ac-
cording to the complexity of the probabilistic model used
to learn the interactions between the variables. The uni-
variate EDAs consider all the variables independently, for
instance, the Univariate Marginal Distribution Algorithm
(UMDA) [19, 14, 16], the Population Based Incremental
Learning (PBIL) [1] and the compact Genetic Algorithm
(cGA)[11]. The bivariate EDAs take into account depen-
dencies between some pairs of variables and include the Bi-
variate Marginal Distribution Algorithm (BMDA) [22], Mu-
tual Information Maximizing Input Clustering (MIMIC) [8,
14, 16] and Dependency-Trees [2]. Many univariate and bi-
variate discrete EDAs have been extended to continuous do-
mains by using Gaussian probabilistic models.

For multiple dependencies in discrete domains the EDAs
have used probabilistic models such as the Polytree Approx-
imation of Distribution Algorithm (PADA) [26], Estima-
tion of Bayesian Networks Algorithm (EBNA) [9, 15] and
Bayesian Optimization Algorithm (BOA) [21]. For continu-
ous domains the EDAs have used mostly multivariate Gaus-
sian distributions and include the Estimation of Multivariate
Normal Algorithm (EMNA) [17] and Estimation of Gaussian
Network Algorithm (EGNA) [14, 16]. The EDA AMaL-
GaM [3] and the algorithm CMA-ES [12] are also based on
the multivariate Gaussian distribution and both modify the
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estimated covariance matrix in order to make them compet-
itive algorithms. Currently, they are the state of the art in
continuous domains.

In this work we introduce a new EDA for continuous opti-
mization problems based on a graphical model which is built
with different copula functions. A dependency tree is used
as a graphical model and the related variables are modeled
by the most appropiate copula function. Our goals in this
paper are to 1) model the most important dependencies or
associations between variables and 2) take advantage of the
capacity of copula functions to isolate the dependency struc-
ture of the marginal behaviour of individual variables. The
proposed EDA uses a procedure based on the loglikelihood
function to determine which copula function will be chosen
to model the relationship between variables.

Related works have considered EDAs based on the Gaus-
sian copula function [32, 30] and EDAs based on Archimedean
copula functions with a fixed dependence parameter [31,
28, 29, 6, 33, 30]. Unlike the previous papers that use
Archimedean copula functions, the work [10] presents a way
of estimating the copula parameter. These works use copula
functions to model pairwise relationships among all variables
and do not employ graphical models. On the other hand, the
works [23, 24] use copula entropies in order to get a graph-
ical model and establish the most important dependencies
between variables. To the best of our knowledge, the works
[10, 23, 24] are the only ones that employ the method of
maximum likelihood for estimating the copula parameters.

The structure of the paper is the following: Section 2 is
a brief introduction to bivariate copula functions, Section 3
describes the implementation of the dependency tree EDA
with bivariate copula functions. Section 4 presents the ex-
perimental setting to solve seven test global optimization
problems, and Section 5 resumes the conclusions.

2. COPULA THEORY
The copula functions are suitable tools in statistics for

modeling dependencies, not necessarily linear dependence,
in several random variables. The copula theory was intro-
duced by Sklar [25] to separate the effect of dependence from
the effect of marginal distributions in a joint distribution.
Although copula functions can model linear and nonlinear
dependencies, they have been barely used in computer sci-
ence applications where nonlinear dependencies are common
and need to be represented.

Definition 1. A copula is a joint distribution function of
standard uniform random variables. That is,

C(u1, . . . , ud) = Pr[U1 ≤ u1, . . . , Ud ≤ ud] ,

where Ui ∼ U(0, 1) for i = 1, . . . , d.

As a consequence of Definition 1, the copula density can
be calculated as:

c(u1, . . . , ud) =
∂dC(u1, . . . , ud)

∂u1 · · · ∂ud
. (1)

The interested reader is referred to [13, 20, 27] for a more for-
mal definition of the copula function. The following result,
known as Sklar’s theorem, gives the relevance and practical
utility to copula functions.

Theorem 1 (Sklar). Let F be a d-dimensional distri-
bution function with marginals F1, F2, . . . , Fd, then there ex-

ists a copula C such that for all x in R
d
,

F (x1, x2, . . . , xd) = C(F1(x1), F2(x2), . . . , Fd(xd)) ,

where R denotes the extended real line [−∞,∞]. If F1(x1),
F2(x2), . . . , Fd(xd) are all continuous, then C is unique.
Otherwise, C is uniquely determined on Ran(F1)×Ran(F2)×
· · · ×Ran(Fd), where Ran stands for the range.

According to Theorem 1 and using the chain rule for differ-
entiating composite functions along with Equation(1), any
d-dimensional density f can be represented as

f(x1, . . . , xd) = c(F1(x1), . . . , Fd(xd)) ·
d

Y

i=1

fi(xi) , (2)

where c is the density of the copula C, and fi(xi) is the
marginal density of variable xi. Equation (2) shows that
the dependence structure is modeled by the copula function.
This expression separates any joint density function into the
product of the copula density and marginal densities. This
contrasts with the usual way to model multivariate distri-
butions, which suffers from the restriction that the marginal
distributions are usually of the same type. The separation
between marginal distributions and a dependence structure
explains the modeling flexibility given by copulas.

2.1 Bivariate Copula Functions
In this paper we use 2-dimensional parametric copula func-

tions for modeling the dependence structure of random vari-
ables associated by a joint distribution function. Table 1
shows the distribution functions of the bivariate copula func-
tions used in this work as well as the appropriate values for
the dependence parameter θ. These copula functions are
chosen because they cover a wide range of dependencies.

For parametric bivariate copula functions, the dependence
parameter θ is related to Kendall’s tau through the following
expression (see [20])

τ (X,Y ) = 4

Z 1

0

Z 1

0

C(u, v; θ)dC(u, v; θ)− 1 , (3)

where copula variables (U, V ) are the corresponding marginal
distribution functions of variables (X, Y ), i.e., u = FX(x)
and v = FY (y). The dependence parameter θ of a bivariate
copula function can be estimated using the maximum like-
lihood method and the estimation of Kendall’s tau. To do
so, the one-dimensional log-likelihood function

ℓ
`

θ; {(ui, vi)}
n
i=1

´

=

n
X

i=1

ln c(ui, vi; θ) , (4)

is maximized, using as the starting point, the nonparametric
estimation of Kendall’s tau. Table 1 and Table 2 show the
formulas for Kendall’s tau and the copula densities, respec-
tively.

For estimating the parameters of a probabilistic model,
for example Equation (2), we use the Inference Function
for Margins method (IFM) [4]. This method is based on
maximum likelihood and estimates first the parameters of
marginals and then uses them to estimate the parameters
of the copula functions. Algorithm 2 shows the steps of the
IFM.
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Table 1: Bivariate copula distribution functions.

Ali-Mikhail-Haq

C(u, v) =
uv

1 − θ(1 − u)(1 − v)
; θ ∈ [−1, 1)

τ =

„

3θ − 2

3θ

«

−
2

3

„

1 −
1

θ

«2

ln(1 − θ)

Clayton

C(u, v) = max
n

(u−θ + v−θ − 1)−1/θ, 0
o

; θ ∈ [−1,∞)\{0}

τ =
θ

θ + 2

Farlie-Gumbel-Morgenstern

C(u, v) = uv (1 + θ(1 − u)(1 − v)) ; θ ∈ [−1, 1]

τ =
2

9
θ

Frank

C(u, v) = −
1

θ
ln

 

1 +
(e−θu − 1)(e−θv − 1)

e−θ − 1

!

; θ ∈ (−∞,∞)\{0}

τ = 1 −
4

θ

»

1 −
1

θ

R

θ
0

t

et − 1
dt

–

Gaussian

C(u, v) =
R Φ−1(u)
−∞

RΦ−1(v)
−∞

e
−

1
2

t′Σ−1t

2π|Σ|1/2
dt1dt2 ; θ ∈ (−1, 1)

where Σ is a correlation matrix with Σ12 = θ

τ =
2

π
sin−1(θ)

Gumbel

C(u, v) = exp
“

−(ũθ + ṽθ)1/θ
”

; θ ∈ [1,∞)

where ũ = −ln(u) and ṽ = −ln(v)

τ = 1 −
1

θ

In order to appreciate the kind of dependence structure
that copula functions can model, Figure 1 shows a scatter
plot with data drawn from a joint distribution with Gaussian
marginals and structure dependence modeled by a Clayton
copula and a Frank copula, respectively. Both data sets
have associated the same marginals and the same value of
Kendall’s tau.

For sampling from bivariate densities, Algorithm 3 gives
the steps of simulating variates. This algorithm is used for
getting the samples of Figure 1.

Solving equation in Step 2 of Algorithm 3 involves a nu-
merical procedure for the Gumbel copula. For the other
copula functions, the solution has a closed-form analytic ex-
pression. The conditional distribution functions for sam-
pling from the bivariate copulas are shown in Table 2.

Algorithm 2 Pseudocode for estimating parameters

1: for i = 1 to d do
2: Estimate the marginal parameters αi for the density

function fi of variable Xi

3: Calculate ui using the marginal distribution function
Fi, ui = Fi(xi; αi)

4: end for
5: Estimate the copula parameters θ by using variables Ui

and the maximum likelihood method

−4 −2 0 2 4

−
4

−
2

0
2

4

(a)

−4 −2 0 2 4

−
4

−
2

0
2

4

(b)

Figure 1: Two samples of 500 points that have been
drawn from (a) a Clayton copula with θ = 4.667, and
(b) a Frank copula with θ = 11.412. Both data sets
have the same value of 0.7 for Kendall’s tau and stan-
dard Gaussians as marginals.

Algorithm 3 Pseudocode for generating a bivariate popu-
lation with an associated copula function

1: Draw two independent random variables (u, t) from a
uniform distribution U(0, 1).

2: Solve t = Cv(v|u) for v, where Cv(v|u) =
∂C

∂u
.

3: Calculate X and Y using quasi-inverses of marginal dis-
tribution functions, x = F−1

X (u) and y = F−1
Y (v).

The pair (x, y) is a simulation from the bivariate density
f(x, y) = fXfY c(u, v).
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Table 2: Bivariate copula densities and conditional
distributions.

Ali-Mikhail-Haq

c(u, v) =
1 + θ(u + v + uv − 2) − θ2(u + v − uv − 1)

(1 − θ(1 − u)(1 − v))3

∂C

∂u
=

v − θv(1 − v)

(1 − θ(1 − u)(1 − v))2

Clayton

c(u, v) = (1 + θ) (uv)−θ−1
“

u−θ + v−θ − 1
”

−2−1/θ

∂C

∂u
= u−θ−1

“

u−θ + v−θ − 1
”

−
1
θ
−1

Farlie-Gumbel-Morgenstern

c(u, v) = 1 + θ(1 − 2u)(1 − 2v)

∂C

∂u
= v2 (θ(2u − 1)) + v (1 + θ(1 − 2u))

Frank

c(u, v) =
−θ(e−θ − 1)e−θ(u+v)

((e−θu − 1)(e−θv − 1) + (e−θ − 1))2

∂C

∂u
=

e−θu(e−θv − 1)

(e−θu − 1)(e−θv − 1) + (e−θ − 1)

Gaussian

c(u, v) =
`

1 − θ2
´1/2

exp

 

−
(x2 + y2 − 2θxy)

2(1 − θ2)
+

(x2 + y2)

2

!

where x = Φ−1(u) and y = Φ−1(v)

Gumbel

c(u, v) =
C(u, v)

uv

(ũṽ)θ−1

(ũθ + ṽθ)2−1/θ

“

(ũθ + ṽθ)1/θ + θ − 1
”

∂C

∂u
=

„

lnu

lnC(u, v)

«θ−1 C(u, v)

u

where ũ = −ln(u) and ṽ = −ln(v)

3. A DEPENDENCY TREE BASED ON COP-

ULA FUNCTIONS
Despite the fact that copula functions can model depen-

dences among all pairwise variables, sometimes it is not clear
what multivariate copula function must be chosen. However,
by means of graphical models [34, 18] it is possible to model
the most important dependencies or associations between
variables. This is the case for a copula function, because
a multivariate copula function is also a probabilistic model.
We propose in this paper to use a dependency tree as a
graphical model for a multivariate copula function.

In order to show how bivariate copula functions can be
used along with dependency trees in EDAs, we present an
extension of the discrete dependency tree [2] for continuous
domains. A dependency tree for continuous variables is a
probabilistic model with the following density:

ft(x1, . . . , xd) = f (xm1)

d
Y

i=2

f(xmi |xmp(i)
) , (5)

where m = (m1, . . . , md) is an unknown permutation of the
integers between 1 and d, and p(i) maps numbers 2, . . . , d to
integers 1 ≤ p(i) < i. Each variable in Equation (5) has at
most one parent.

The goal is to choose a dependency tree that minimizes
the Kullback-Leibler divergence between the true density

function f(x) and the proposed density function ft(x):

DKL (f(x)||ft(x)) = Ef(x)

»

log
f(x)

ft(x)

–

.

The Kullback-Liebler divergence can be written as:

DKL (f(x)||ft(x)) = −H(X) +

d
X

k=1

H(Xk)

−

d
X

i=2

I(Xmi , Xmp(i)
) . (6)

The first two terms in the divergence (6) are entropies
and do not depend on the dependence tree. According to [5],
minimizing the Kullback-Leibler is equivalent to maximizing
the total sum:

Jt(X) =
d

X

i=2

I(Xmi , Xmp(i)
) , (7)

where

I(X,Y ) = Ef(x,y)

»

log
f(x, y)

f(x) · f(y)

–

,

is the mutual information between variables X and Y . The
optimization problem (7) can be solved by means of Kruskal’s
algorithm for finding a minimum spanning tree. The opti-
mal dependency tree is the one that produces the highest
pairwise mutual information with respect to the true dis-
tribution. Thus, the dependency tree learning algorithm is
based on a dependence test, and this is measured through
mutual information.

In this paper we use the following relationship (see [7])
between the mutual information and the bivariate copula
entropy:

I(X,Y ) = −H(U,V ) .

The previous result has a practical importance: whatever
the domain of (X, Y ), the copula domain is standarized.
Moreover, by means of the Monte Carlo method it is possible
to estimate the entropy of a bivariate distribution. In this
work we estimate mutual information by generating samples
from the copula function and then averaging their natural
logarithm, i.e., by using a Monte Carlo simulation.

3.1 Copula Selection
Two well known tools in statistics for model selection are

the Akaike information criterion (AIC) and the Bayesian
information criterion (BIC). These criteria employ the max-
imized value of the likelihood function, the number of pa-
rameters and the sample size for the estimated model. For
this work these criteria are equivalent because the number
of parameters and the sample size are constants for each bi-
variate copula function. Therefore, the copula selection is
based only on the highest value of the likelihood function
(4).

Once a bivariate copula function is chosen, its entropy
is calculated in order to estimate the mutual information
between variables.

It is important to say that the dependency tree can be
made up by selecting the most adequate copula function in
each branch. This modeling flexibility is not present in other
works related to copulas and EDAs, where only a copula
function is chosen and used for modeling the dependence
structure.
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4. EXPERIMENTS
Four algorithms are used to optimize seven test problems.

We employ two EDAs with Gaussian copula functions and
Gaussian marginals, and two EDAs based on copula selec-
tion with Gaussian kernels as marginals. The EDAs are
based on the graphical models MIMIC and dependency tree.
These EDAs are represented by the following notation

• MIMICGaussian
Gaussian : A MIMIC with Gaussian copula func-

tions and Gaussian marginals.

• MIMICSelect
Kernel : A MIMIC with copula selection and

Gaussian kernels as marginals.

• TREEGaussian
Gaussian : A dependency tree with Gaussian cop-

ula functions and Gaussian marginals.

• TREESelect
Kernel : A dependency tree with copula selection

and Gaussian kernels as marginals.

Table 3 shows the definition of the test problems used
in the experiments: Schwefel problem 1.2, Trid, Ellipsoid,
Cigar, Cigar Tablet, Two Axes, and Zakharov functions.
We use test problems in 4 and 12 dimensions. All test
problems are initialized in asymmetric domains, except the
Trid function. Each EDA is run 20 times for each problem.
The population size is ten times the problem dimension.
The maximum number of evaluations is 100,000. However,
when convergence to a local minimum is detected the run
is stopped. Any improvement less than 1× 10−6 in 30 iter-
ations is considered convergence. The goal is to reach the
optimum with an error less than 1× 10−4.

Table 3: Test functions.

Definition
Search Domain &
Global Optimum

Schwefel 1.2 (Quadric)

Pd
i=1

“

Pi
j=1 xj

”2 [−40, 60]d

f(0) = 0

Trid

Pd
i=1 (xi − 1)2 −

Pd
i=2 xixi−1

[−d2, d2]d

f(x) =
−d(d + 4)(d− 1)

6
Ellipsoid

Pd
i=1 106 i−1

d−1 x2
i

[−10, 5]d

f(0) = 0

Cigar

x2
1 +

Pd
i=2 106x2

i
[−10, 5]d

f(0) = 0

Cigar Tablet

x2
1 +

Pd−1
i=2 104x2

i + 108x2
d

[−10, 5]d

f(0) = 0

Two Axes
P⌊d/2⌋

i=1 106x2
i +

Pd
i=⌊d/2⌋ x2

i
[−10, 5]d

f(0) = 0

Zakharov
Pd

i=1 x2
i +

“

Pd
i=1 0.5ixi

”2

+ [−5, 10]d

“

Pd
i=1 0.5ixi

”4

f(0) = 0

4.1 Numerical Results
In Table 4 we report the descriptive statistics for the fit-

ness values reached by the algorithms in all test functions.
The information about the number of evaluations required
by each algorithm is reported in Table 5.

Table 5: Descriptive results of the function evalua-
tions for all test functions.

Algorithm
Mean (Standard deviation)

d = 4 d = 12

Schwefel 1.2

MIMICGaussian
Gaussian 5092 (4038.95) 65538 (14634.53)

MIMICSelect
Kernel 3928 (3615.30) 56006 (32164.52)

TREEGaussian
Gaussian 3262 (2949.93) 62112 (17548.24)

TREESelect
Kernel 4464 (5033.54) 69560 (34667.66)

Trid

MIMICGaussian
Gaussian 2368 (2856.50) 20912 (28009.18)

MIMICSelect
Kernel 2186 (2676.03) 28850 (37969.67)

TREEGaussian
Gaussian 2124 (2205.63) 25452 (28076.52)

TREESelect
Kernel 1256 (894.28) 19688 (25963.05)

Ellipsoid

MIMICGaussian
Gaussian 1996 (2815.50) 12840 (16512.98)

MIMICSelect
Kernel 3244 (4071.18) 8874.29 (198.91)

TREEGaussian
Gaussian 3568 (4409.72) 10680 (14074.32)

TREESelect
Kernel 2750 (3269.09) 8910 (257.89)

Cigar

MIMICGaussian
Gaussian 3144 (3501.06) 14484 (16723.23)

MIMICSelect
Kernel 2500 (2141.77) 10824 (268.61)

TREEGaussian
Gaussian 2020 (1786.24) 16314 (16286.46)

TREESelect
Kernel 4844 (5257.30) 10818 (195.73)

Cigar Tablet

MIMICGaussian
Gaussian 3406 (4449.79) 10206 (12118.37)

MIMICSelect
Kernel 4266 (4980.95) 9726 (214.93)

TREEGaussian
Gaussian 3518 (3451.82) 9744 (10435.29)

TREESelect
Kernel 3776 (2844.15) 9636 (240.32)

Two Axes

MIMICGaussian
Gaussian 2436 (2769.52) 24678 (22118.32)

MIMICSelect
Kernel 4752 (4219.37) 9204 (243.45)

TREEGaussian
Gaussian 2796 (3035.81) 25416 (24299.38)

TREESelect
Kernel 3052 (2539.03) 10818 (7540.30)

Zakharov

MIMICGaussian
Gaussian 2910 (2761.14) 39660 (19101.48)

MIMICSelect
Kernel 1654 (2001.95) 26780 (19076.55)

TREEGaussian
Gaussian 3640 (3228.90) 50238 (25496.04)

TREESelect
Kernel 3746 (4336.14) 36738 (26525.57)

To properly compare the performance of the algorithms,
using the optimum value reached, we conducted a non-parametric
hypothesis test based on a bootstrap method for the differ-
ences between the averages of the fitness, for all test prob-
lems. Table 6 shows the corresponding p-value for the sta-
tistical test.

4.2 Discussion
According to the statistical test for the difference between

averages, Table 6, the algorithms based on copula selection
have a better performance than EDAs based on the Gaus-
sian copula in functions Schwefel 1.2, Two Axes and Za-
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Table 6: Results for the difference between fit-
ness means in each problem. A p-value is obtained
through a Bootstrap technique.

Compared algorithms
p-value

d = 4 d = 12

Schwefel 1.2

MIMICGaussian
Gaussian vs. MIMICSelect

Kernel 3.93E-02 4.13E-03

TREEGaussian
Gaussian vs. TREESelect

Kernel 5.13E-01 2.44E-02

Trid

MIMICGaussian
Gaussian vs. MIMICSelect

Kernel 4.98E-01 1.44E-01

TREEGaussian
Gaussian vs. TREESelect

Kernel 1.42E-01 2.41E-02

Ellipsoid

MIMICGaussian
Gaussian vs. MIMICSelect

Kernel 4.94E-01 1.38E-01

TREEGaussian
Gaussian vs. TREESelect

Kernel 1.51E-01 1.57E-01

Cigar

MIMICGaussian
Gaussian vs. MIMICSelect

Kernel 5.10E-01 1.41E-01

TREEGaussian
Gaussian vs. TREESelect

Kernel 1.69E-01 1.16E-01

Cigar Tablet

MIMICGaussian
Gaussian vs. MIMICSelect

Kernel 4.91E-01 1.94E-01

TREEGaussian
Gaussian vs. TREESelect

Kernel 3.90E-01 1.57E-01

Two Axes

MIMICGaussian
Gaussian vs. MIMICSelect

Kernel 3.71E-01 1.78E-02

TREEGaussian
Gaussian vs. TREESelect

Kernel 3.31E-01 7.86E-02

Zakharov

MIMICGaussian
Gaussian vs. MIMICSelect

Kernel 1.86E-01 1.31E-02

TREEGaussian
Gaussian vs. TREESelect

Kernel 2.04E-01 1.17E-02

kharov when the dimensionality changes from 4 to 12. For
the other problems, Ellipsoid, Cigar, Cigar Tablet, and Trid
the performance is statistically similar on average for each
dimension. Table 4 reports a very illustrative measure, the
success rate, about the performance of each algorithm. The
success rate indicates a better perfomance in dimension 12
for EDAs based on copula selection than EDAs based only
on Gaussian copula functions. The success rate in dimen-
sion 4, in most of the cases, is also better for EDAs based on
copula selection than EDAs based on the Gaussian copula.

5. CONCLUSIONS
In this paper we introduce the copula selection in EDAs.

According to numerical experiments the selection of a cop-
ula function for modeling the dependence structure can help
achieve better fitness results. This means that dependencies
between decision variables must be modeled adequately in
order to get good solutions. The algorithms based on cop-
ula selection performed very similarly, however, more exper-
iments are necessary with different probabilistic models in
order to identify where the copula functions have a clear
advantage to EDAs. Nonetheless, the success rate already
indicates a better performance of the algorithms adapted
with copula selection in higher dimension.

All the algorithms presented in this paper are based on
probabilistic models whose parameters are estimated by means

of the maximum likelihood method, without diversity main-
tenance or similar strategies for enhancing the performance.
The immediate research work will focus on the design of
such algorithms.
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Table 4: Descriptive results of the fitness for all test functions.
Algorithm Best Median Mean Worst Std. deviation Success Rate

Schwefel 1.2, dimension 4

MIMICGaussian
Gaussian 2.53E-05 6.00E-03 1.49E-01 9.44E-01 2.76E-01 0.40

MIMICSelect
Kernel 1.84E-05 9.74E-05 1.43E-02 1.41E-01 3.58E-02 0.60

TREEGaussian
Gaussian 5.82E-06 7.78E-05 1.02E-02 5.44E-02 1.78E-02 0.55

TREESelect
Kernel 3.03E-05 8.15E-05 7.26E-02 1.39E+00 3.10E-01 0.65

Schwefel 1.2, dimension 12

MIMICGaussian
Gaussian 1.65E-03 2.22E-01 9.96E-01 4.27E+00 1.39E+00 0.00

MIMICSelect
Kernel 7.87E-05 9.94E-05 3.84E-03 4.83E-02 1.19E-02 0.75

TREEGaussian
Gaussian 3.20E-04 1.62E-01 7.74E-01 5.56E+00 1.42E+00 0.00

TREESelect
Kernel 8.21E-05 9.96E-05 4.15E-04 2.80E-03 6.88E-04 0.65

Trid, dimension 4

MIMICGaussian
Gaussian -1.60000E+01 -1.59999E+01 -1.57735E+01 -1.16838E+01 9.63E-01 0.65

MIMICSelect
Kernel -1.60000E+01 -1.59999E+01 -1.59583E+01 -1.56472E+01 9.51E-02 0.80

TREEGaussian
Gaussian -1.60000E+01 -1.59999E+01 -1.59292E+01 -1.48008E+01 2.68E-01 0.65

TREESelect
Kernel -1.60000E+01 -1.59999E+01 -1.59999E+01 -1.59991E+01 1.86E-04 0.90

Trid, dimension 12

MIMICGaussian
Gaussian -3.52000E+02 -3.52000E+02 -3.50633E+02 -3.28427E+02 5.25E+00 0.70

MIMICSelect
Kernel -3.52000E+02 -3.52000E+02 -3.51962E+02 -3.51307E+02 1.55E-01 0.75

TREEGaussian
Gaussian -3.52000E+02 -3.52000E+02 -3.50722E+02 -3.44391E+02 2.38E+00 0.55

TREESelect
Kernel -3.52000E+02 -3.52000E+02 -3.51999E+02 -3.51989E+02 2.48E-03 0.80

Ellipsoid, dimension 4

MIMICGaussian
Gaussian 2.19E-05 6.72E-05 9.78E+00 1.95E+02 4.36E+01 0.85

MIMICSelect
Kernel 2.28E-05 8.41E-05 5.43E-01 8.40E+00 1.90E+00 0.75

TREEGaussian
Gaussian 1.44E-05 7.82E-05 4.25E+01 8.41E+02 1.88E+02 0.65

TREESelect
Kernel 1.26E-05 6.79E-05 6.19E-02 6.76E-01 1.85E-01 0.80

Ellipsoid, dimension 12

MIMICGaussian
Gaussian 4.36E-05 8.17E-05 1.15E+00 2.05E+01 4.58E+00 0.70

MIMICSelect
Kernel 5.29E-05 8.58E-05 8.31E-05 9.96E-05 1.27E-05 1.00

TREEGaussian
Gaussian 3.24E-05 7.50E-05 3.99E-01 7.97E+00 1.78E+00 0.85

TREESelect
Kernel 5.32E-05 7.95E-05 7.98E-05 9.90E-05 1.42E-05 1.00

Cigar, dimension 4

MIMICGaussian
Gaussian 2.05E-05 7.70E-05 2.08E-01 2.89E+00 6.65E-01 0.70

MIMICSelect
Kernel 1.47E-05 8.00E-05 3.49E+00 6.98E+01 1.56E+01 0.80

TREEGaussian
Gaussian 1.26E-05 7.61E-05 1.13E+00 8.64E+00 2.70E+00 0.75

TREESelect
Kernel 7.20E-06 8.55E-05 1.60E+03 3.18E+04 7.10E+03 0.65

Cigar, dimension 12

MIMICGaussian
Gaussian 5.45E-05 8.06E-05 3.37E-01 4.90E+00 1.11E+00 0.80

MIMICSelect
Kernel 4.27E-05 7.38E-05 7.51E-05 9.80E-05 1.35E-05 1.00

TREEGaussian
Gaussian 3.89E-05 9.08E-05 1.98E+00 2.35E+01 5.65E+00 0.70

TREESelect
Kernel 4.38E-05 7.67E-05 7.36E-05 9.81E-05 1.57E-05 1.00

Cigar Tablet, dimension 4

MIMICGaussian
Gaussian 1.50E-05 7.04E-05 4.43E+02 8.84E+03 1.98E+03 0.70

MIMICSelect
Kernel 1.81E-05 6.67E-05 3.49E+01 6.25E+02 1.40E+02 0.70

TREEGaussian
Gaussian 6.93E-06 9.40E-05 3.85E+00 5.08E+01 1.16E+01 0.55

TREESelect
Kernel 1.55E-05 9.27E-05 1.65E+00 1.38E+01 3.86E+00 0.55

Cigar Tablet, dimension 12

MIMICGaussian
Gaussian 4.29E-05 7.07E-05 1.43E-01 2.32E+00 5.27E-01 0.90

MIMICSelect
Kernel 4.87E-05 7.79E-05 7.44E-05 9.99E-05 1.59E-05 1.00

TREEGaussian
Gaussian 3.06E-05 8.39E-05 3.36E-01 6.66E+00 1.49E+00 0.85

TREESelect
Kernel 3.45E-05 8.41E-05 8.04E-05 9.77E-05 1.52E-05 1.00

Two Axes, dimension 4

MIMICGaussian
Gaussian 9.16E-06 6.35E-05 2.73E+00 4.20E+01 9.50E+00 0.75

MIMICSelect
Kernel 2.89E-05 2.88E-03 8.60E-01 1.08E+01 2.59E+00 0.50

TREEGaussian
Gaussian 2.08E-05 7.61E-05 6.14E-01 1.03E+01 2.31E+00 0.70

TREESelect
Kernel 1.79E-05 8.71E-05 1.02E-01 1.69E+00 3.76E-01 0.65

Two Axes, dimension 12

MIMICGaussian
Gaussian 2.43E-05 1.01E-03 4.06E-01 2.46E+00 7.08E-01 0.50

MIMICSelect
Kernel 5.11E-05 7.93E-05 7.81E-05 9.94E-05 1.40E-05 1.00

TREEGaussian
Gaussian 4.57E-05 8.93E-04 4.86E-01 5.14E+00 1.20E+00 0.50

TREESelect
Kernel 4.08E-05 7.91E-05 7.74E-05 9.70E-05 1.65E-05 1.00

Zakharov, dimension 4

MIMICGaussian
Gaussian 3.84E-05 9.59E-05 1.26E-01 2.13E+00 4.78E-01 0.55

MIMICSelect
Kernel 1.05E-05 6.76E-05 4.47E-03 8.44E-02 1.88E-02 0.90

TREEGaussian
Gaussian 1.99E-05 7.41E-04 1.87E-02 1.35E-01 3.90E-02 0.50

TREESelect
Kernel 1.58E-05 7.83E-05 2.10E-01 2.60E+00 6.55E-01 0.65

Zakharov, dimension 12

MIMICGaussian
Gaussian 7.49E-05 4.98E-03 2.24E-02 1.17E-01 3.64E-02 0.15

MIMICSelect
Kernel 5.71E-05 9.24E-05 3.89E-04 6.12E-03 1.35E-03 0.95

TREEGaussian
Gaussian 8.31E-05 1.10E-01 1.79E-01 1.18E+00 2.78E-01 0.10

TREESelect
Kernel 4.79E-05 9.72E-05 8.90E-05 9.99E-05 1.44E-05 1.00
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