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ABSTRACT
Existing EDAs learn linkages starting from pairwise interac-
tions. The characteristic function which indicates the rela-
tions among variables are binary. In other words, the charac-
teristic function indicates that there exist or not interactions
among variables. Empirically, it can occur that two variables
should be sometimes related but sometimes not. This pa-
per introduces a real-valued characteristic function to illus-
trate this property of fuzziness. We examine all the possible
binary models and real-valued models on a test problem.
The results show that the optimal real-valued model is bet-
ter than all the binary models. This paper also proposes
a crossover method which is able to utilize the real-valued
information. Experiments show that the proposed crossover
could reduce the number of function evaluations up to four
times. Moreover, this paper proposes an effective method
to find a threshold for entropy based interaction-detection
metric and a method to learn real-valued models. Exper-
iments show that the proposed crossover with the learned
real-valued models works well.

Categories and Subject Descriptors
G.1.6 [Mathematics of Computing]: Global optimization–
Analyse.

General Terms
Algorithms.

Keywords
Building Blocks, Crossover, Linkage Learning.

1. INTRODUCTION
Estimation of distribution algorithms (EDAs) learn link-

ages among the variables of problems. There are at least
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two limitations of linkage-learning methods. The first one is
that the linkage-learning methods consider the interactions
between two variables (so-called pairwise linkages) rather
than multi-variables. ecGA [5] learns linkages starting from
two variables and then learns pairwise linkages between two
groups of variables. LINC and LIMD [9] detect nonlinearity
between two variables. Bayesian network based algorithms
(e.g. EBNA, BOA, hBOA [1, 12, 10]) construct a graph
model with causal edges among two variables. DSMGA [18]
utilizes a dependency structure matrix which records depen-
dencies between two variables. Because of computational
burden – running time of linkage learning methods is desir-
able to be sub-quadratic, it is reasonable to consider only
pairwise linkages, which yields O(l2) running time.

The second limitation of linkage-learning methods is that
two variables are recognized as having interactions or having
no interactions. In other words, the relations among vari-
ables are binary. ecGA divides variables into several groups.
LINC and LIMD detect nonlinearity between two variables.
DSMGA uses entropy as a criterion to detect interaction
among variables and then a threshold is used to differenti-
ate whether two variables have interactions or not. D5 [15]
utilizes a perturbation based method to construct linkage
sets. All the above algorithms adopt a deterministic model
during recombination.

As for Bayesian network based algorithms, the relations
among the variables in a Bayesian network are either con-
ditionally dependent or independent (simply and condition-
ally), so the relations are still binary. Moreover, given a
Bayesian network, the form of the interpreted model is de-
terministic. In Section 2, the relations in a Bayesian network
will be discussed in greater detail.

The binary property of all the above algorithms can be
represented by a binary characteristic function which indi-
cates the outcomes of a pairwise linkage. This function only
outputs one and zero, and there does not exist a real num-
ber to illustrate the relations among variables. As a result,
a question comes to our mind: Do GAs need a real-valued
characteristic function to indicate the pairwise linkage? The
outputs of the real-valued characteristic function indicate
non-deterministic models. Here the non-deterministic mod-
els mean that the relations between variables is not fixed
during recombination.

This paper discusses the possibility of the real-valued char-
acteristic function and demonstrate its benefits. The goal of
this paper is to demonstrate its importance. Experiments
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show that the optimal real-valued model is better than the
optimal binary model. The concept of the real-valued char-
acteristic function should be further discussed and could be
useful for developing next-generation EDAs.
The rest of this paper is structured as follows. The for-

mulation and discussions of the real-valued characteristic
function is addressed in Section 2. In Section 3, a short
experiment demonstrate its benefits. Section 4 proposes a
crossover to realize its concept. In section 5, experiments
show that the optimal real-valued model is better than the
optimal binary model. Section 6 proposes a method to find
a threshold for entropy based metric [14] to detect interac-
tions among genes. Then a method is provided to learn real-
valued models. Section 7 proposes a population-wise version
of the proposed crossover. Finally, Section 8 concludes this
paper.

2. REAL-VALUED CHARACTERISTIC
FUNCTION

This section first discusses that commonly used EDAs
adopt binary models, in which the relations among variables
are binary and deterministic. This paper then addresses the
formulation of binary characteristic function which repre-
sents the binary models. At last, the real-valued charac-
teristic function, indicate the non-deterministic models, is
proposed and explained carefully.
EDAs like ecGA, LIMD, LINC, D5 and DSMGA perform

building block (BB)-wise crossover. It can be easily observed
that the relations among variables are either having inter-
actions (in the same BB) or having no interactions (in the
different BBs), so the relations are represented by a binary
characteristic function. Moreover, the constructed models
are fixed during recombination.
EBNA, BOA and hBOA sample offspring from Bayesian

networks. After one variable is sampled, children of this
variable are sampled according to their corresponding condi-
tional probabilities, and this process is similar to population-
wise shuffling. The relations among variables are either con-
ditionally dependent (e.g., P (A,B) = P (A) × P (B|A), or
vice versa) if there exist a path from A to B or indepen-
dent (e.g., simple independence: P (A,B) = P (A)× P (B)).
After constructing the Bayesian networks, the models for
generating offspring are fixed during recombination. As a
result, the relations among variables can be represented by
a binary characteristic function and the learned models are
deterministic. In other words, the learned models are fixed
during recombination.
For overlapping problems, D5, LIEM [8] and DSMGA are

known to have the ability to identify overlapping BBs. Yu
et al. [19] proposed a crossover method which is able to
effectively recombine overlapping BBs. The idea is using a
minimal cut algorithm to disrupt minimal number of over-
lapping BBs. Tsuji et al. [16] then modified Yu’s crossover
method so that it could increase BB mixing rate without
disrupting more BBs by considering identical allele values.
The above crossover methods do not have static cross sites
(some BBs will be disrupted). Note that the concept of re-
lations is different form the cross sites. Take simple genetic
algorithm for example, using one-point crossover could cre-
ate dynamic cross sites. However, dynamic cross sites do not
involve the information of the relations. This paper focuses

on the concept of the relations and the models for recombi-
nation rather than the method to choose cross sites.

After discussing all the above algorithms, we found that
the models utilized by these algorithms can all be indicated
by a binary characteristic function and the models is de-
terministic during recombination. The formulation of the
binary characteristic function is as follows:

RB(Xi, Xj) ∈ {0, 1}. (1)

This characteristic function indicates that the relation be-
tween variable Xi and Xj is either zero or one. Zero in-
dicates that there exist no interactions among Xi and Xj ;
while one indicates that Xi and Xj have interactions. As a
result, we wonder that if there exists a optimal model which
can not be represented by the binary characteristic function.
Here the optimal model means the model which yields the
fewest number of function evaluations for EDAs to reach the
global optima.

For problems where the variables are not interacted with
each others, these problems can be solved without respecting
the interactions among the variables. OneMax is a typical
example. For problems where the variables are strongly in-
teracted with each others, they can be solved efficiently if
the interactions are detected and the variables are properly
decomposed into sub-problems. Trap function [2] is such an
example. We wonder that if there exist problems that can
not be categorized into the previous two types of problems.

This paper tries to investigate the possibility of the rela-
tions indicated by a real-valued characteristic function and
proposes its formulation. The real-valued characteristic func-
tion is addressed as follows.

Rr(Xi,Xj) ∈ [0, 1] . (2)

The relation between Xi and Xj is now represented by a real
number in between zero and one. Note that the relation RB

is a special case of Rr. The value indicated by Equation 2
represent the certainty that Xi and Xj should be bound to-
gether. When the value approaches one, we tend to process
Xi and Xj as interacting; while the value approaches zero,
we tend to process Xi and Xj as not interacting. Conse-
quently, fuzziness has been added into deterministic binary
characteristic function.

Take Rr = 0.9 as an example. During recombination, 10
percent of the population are treated as independent and 90
percent of the population are treated as dependent. By in-
troducing the real-valued characteristic function, one could
construct a non-deterministic model. In other words, the
form of the model is not fixed.

Note that this is different from the concept of Bayesian
networks. If we introduce the real-valued characteristic into
Bayesian networks, the edges in the networks would become
non-deterministic during recombination. The joint distribu-
tion over the involved variables would not be a fixed form
while sampling the offspring.

To demonstrate the benefits of the real-valued characteris-
tic function, next section show that utilizing the real-valued
models could get a better performance than all the binary
models on the test problem.

3. THE BENEFITS OF REAL-VALUED
MODELS

Although the real-valued characteristic function has been
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Figure 1: The structure of the problem with the fit-
ness function defined by Equation 3, the circles de-
note the variables, the arrows denote the relation-
ship types among the variables and the rectangles
denote sub-problem.

proposed, its benefits have not been demonstrated – why do
GAs need such a function to indicate relations? In this sec-
tion, we enumerate all the possible binary models and some
of the real-valued models for GAs to solve a found problem.
If there exist real-valued models that require fewer number
of function evaluations, it should draw more attention and
be further studied. Here we sweep through the real values
which indicate the models because we want to find the opti-
mal real-valued model, and how to learn the real values will
be discussed in Section 6.
The fitness function of the test problem is formulated as

f(x⃗) = Trap3(x1, x2, x3) + Trap4(x1, x2, x3, x4)

+ Trap5(x1, x2, x3, x4, x5),
(3)

where Trapk denotes trap function [2] of order k, and xi

denotes the value of gene on the position i. We classify
the relations among variable into several groups according
to the structure of the problems. For example, the relation
between X1 and X4 is similar to the relation between X2

and X4 in this test problem, so they are considered as the
same type of relation. We define the types of relation as the
Cartesian product of two sets U and V :

Rk : U × V ∀u ∈ U,∀v ∈ V

R(u, v) = 1 , ifu = v.

Table 1 shows the four types of relation in the test problem.
As a result, one can only sweep through four values rather
than

(
5
2

)
values to enumerate the real-valued models. Figure

1 shows the types of relations of the test problem, where the
circles denote the variables, the arrows denote the relation-
ship types among the variables and the rectangles denote
the structure of sub-function. In the rest of this paper, this
representation will be used to show the types of relations.
To realize the concept of real-valued characteristic func-

tion, Equation 2 is modified as below:

P(Xi, Xj) =
1

2
+
Rr(Xi, Xj)

2
, (4)

Table 1: The relationship types in the problem of
Equation 3.

Set U Set V Relation
X1, X2, X3 X1, X2, X3 R1

X1, X2, X3 X4 R2

X1, X2, X3 X5 R3

X4 X5 R4

where Rr(Xi, Xj) ∈ [0, 1], so P is a real number in between
0.5 and 1.0. P represents the probability that Xi and Xj

come from the same parent while creating offspring. Pairs
of variable having high values of P tend to be transferred to-
gether during recombination. By such transformation, one
could implement the proposed concept with pairwise uni-
form crossover.

Take two variables for example, two variable will be treated
as independent if P is equal to 0.5. In this situation, the
crossover probability of one variable is 0.5 and is indepen-
dent of the other variable. If P is equal to 1.0 and one
variable is crossed, the conditional crossover probability of
the other variable is P, 1.0. In the same fashion, if P is
equal to 1.0 and one variable is not crossed, the conditional
crossover probability of the other variable is 1− P, 0.0. As
we can see, these two variables will be treated as a building
block (BB) if P is equal to 1.0.

After determining the real values of all the four types of
relations, the P-value of any pair of variables can be calcu-
lated. Crossover models can be then created by calculating
the joint probability of P. For example, if X1 has been
transferred and X2 has stayed, the conditional probability
for X3 to be transferred is calculated as

P(X3, X1) · P̄(X3,X2)

P(X3, X1) · P̄(X3, X2) + P̄(X3, X1) · P(X3, X2)
,

where P̄ denotes 1 − P and the denominator is added as a
normalizer. As we can see, if P(X3, X1) is equal to 1.0, the
conditional probability for X3 to be transferred is 1.0. Then
the sub-solution consisting of X3 and X1 will not be dis-
rupted. Moreover, because P is in between 0.5 and 1.0, one
could construct a non-deterministic model that sometimes
X3 and X1 are treated as a BB while sometimes not.

The experiments are performed with binary tournament
selection and full replacement. The crossover method is sim-
ilar to pairwise uniform crossover. The difference is that the
crossover probability is the calculated conditional probabil-
ity.

For all the enumerated 52 binary models and the real-
valued models, bisection method is used to measure the
minimal population size of GA with 10 consecutively fully
population convergence. The 52 models is acquired by enu-
merating all the possible models of 5 bits. The number of
possible models is equal to bell number [13]. The bisection
method is repeated 100 times to get a stable number of func-
tion evaluations. Table 2 shows that both the optimal R3

and R4 are 0.2 rather than 0 or 1. In other words, for the
pair of variables where the relations are indicated by R3 and
R4, the probability for transferring these pairs of variables
together should be slightly higher than considering they are
not interacted. The optimal real-valued model outperforms
the optimal binary model by approximately 13% number of
function evaluations.

Table 2: By enumerating all the 52 binary models
and some of the real-valued models, the experimen-
tal results show the benefits with the existence of
the real-valued characteristic function.

R1 R2 R3 R4 Nfe

Opt. real-valued model 1.0 1.0 0.2 0.2 457.82
Opt. binary model 1 1 0 1 528.55
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These experiments demonstrate the benefits of the real-
valued characteristic function. There exists a better way to
represent the relations. Next section proposes a crossover
which is able to recombine chromosomes according to the
real-valued models.

4. A CROSSOVER FOR REAL-VALUED
MODELS

This section proposes a crossover designed for dealing with
P defined in Equation 4. Imagining an l-bits problem, an
l-by-l adjacent matrix can be constructed, where the entry
dij contains P(Xi, Xj), and how to learn the real values will
be discussed in Section 6. This adjacent matrix is treated
as the models in EDAs. The proposed crossover is able to
utilize the information provided by the adjacent matrix and
recombining two chromosomes. In other words, it will pro-
duce two children from two parents at a time according to
the matrix. The algorithm is as follow:

Algorithm: The Proposed Crossover

1. Input two chromosomes as parents p1 and p2.

2. ∀ genes i in chromosome, if p1(i) = p2(i), then c1(i)←
p1(i), c2(i)← p2(i); else, then G← G joint {i}, where
p1(i) denotes the i-th gene in p1.

3. root← argmax
i

{
∑

j∈G P(Xi, Xj)|i ∈ G}

4. c1(root) ← p1(root) and c2(root) ← p2(root). G ←
G− {root}.

5. next← argmax
i
{P(Xroot, Xi)|i ∈ G}

6. Calculate probability Pr. If rand(0,1)< Pr,
c1(next) ← p2(next) and c2(next) ← p1(next). Oth-
erwise, c1(next)← p1(next) and c2(next)← p2(next).

7. root← next, G← G− {next}

8. Repeat steps 5 to 7 until G = ∅.

9. The two chromosomes, c1 and c2, are the results.

Firstly, two chromosomes must be input as parents. In
step 2, compare the values of the alleles between two par-
ents and assign the values of identical genes to the chil-
dren, because it is futile to cross these genes. Record rest
genes into a set G. In step 3, find the gene i that maximize∑

j∈G P(Xi,Xj). The sum can be viewed as the relation
of Xi between the remaining genes. A gene which has a
large sum indicates that it is of significance for some level,
so it should be treated firstly. One can also find the gene of
the largest P(Xi, Xj) and even use the technique of roulette
wheel to find the gene. What we provided is just one of the
choices. In step 4, do not cross the gene of the largest sum,
because it does not make a difference whether the first gene
is crossed or not, and then move this gene out of the set G.
In step 5, find a gene that maximize P with the previous
assigned gene, then calculate the conditional probability to

cross this gene with respect to k − 1 previous genes, where
k denotes bounded problem difficulty.

The following pseudo-code is used to calculate the condi-
tional probability for crossover:

Pseudo-code for calculating the conditional probability

for all last k − 1 assigned genes i do
if gene i is crossed then

Pc ← Pc × P(Xnext, Xi)
Pnc ← Pnc × P̄(Xnext, Xi)

else
Pc ← Pc × P̄(Xnext, Xi)
Pnc ← Pnc × P(Xnext, Xi)

end if
end for
return Pc

(Pc+Pnc)

P̄(Xnext, Xi) denotes 1 − P(Xnext,Xi). This algorithm
returns a conditional probability to cross Xnext. Make the
decision that whether or not to cross Xnext according to this
probability, and then repeat steps 5 to 7 until all the genes
are assigned. Finally, return the results.

The proposed crossover is able to utilize real-valued mod-
els and recombine chromosomes. This crossover has some
properties as below:

• Pairwise crossover. The proposed method processes
chromosomes pairwisely, so it is easy to be parallelized
for shortening executing time.

• No clustering. This method do not have to adopt clus-
tering method, so the clustering time is saved.

• Generalizing. The proposed crossover will reduce to a
uniform crossover if all P is 0.5, and it will reduce to
a BB-wise crossover if all P between the genes in the
same BB is 1.0 and all the rest P is 0.5. The ability
of the uniform crossover and the BB-wise crossover is
preserved without losing the capability of real-valued
models.

The proposed crossover provides a practical mechanism
and a experimental platform to employ real-valued mod-
els, so one could perform experiments with the proposed
crossover to explore the possibility of the real-valued char-
acteristic function. In the next section, experiments show
that the proposed crossover using real-valued models could
reduce the number of function evaluations up to four times
on the test problems.

5. EXPERIMENTS
In this section, we demonstrate three test problems which

exist real-valued models that outperforms all the possible
binary models. The experiments are similar to the experi-
ments in Section 3. The performance is improved to nearly
four times with the optimal real-valued model on the third
test problem. A short discussion about the possible causes
of the performance improvements is addressed.

The following experiments are performed with the pro-
posed crossover. We sweep across values of R by 0.2 inter-
val to find the optimal models that require fewest number of
function evaluations. We choose 0.2 interval rather than 0.1
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Figure 2: The structure of the problems with the
fitness functions defined by Equation 6, Equation 7
and Equation 8, where the circles denote the vari-
ables, the arrows denote the types of relations and
the rectangles denote sub-problem.

to decrease the time to enumerate the real-valued models,
and the found optimal model is better enough to defeat the
optimal binary model. To reduce the difficulty of sweeping
R values, the relationships of the same type share the same
R values as addressed in Section 3. For each models, 100
independent bisection runs are performed to find the mini-
mal population size for 10 consecutively successes of finding
the global optima. The averaged minimal population size of
100 bisection runs is used to yield the number of function
evaluation that EDAs need for solving the problems.

5.1 Three Test Problems
The first test problem is hierarchical XOR [17]. The defi-

nition of hXOR is as follows:

hxor(x⃗) =


1 ifλ = 1

1 ifhxor(L) = 1, hxor(R) = 1, andL = R̄

0 otherwise,

(5)
where λ is the number of hierarchical levels, L = x1x2 · · ·x2λ−1 ,
R = x2λ−1+1x2λ−1+2 · · ·x2λ , and R̄ is the bitwise negation
of R. For λ > 0, the fitness of hXOR is defined as:

f1(x⃗) = Hxor(L) +Hxor(R) +

{
length(x⃗) ifhxor(x⃗) = 1

0 otherwise.

(6)
The base case is when λ = 0, Hxor(x⃗) = 1. hXOR has two

Table 3: The experimental results of the three test
problems show that the optimal real-valued models
outperform the optimal binary models by approxi-
mately 39%, 83% and 362% number of function eval-
uations.

R1 R2 R3 Nfe

(a) Opt. real-valued model 1 0.2 0 238.24
(a) Opt. binary model 1 1 0 327.22
(b) Opt. real-valued model 1 1 0.2 6070.33
(b) Opt. binary model 1 1 1 11104.41
(c) Opt. real-valued model 1 0.4 – 19574.29
(c) Opt. binary model 1 1 – 70923.66

global optima and 2l/2 local optima at the lowest level for a
problem size l. There are exactly half of 1’s and half of 0’s
in the global optima.

An 8-bit hXOR is used, and its types of relations are
shown in Figure 2(a). The meaning of this plot is addressed
in Section 3. There exist three different types in an 8-bit
hXOR. The first one is among genes comprising level 1 global
optima. The second one is among genes comprising level 2
global optima and so on. Table 3(a) shows that the optimal
real-valued model outperforms the optimal binary model by
27%. The optimal values of R1 and R3 are still binary;
however, the optimal R2 is not binary.

The second test problem is two traps overlapping with
one bit. Someone may wonder that why not using a prob-
lem with cyclically overlapping BBs used in [19]. Because
the cyclically overlapping problem has much more types of
relations to be determined, it is impractical to sweep across
R and find the optimal model. As a result, a rather simple
overlapping problem is used. The fitness function is written
as

f2(x⃗) = Trap3(x1, x2, x3) + Trap3(x3, x4, x5). (7)

The structure and relation types of this test problem are
shown in Figure 2(b). There exist three relation types in this
test problem. The first one is among variables in the same
trap without the overlapping bit. The second one is among
variables in the trap and the overlapping bit. The third one
is among variables in the different traps. 20 sequential sub-
problems (100-bits totally) defined by Equation 7 are used.
As for those relations among different sub-problems, we set
R as zero.

Table 3(b) indicate a 45% improvement with the real-
valued model. The relations among the variables in the
same trap, R1 and R2, are reasonably one. The optimal
binary R3 should be one to avoid too many BB disruptions
or EDAs will fail to find the optima. However, the optimal
non-binary R3 is 0.2. The results show that the relations
indicated by R3 do not as strong as R1 and R2.

The fitness function of the last test problem is written as

f3(x⃗) = Trap3(x1, x2, x3) + Trap3(x4, x5, x6)+

Trap3(x7, x8, x9) + Trap9(x1, x2, x3, x4, x5, x6, x7, x8, x9).
(8)

The structure and the relation types are shown in Figure
2(c). R1 denotes the relations among the variables within
the same Trap3. R2 denotes the relations among the vari-
ables within the same Trap9 but in different Trap3. We use
10 sub-problems defined by Equation 8 in sequential (90-
bits totally). Table 3(c) shows that the optimal real-valued
model outperforms the optimal binary model by 72%.

It is reasonable to recognize the genes in the same Trap3
as a BB, so the optimal R1 is equals to 1. However, GAs
should also recognize the genes in the same Trap9 as a whole
BB in the case of binary model or it will fail to find the
global optima. Larger BBs require much more number of
function evaluations because GAs need a larger population
size to meet the initial supply requirement [3]. However,
the optimal real-valued model indicates that GAs do not
need to respect the relation introduced by Trap9 all the
time. The optimal non-binary R2 is equal to 0.4. One of
the possible reasons for the non-binary value is that the local
optima of Trap3 also comprises the local optima of Trap9,
so it is needless to consider the relation indicated by R2 all
the time. The real-valued characteristic function provides
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Figure 3: This figure shows that switching the BB
information in the 11th generation yields the fewest
number of function evaluations 20727.98 with the
binary models.

a way to compromise between assuring the initial supply
requirement and preserving the information of BB, and the
experimental results show the improvements of performance.

5.2 Discussions
This subsection tries to further examine why the perfor-

mance of the optimal real-valued model is much better than
the optimal binary model.
Further experiments are performed with the third test

problem by considering its characteristic. R2 is equal to
0 in the first few generations to reduce the population size
guided by the initial supply requirement. R2 then switch
to 1 to introduce the BB information of Trap9. We sweep
across the optimal time to switch R2 from the first genera-
tion to the 25th generation.
Figure 3 shows that switching R2 in the 11th generation

yields the fewest number of function evaluations. Although
this method could get a comparable performance to the op-
timal real-valued model, there exists no realistic mechanism
to automatically detect the optimal time to switch the BB
information. Moreover, applying the switching method does
not outperform the optimal real-valued model.
We use ecGA to solve this problem so that we could ob-

serve the learned models generation by generation. In real-
ity, ecGA needs a large population size (48000) to conquer
the problem difficulty. The BB information of Trap3 is rec-
ognized in the first few generations, then some BBs of Trap3
will be merged into one 6-bits BB. In the end, all the BBs
of Trap3 will be merged into one 9-bits BB. In other words,
GAs need a dynamic binary BB information in order to solve
this problem. However, finding the optimal switching time
is the key to efficiently solve this problem, and there exists
no such mechanism to detect the optimal switching time.
Using a static real-valued model could get a well perfor-
mance without finding the awkward method to switch the
BB information.
In conclusion, one can find that it is of significance to pay

attention on the real-valued characteristic function based on
the above experimental results. The real-valued models have
the abilities to reduce the number of function evaluations
to nearly four times on the third test problem. Further
experiments show that even using a optimal dynamic binary
model does not outperform the optimal static real-valued
model. In the next section, a method to learn the real-

valued model is proposed, so one can apply to the unknown
problems.

6. INTERACTION-DETECTION
Although the method to recombine chromosomes is pro-

posed in Section 4, how to learn the optimal R is yet un-
known. In this section, we propose a method to find a
threshold for identifying the binary models with entropy
based metrics. Then a method is proposed to acquire the
real-valued models.

6.1 For Binary Models
Entropy [14] is the most commonly used metrics in EDAs

to detect interactions among variables. ecGA, EBNA, BOA,
hBOA and DSMGA are typical examples. The loss in en-
tropy is mutual information (MI) in the case of two variables.
The form of mutual information shows as

I(X;Y ) =
∑
x

∑
y

p(x, y) log
p(x, y)

p(x)p(y)
, (9)

where X and Y are two random variables. x and y denote
the outcomes of these two random variables respectively.
Note that if X and Y are independent, p(x, y) = p(x)p(y),
and hence I(X;Y ) = 0. One can use this metric to detect
interactions among variables, and MI performs well on most
cases.

According to Kleiter [7] and Hutter and Zaffalon [6], if
two variables X and Y are independent, the sampled mu-
tual information In(X;Y ) calculated over n samples can be
approximate as Beta distribution with mean µ ≈ 1

2n
and

variance σ2 ≈ 1
2n2 . Both µ and σ2 tend to zero when the

sample size n is large.
Take an l = m × k-bits decomposable problem for exam-

ple, one could calculate the pairwise MI among all variables,(
l
2

)
totally. m is the number of sub-problem, and k is the

problem difficulty. The number of the independent pairs
(
(
l
2

)
−m×

(
k
2

)
) is greater than the dependent pairs (m×

(
k
2

)
)

unless k is greater than l+1
2
. In real world, the problem dif-

ficulty is bounded, so the number of the dependent pairs is
no more than the number of independent pairs. If the pop-
ulation is infinite, the median of all

(
l
2

)
pairwise MI among l

variables is reasonably considered as independent pair with
bounded difficulty.

For the sake of picking up a sampled MI I(X;Y ) where X
and Y are independent, median of all

(
l
2

)
values is chosen.

However, the chosen pair may not be independent because
of the sampling noise with finite population. According to
the population sizing by [20], the model accuracy is 1− 1

m
.

In reality, one could randomly pick up 5 candidates from the
all pairwise MI values. The median of these 5 chosen candi-
dates is then represented as the pairwise MI of independent
pair. The probability that the median-of-5 does not come
from independent pairs can be calculated as follows. The
ratio of the number of dependent pairs to the number of all
pairs is approximately 1

m
. In the condition that the median-

of-5 is not the MI from independent pairs, three of the five
candidates should be from dependent pairs, so the proba-
bility that the median-of-5 is not the MI from independent
pairs is 1

m3 , which is small enough. Moreover, as mentioned
before, the variance of the distribution of sampled MI tends
to zero when the sample size is large, so it is more likely
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Figure 4: This figure shows that DSMGA with the
threshold-finding method is comparable to hBOA
and the prosed crossover with the model-learning
method is better than DSMGA on the (m, k)-trap,
where m is equal to 30 and k is equal to 5.

that the median is independent with larger population size.
According to [6], once an sampled MI between two indepen-
dent variables is given, one could calculate the µ and σ2 of
the approximated distribution.
According to [20], the decision error 1−F (x;α, β) is bounded

by 1
ϵ
≥ Θ(m3), where m denotes the number of BBs. Be-

cause m can not be determined for the unknown problems,
one could use ϵ = 1

l3
to derive the threshold x for interaction-

detection.
The above procedure can be applied to EDAs so as to de-

tect interactions among variables by classifying the pairwise
mutual information into binary values. DSMGA with this
threshold-finding method is comparable with hBOA. Figure
4 shows the experiments on (m, k)-trap.

6.2 For Real-valued Models
The previous section described how to calculate a thresh-

old for binary models. Now we can simply utilize the knowl-
edge of the distribution of MI to build real-valued models.
One could consider the values of R generated by this

method as a confidence level. If the value of F (M;α, β)
is nearly 100%, it is of high confidence to believe that this
relationship is interacted, because it is nearly higher than
all the independent MI from the estimated distribution. If
the error rate, 1 − F (M;α, β), is larger than 1

l3
, one could

consider this pair as independent and map R to nearly 0.
In behalf of benchmarking the ability of the proposed

crossover with this procedure, experiments are performed
to test its performance and ability to solve problems. We
implement the proposed crossover and the procedure to ac-
quire the real-valued models with tournament selection and

Table 4: The experimental results of 10 sub-problem
of Equation 8 show the performance of different
EDAs.

Methods Nfe

Optimal real-valued model 19574.29
Optimal binary model 70923.66

DSMGA+threshold-finding 97470.12
The proposed XO+model-learning 36736.53

hBOA 33988.82

restricted tournament replacement (RTR) [4, 11]. For each
test problem, 10 independent bisection runs are performed
to find the minimal population size for 10 consecutively suc-
cesses of finding the global optima. The averaged minimal
population size of 10 bisection runs is used to yield the num-
ber of function evaluation that GAs need for solving the
problems.

Figure 4 indicates that the prosed crossover with the method
to acquire real-valued models is better than DSMGA even
on the (m, k)-trap. The optimal model of the (m, k)-trap is
considered as binary, but the proposed crossover has a better
performance. As a result, there might exist some other ben-
efits to utilize real-valued models, so the proposed crossover
is better even on the (m, k)-trap.

Table 4 indicates that the proposed crossover with method
to acquire real-valued models slightly lose to hBOA on the
third test problem because the interaction-detection mecha-
nism does not get the optimal real-valued model. Although
the method to acquire real-valued models could get the value
for the proposed crossover to use and perform well to some
degree, the learned model is still not optimal.

In this section, a threshold-finding method is proposed for
learning binary models, and another method is proposed for
learning real-valued models. Although this method is inca-
pable of acquiring the optimal real-valued models, the per-
formance is comparable to hBOA. More experiments should
be performed to investigate how to acquire the optimal real-
valued models.

7. RECOMBINATION FROM PAIRWISE TO
POPULATION-WISE

The proposed crossover mentioned in Section 4 produces
two children from two parents at a time. This section pro-
vides a population-wise crossover method which utilizes the
concept of the real-valued characteristic function because
population-wise shuffle is known that having a better mix-
ing rate than the one of uniform crossover.

This crossover method recombines chromosomes by shuf-
fling population-wisely. First, find the locus (site of a gene)
i that maximize

∑
j∈G P(Xi, Xj), and shuffle the genes on

this locus population-wisely. Next, choose an unshuffled lo-
cus which maximizes R with the last shuffled locus, and
decide whether to shuffle the genes on this locus according
to the probability given by 1−R. For those unshuffled genes,
assign the values which of the same parents with the genes
on the last shuffled locus. In other words, some genes are
BB-wisely shuffled and some genes are randomly shuffled.

With this crossover, one could utilize the real-valued mod-
els population-wisely. Up to now, the population-wise method
works only with RTR, and the reasons are still being inves-
tigated. Table 5 shows that the population-wise crossover

Table 5: The experimental results of 10 sub-
problems of Equation 8 show that the performance
of the proposed population-wise crossover with RTR
performs 2 times better than the proposed pairwise
crossover with RTR. Both methods use the optimal
real-valued models.

Methods Nfe

pairwise XO + RTR 15997.31
population-wise XO + RTR 7052.58
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with RTR performs 2 times better than the pairwise crossover
on the third test function. This shows the potentialities of
the population-wise crossover and it should be further re-
searched.

8. CONCLUSIONS
This paper investigates the relations among variables and

proposes a real-valued characteristic function that breaks
the limitation of the binary characteristic function. Exper-
iments demonstrate the benefits that the GAs with real-
valued models perform better. This paper also propose a
crossover which is able to utilize the real-valued models.
Experiments show that the proposed crossover using real-
valued models could reduce the number of function evalua-
tion up to four times on the test problem. Moreover, this pa-
per proposed an effective method to find a threshold for the
entropy-based metrics and a method to provide real-valued
models for the proposed crossover. Experiments show that
the proposed crossover with the learned real-valued models
works well.
This paper demonstrated that model building in EDAs

can benefit from the utilization of relations with real-valued
characteristic functions. As a first attempt, we used the
beta distribution to estimate the relation. Even though our
method may not be optimal, EDAs with those real-valued
models consumed significantly fewer function evaluations on
several test functions. More experiments need be conducted
to investigate the property of real-valued relations so as the
estimation of relation can be more accurate. Nevertheless,
the idea of using a real-valued characteristic function may
shed some light on developing next-generation EDAs.
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