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ABSTRACT
Baldwinian evolution is a type of hybridization of population-
based global search and individual local search. The indi-
viduals take local refining processes, then in selection bene-
fit from the improved fitness, but do not pass on the refined
traits the data in to the offspring. The lost information
of the refined phenotype implies that the inheritance en-
coded in genotypes is not directly benefit traits, but the
traits having potential to achieve high fitness through the
lifetime interaction with the environment. As the result, it
is necessary to study how learning works comparing to the
previous generation, in addition to how much it improves
on the current population. The children may imitate what
their parents performed and catch up with them, or alter-
natively, explore elsewhere and have no idea of where the
parents arrived. In this paper, the trade-off is investigated,
and it is revealed that in Baldwinian learning, the capabil-
ity to follow the parents’ footprints benefits. With higher
imitation tendency, the evolving population can maintain a
greater scale of learning potential, and the search results in
better speed and convergence.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Heuristic methods

General Terms
Algorithms

Keywords
memetic algorithms, Baldwinian evolution, local search, learn-
ing potential, imitation tendency

1. INTRODUCTION
Memetic algorithms are a type of hybrid algorithms com-

bining population-based evolution with local refinements.
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They can be divided into two categories: Lamarckian and
Baldwinian. Lamarckian evolution assumes learned traits
are fixed back to the genotypes and passed on to the off-
spring. On the other hand, in Baldwinian evolution selec-
tion is based on improved fitness, but the traits refined are
not known to the offspring.

To apply memetic algorithms in real world problems, it
is necessary the knowledge of how evolution proceeds and
which factors influence the performance. So far the re-
searchers mainly concentrated on Lamarckian evolution for
its simpleness and effectiveness. For example there are works
on optimizing the parameters such as learning frequency
and intensity [16, 13, 1, 7, 11], and some on adapting them
through the search [19, 17, 12, 18]. However, the results may
not hold in Baldwinian evolution. For example, in Lamarck-
ian search, it is common to choose only a random set from
the population to take learning. However in Baldwinian
scenario, if an individual is not allowed to take learning, the
learning efforts paid by its parents, if any, become meaning-
less. The parents were selected for their refined traits, but
the offspring is to be judged by the inherited initial traits.

There are also a number of studies on the mechanisms
of Baldwinian evolution. The guiding effect of Baldwinian
learning in the search was first verified by Hinton and Nowlan
[8]. In the following years researches were taken on the char-
acteristics in the process of Baldwinian evolution [23, 15, 22,
14], the interaction of learning, evolution and development
[4, 5, 6], and the fact that Baldwinian learning can also be
hiding [20, 21]. Furthermore there are works trying to com-
bine Baldwinian and Lamarckian evolution [3, 9, 2]. How-
ever, as once claimed by Turney [23], Baldwinian evolution
is very complex. By now there are still many mysteries in
Baldwinian evolution.

In this paper we investigate further into the process of
Baldwinian evolution, to find out what has effect on the
search performance. Differing from many conventional stud-
ies on how learning performs in one generation, our view-
point is taken on the comparison between the offspring’s
learning processes and their parents’. This work is inspired
by Suzuki [22] who has reported climbing period and the ef-
fect of keeping track to the optimum. In our previous work
[14], it was revealed the most learning efforts are paid to
keep the inherited potential of achieving good fitness. Now
we study what happens if the offspring follow or not follow
the learning trajectories or directions of their parents’, as
it’s already known they start from similar positions.

An image of Lamarckian and Baldwinian learning is shown
in Fig.1. In Lamarckian learning, the children C1 and C2
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(a) Lamarckian learning

(b) Baldwinian learning

Figure 1: Illustration of two types of inheritance.

fully inherited the refined traits of the parent in P ′, and
what they achieve in their own learning processes (C1 → C′

1

and C2 → C′
2) are mostly beyond the learning destination of

the parent (P → P ′). In Baldwinian learning, the children
are reproduced close to P , the start point of the parent,
where there is a distance from the learning destination P ′.
The children have to again discover routes to improve fitness
by themselves, whether the same to or different from the
parent’s. The inheritance is no longer direct benefit traits,
but the potential to achieve good fitness by learning.

Basically there are two possible patterns to realize the
potential. The individual may follow the parent’s footprints
and go further (C1 → C′

1), and have most of its learning
efforts imitating or repeating what the parent has done once.
It is also possible to explore somewhere else and improve the
fitness (C2 → C′

2), which leaves the route of the parent and
may be either a better direction or a worse one.

Even with the same search capabilities on the same indi-
viduals or populations, different learning schemes have dif-
ferent tendencies of imitating or exploring, thus lead to dif-
ferent search performances. The refined traits are not passed
on directly, however, individuals in different generations are
taking the same learning scheme, and the common procedure
may provide some clues of the parents’ routes. With more
such clues the children, which are reproduced similar to the
parents’ initial shapes, are expected to have more chance to
step on or get close to the footprints of the parents, and
vice versa. With different levels of the balance, different in-
dividuals survive in selection, the population is tailored into
different shapes through evolving, and the search performs
differently.

Considering the trade-off between imitating and wander-
ing elsewhere, an idea associated is the topic of exploitation
versus exploration. However, the nature of Baldwinian evo-
lution makes the story in another way. Without leaving the
attained learning route to the offspring realizable, neither
exploitation nor exploration could make sense. Even when
an individual imitates the learning of its parent(s), it is just
keeping track to the refining destination once attained, and
makes a little further improvement. From this point of view
it can be expected that with a lower imitation tendency, the

Figure 2: The genotype of an individual.

Figure 3: Illustration of partial fitness in NK model
with N=10, K=2.

achievements of ancestors will be more difficult to repeat,
and the search may result in worse speed and convergence.

In this paper, we examined the effects of learning scheme
imitation tendencies in Baldwinian evolution. It is revealed
more imitation enables the population to keep more learn-
ing potential, and may improve search speed and conver-
gence. In the second section we introduce the NK model as
our benchmark, and present the three learning schemes to
compare, which have similar local search performances on
the same populations. In section 3, experiments examining
learning potential scales and search performances are pre-
sented, on three different landscapes separately. Section 4
includes discussions on the results of the experiments, also
some looking ahead topics. Finally the conclusion of the
paper is presented.

2. MODEL

2.1 NK Model with Plasticity
In our examination, NK model is used as the benchmark.

The model is simple, and allows us to design the needed
learning schemes easily. It is a broadly used artificial model
to simulate general discrete optimization problems proposed
by Kauffman [10]. Some researchers use this model to ex-
amine general rules in evolution [15].

The genotype of an individual includes two N-bit strings,
as shown in Fig.2. GI records the start point of learning, in
other words the initial traits. GP points out which bits in
GI are allowed to be modified in lifetime learning, as known
as the plasticity. In the learning process, the plastic bits
(the positions having 1 in GP ) of GI are modified to try
new strings and pursue higher fitness. The survival depends
on refined fitness, while the children receive GI and GP .

To calculate the fitness of GI or its refinements, a series of
look-up tables are needed, which determine the landscape.
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Table 1: Experiment Parameters
N 20

K 0/5/15

Population Size 500

Crossover Rate 0.50

Mutation Rate 0.05

As shown in Fig.3, for any location i, calculate a partial fit-
ness fi. The value is determined by the bits in the according
K-neighborhood, those from the i-th bit to the (i + K)-th
bit, and is found in the prepared i-th look-up table, indexed
by the 2K+1 possible 0/1 combinations. After extracting all
the N partial fitness values from the N tables, the fitness of
the whole string is calculated as f = 1

N

PN
i=1 fi.

From these explanations it is clear that N determines the
size of the search space, and K adjusts the epistasis and com-
plexity level. The experiment parameters are included in
Table 1. Furthermore, conventional 2-tournament selection,
two-point crossover and one-bit mutation are employed. Ex-
periments are taken on three landscapes with K values 0, 5
and 15, to include various levels of epistasis and complexity.
For each landscape the N look-up tables are generated ran-
domly once, and on this landscape various tests and their
iterations take place.

2.2 Local Search Schemes
With the settings mentioned above, we compared three lo-

cal search schemes with similar search capabilities but differ-
ent imitation tendencies. They are all bit-wise trial climbing
schemes: From a learning individual with current phenotype
string s, a trial changes one of the plastic bits to form a new
string s′. Evaluate s′, compare to the fitness of s, and keep
the better string from the two as the result of this trial and
the base of next. Starting from string GI , iterative trials
are taken till the given number of trials is reached, which we
call it the budget. The final fitness is considered the fitness
of the learning individual.

The only difference of the three schemes is how to de-
termine the bit to change in each trial. Note the plas-
tic bit positions in an individual (1s’ positions in GP ) as
i1 < i2 < ... < im, 1 ≤ ij ≤ N , the schemes are as follows:
1) Change the plastic bits one by one in sequential tri-

als, according to the position sequence in the genotype:
i1, i2, ..., im, i1, i2, ....

2) Change the plastic bits one by one, according to a ran-
dom permutation generated before the learning of the indi-
vidual. Note the permutation of 1 to m as p(1), p(2), ..., p(m),
the changed bits are: ip(1), ip(2), ..., ip(m), ip(1), ip(2), ....
3) In each trial choose a random bit from all the plastic

bits. A possible series of changed bits is: i4, i2, i1, i2, ....
Here we use the budget limit as the termination condition

of learning, for it is easy to control and measure, and conve-
nient to compare between generations. It is also common to
finish learning when it makes little or no further improve-
ment. Both are reasonable but have difficulties in determine
the best time to stop. There is always risk of insufficient lo-
cal search or redundant computational cost. Furthermore, in
Baldwinian evolution with the same learning scheme, an in-
dividual pays almost the same effort as the parent to realize
the received potential and catch up. Any online adaptation
of learning scheme or learning intensity needs to be smooth

enough, or they will encounter additional inefficiency. That
is the reason we have tests on multiple budgets and use fixed
budgets in each run.

It should also be noted that in our experiment, the learn-
ing cost is not employed in fitness function, as we are only
interested in the search phase of Baldwinian evolution. In
this phase it is claimed that enhancement of local search
dominates [8, 3], and the punishment of learning cost is con-
sidered and set trivial before genetic assimilation. Our fur-
ther consideration is, the cost punishment in fitness function
substantially changes the target of evolution. It is no longer
”to find individuals achieving good fitness through learning”,
but ”to find individuals achieving good fitness and cost lit-
tle through learning”. Here comes two objectives, and the
trade-off coefficient between is determined arbitrarily in con-
ventional works. It needs more careful investigations.

3. EXPERIMENT
In the first sub-section we confirm that the three learn-

ing schemes bring similar improvements on the same pop-
ulations. Then in other three sub-sections, corresponding
to the three landscapes, we examine how different learning
tendencies shape the population, and how they influence the
search performance.

3.1 Search Capabilities of Learning Schemes
The three learning schemes are similar in operations. In

this experiment, they are confirmed quite similar in search
capabilities, when applied to the same population evolved
without bias of either scheme. We evolve a population with
no-learning evolution till the average fitness exceeds 0.70,
then apply the three learning schemes on the population
with various budgets, and check how much the average fit-
ness is improved since previous generation.

As shown in Fig.4, X axis shows the budget, which means
how many trials are taken in the learning. Y axis shows the
average fitness improvement through the learning processes.
The three data lines distinguish the schemes applied. Each
data bar shows the result of 50 sub-sections, results on dif-
ferent landscapes are presented separately. random iteration
runs with the scheme and budget, including the average and
the error range. Considering these both aspects, on all land-
scapes and with various budgets, learning scheme 1 and 2
perform almost the same on the same population. Learning
scheme 3 is relatively poor in search comparing to the other
two, but not too much. Comparing different landscapes,
as the epistasis and complexity grow, the improvement of
learning decreases, and differences of the schemes become
smaller.

However, the tendencies of imitation are quite different.
Considering starting from similar or even the same initial
genotypes, with some learning schemes the destination of
learning are likely to be similar, but others not. In scheme
1, the order of the changed bits is fixed to the positions in
genotypes, thus some priority information can be passed on
to the offspring: a bit close to the beginning of the string
is always taken in trials in the early stages of learning. The
same genotype (GI+GP ) performs always the same in this
learning, and similar individuals are likely to reach similar
or the same destination. In scheme 2, the order is generated
randomly every time the learning begins. The same geno-
type performs differently as permutation varies, and similar
individuals are less likely to arrive at the same place. In
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(b) K=5
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(c) K=15

Figure 4: Compare learning schemes on the same population.

Table 2: Fitness improvement of learning schemes
with fixed learning budget, on landscape K=0

Budget 5 10 20

vs before
Learning

Scheme 1
0.046891

(±0.003227)

0.068673

(±0.003760)

0.069930

(±0.003838)

Scheme 2
0.040463

(±0.003097)

0.068623

(±0.004322)

0.070024

(±0.005128)

Scheme 3
0.024141

(±0.002321)

0.044181

(±0.003300)

0.061050

(±0.004799)

vs
Previous
Generation

No Learning 0.015492 (±0.001858)

Scheme 1
0.015488

(±0.001897)

0.017195

(±0.001450)

0.017373

(±0.001460)

Scheme 2
0.014235

(±0.001503)

0.017354

(±0.001412)

0.017863

(±0.001367)

Scheme 3
0.013780

(±0.001652)

0.014528

(±0.002164)

0.016777

(±0.001695)

scheme 3, a bit may be chosen again for a trial soon after
used once, not waiting for all the plastic bits have been taken
once. Even less certainty is passed through generations. The
differences are tested in details in the next experiments.

3.2 No Epistasis Landscape
The first landscape has K=0. There is no epistasis and

the landscape is very simple. For each position of GI the
bit has two different partial fitness values according to its
0/1 code. Just find the better choice from 0/1 and cover all
bits, the search reaches the global optimum.

First we have an experiment measuring learning improve-
ments, to examine how the population is shaped according
to the learning schemes. A population is evolved with a
fixed learning budget applied to all individuals, till the av-
erage fitness exceeds 0.70. Then apply the same learning
scheme with various budgets to the population, and record
how much the average fitness is improved comparing to the
refined fitness of previous generation. It shows the scale of
learning potential kept with the learning scheme and budget.

The result is shown in Fig.5 and Table 2. They are av-
erages of 50 runs. In Fig.5, X axis shows the differences
between current and previous budgets. For example, the
population reaching fitness 0.70 is evolved with fixed bud-
get b0, and in current generation the budget is changed to
b, then the X coordinate is b − b0. Y axis shows the differ-
ences of refined fitness between two generations, which can
measure how much the search proceeds. Table 2 shows the
fitness improvement when current budget reaches the pre-
vious, corresponding to the point with X = 0 in Fig.5, and

Table 3: Search performance of learning schemes,
on landscape K=0

Budget 5 10 20

Converging
Fitness

No Learning 0.793938 (±0.000205)

Scheme 1
0.794080

(±0.000190)

0.794220

(±0.000163)

0.794399

(±0.000146)

Scheme 2
0.793963

(±0.000201)

0.794157

(±0.000182)

0.794380

(±0.000171)

Scheme 3
0.793871

(±0.000245)

0.793908

(±0.000250)

0.793955

(±0.000244)

Ev. Calls
to Reach
99%

No Learning 6840 (±410)

Scheme 1
35700

(±2443)

56650

(±3191)

105840

(±5547)

Scheme 2
39120

(±2496)

57530

(±2984)

105210

(±5404)

Scheme 3
43080

(±2554)

74360

(±5240)

126000

(±7648)

also includes results comparing to the fitness before learn-
ing. The numbers in brackets with ± signs are deviations of
the independent iterations.

On this landscape, with any of the learning schemes, indi-
viduals have to take almost the same budget to catch up with
their parents, and can hardly go further. However, differ-
ent imitation tendencies lead to different scales of learning
potential kept. As shown in Table 2, comparing to initial
fitness of current generation, the fitness increments through
learning are different. Considering the deviations, the dif-
ferences are significant. Scheme 1 and 2 perform similarly.
Scheme 3 holds a smaller scale of potential, and improves
less through generations. Further statistics of budget=20
shows that scheme 1 and 2 usually achieve greater learning
potential than scheme 3 (49/50 and 46/50).

The second test is on the search performance: speed and
fitness. To compare the schemes more fairly, for each learn-
ing scheme we assign three different budgets 5, 10 and 20,
and test separately. In the experiment we record the compu-
tational cost measured in evaluation calls, and the average
fitness of the population.

The result is shown in Fig.6 and Table 3. The data are
averages of 50 runs. In Fig.6, X axis shows the evaluation
call numbers, and Y axis is the average fitness. Table 3 shows
convergence fitness, the evaluation calls used to reach 99%
of the fitness, and their deviations. The numbers in brackets
with ± signs are deviations of the independent iterations.

The global optimum fitness of this landscape is 0.794861,
found by enumeration. From the table we see with all meth-

556



-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

-20 -15 -10 -5  0  5  10  15  20

G
e
n
e
r
a
t
i
o
n
 
F
i
t
n
e
s
s
 
I
m
p
r
o
v
e
m
e
n
t

Budget Increment Step

Previous Budget =   5
Previous Budget = 10
Previous Budget = 20

(a) Learning Scheme 1

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

-20 -15 -10 -5  0  5  10  15  20

G
e
n
e
r
a
t
i
o
n
 
F
i
t
n
e
s
s
 
I
m
p
r
o
v
e
m
e
n
t

Budget Increment Step

Previous Budget =   5
Previous Budget = 10
Previous Budget = 20

(b) Learning Scheme 2

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

-20 -15 -10 -5  0  5  10  15  20

G
e
n
e
r
a
t
i
o
n
 
F
i
t
n
e
s
s
 
I
m
p
r
o
v
e
m
e
n
t

Budget Increment Step

Previous Budget =   5
Previous Budget = 10
Previous Budget = 20

(c) Learning Scheme 3

Figure 5: Learning improvement on K=0 landscape.
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Figure 6: Search performance on K=0 landscape.

Table 4: Fitness improvement of learning schemes
with fixed learning budget, on landscape K=5

Budget 5 10 20

vs before
Learning

Scheme 1
0.102299

(±0.016521)

0.138046

(±0.015239)

0.154631

(±0.015365)

Scheme 2
0.070663

(±0.020377)

0.120990

(±0.012895)

0.143240

(±0.011780)

Scheme 3
0.030695

(±0.007967)

0.065227

(±0.011316)

0.110085

(±0.011123)

vs
Previous
Generation

No Learning 0.010298 (±0.004638)

Scheme 1
0.009380

(±0.002965)

0.009794

(±0.002825)

0.009612

(±0.002988)

Scheme 2
0.009106

(±0.002895)

0.009198

(±0.002565)

0.009011

(±0.002980)

Scheme 3
0.009230

(±0.003879)

0.008564

(±0.002428)

0.008872

(±0.002731)

ods search converges close to the optimum fast. Considering
deviations and differences of averages, Scheme 1 performs
quite similar to scheme 2, and prior to scheme 3 not sig-
nificantly, in both speed and fitness. Further statistics of
budget=20 shows that scheme 1 and 2 usually attain better
fitness (both 48/50) and speed (49/50 and 48/50).

3.3 Low Epistasis Landscape
This landscape has K=5. It has some epistasis, however

still fairly easy. On this landscape, it becomes difficult to
imitate parents.

Fig.7 and Table 4 are the results of learning improvement
examination. The three schemes achieve similar improve-
ments between generations, and lower than no learning evo-
lution. The differences on the scale of learning potential are

Table 5: Search performance of learning schemes,
on landscape K=5

Budget 5 10 20

Converging
Fitness

No Learning 0.787684 (±0.011294)

Scheme 1
0.798414

(±0.002960)

0.798978

(±0.003703)

0.799183

(±0.002938)

Scheme 2
0.794109

(±0.007212)

0.798162

(±0.003513)

0.798776

(±0.002472)

Scheme 3
0.795399

(±0.006534)

0.795821

(±0.005731)

0.796702

(±0.004016)

Ev. Calls
to Reach
99%

No Learning 14800 (±3231)

Scheme 1
80220

(±20739)

142450

(±84018)

237930

(±63093)

Scheme 2
81420

(±17545)

141130

(±32312)

279930

(±107113)

Scheme 3
88080

(±23013)

182820

(±71180)

295050

(±55733)

much more distinct on this landscape, according to both av-
erage and deviation data. It is apparent that scheme 3 keeps
the least potential, and scheme 1 holds more than scheme
2. Further statistics of budget=20 shows that for learning
potential scales, scheme 1 is often prior to 2 (37/50), and
scheme 2 always higher than 3 (50/50).

The examination of search performance is shown in Fig.8
and Table 5. The global optimum fitness of the landscape
is 0.803160, found by enumeration. The evolution without
learning converges at 0.787684, not close to the optimum,
though much faster than Baldwinian evolutions. All the
Baldwinian searches converge close to the optimum, with
no big difference in fitness. For convergence speed, scheme
1 is relatively faster than scheme 3, and scheme 2 is between
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Figure 7: Learning improvement on K=5 landscape.
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Figure 8: Search performance on K=5 landscape.

the two. Further statistics shows that for fitness and speed,
scheme 1 is slightly better than 2 (30/50 and 31/50), and
scheme 2 is better than 3 (37/50 and 33/50). Comparing
scheme 1 and 3, scheme 1 usually wins (44/50 and 40/50).

3.4 High Epistasis Landscape
This landscape has K=15. When one bit is changed, 16

partial fitness values will change. The epistasis is high, thus
crossover or mutation frequently breaks the selected learn-
ing routes. In this situation, greater budgets achieve little
further learning capability, and the realization of inherited
potential becomes very difficult. As the result, increment of
budget not always brings greater learning potential. Some-
times the imitation tendency even decreases, such as scheme
1 shown in Fig.9 and Table 6. Without determined trial or-
der, scheme 2 and 3 suffer less from this phenomenon, and
further budget let them keep a greater scale of learning po-
tential. It implies that the level of imitation tendency is not
always positively correlated with budget or learning capa-
bility.

Learning improvements of three schemes are included in
Fig.9 and Table 6. The learning potential scales vary appar-
ently, considering averages and deviations. Though scheme
1 suffers from the disadvantage of broken learning routes, it
keeps more potential than scheme 2, and scheme 3 is still the
least. Further statistics of budget=20 shows that for learn-
ing potential scales, scheme 1 is always prior to 2 (50/50),
and scheme 2 usually higher than 3 (46/50).

Fig.10 and Table 7 show the performance of the search.
The global optimum fitness of the landscape is 0.801496,
found by enumeration. All methods fail to converge close to
the optimum, and the lowest is no learning evolution, though
still the fastest. Different learning schemes bring similar
convergence times, but different fitness levels. Scheme 1 has

Table 6: Fitness improvement of learning schemes
Learningwith fixed learning budget, on landscape
K=15

Budget 5 10 20

vs before
Learning

Scheme 1
0.160329

(±0.055076)

0.139534

(±0.018094)

0.137678

(±0.007222)

Scheme 2
0.063902

(±0.041059)

0.099236

(±0.012206)

0.114280

(±0.005558)

Scheme 3
0.028494

(±0.021138)

0.077244

(±0.011407)

0.103274

(±0.005545)

vs
Previous
Generation

No Learning 0.003169 (±0.007954)

Scheme 1
0.007173

(±0.008703)

0.002722

(±0.004311)

0.001201

(±0.002764)

Scheme 2
0.005126

(±0.006681)

0.003498

(±0.004571)

0.000733

(±0.002355)

Scheme 3
0.005552

(±0.006894)

0.003281

(±0.005199)

0.001404

(±0.002793)

the highest fitness, and scheme 3 the lowest. For convergence
fitness scheme 1 is often better than 2 (37/50), and scheme 2
is better than 3 (32/50). Comparing scheme 1 and 3, scheme
1 usually wins (48/50).

4. DISCUSSION
In the experiments, three learning schemes are examined.

They have similar search capabilities, if performed on the
same populations. However, the learning behavior of indi-
viduals varies with the learning scheme, when comparing
to their ancestors learned and evolved with that scheme.
As observed in the results, the different imitation tenden-
cies make the populations and searches distinct. When the
scheme brings more chances to repeat parents’ achievements,
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Figure 9: Learning improvement on K=15 landscape.
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Figure 10: Search performance on K=15 landscape.

Table 7: Search performance of learning schemes,
on landscape K=15

Budget 5 10 20

Converging
Fitness

No Learning 0.706966 (±0.020083)

Scheme 1
0.736789

(±0.019725)

0.748969

(±0.020085)

0.751067

(±0.019072)

Scheme 2
0.723160

(±0.018781)

0.736710

(±0.019307)

0.735063

(±0.018210)

Scheme 3
0.716105

(±0.023496)

0.721917

(±0.018423)

0.724330

(±0.013875)

Ev. Calls
to Reach
99%

No Learning 38970 (±126332)

Scheme 1
123480

(±35223)

246840

(±73754)

434910

(±100401)

Scheme 2
127260

(±36937)

252780

(±111422)

458850

(±137939)

Scheme 3
140100

(±66803)

269500

(±115074)

459480

(±119729)

the offspring follow the footprints more effectively, thus al-
low the population to keep greater scales of learning poten-
tial during the evolution. This also means clues of local re-
finement directions are passed through generations with less
loss, and enables more efficient search, both in speed and
fitness. The converging time and fitness data could support
this explanation.

The task to compare learning processes between genera-
tions is probably unique in Baldwinian evolution. In Lamar-
ckian evolution, children’s learning efforts are always beyond
their parents’, and previous successes can not guarantee
the way ahead. In Baldwinian evolution, the realization of
the inheritance is no longer a deterministic translation from
genotype to phenotype, but with in addition a learning pro-

cess containing uncertainties. Individuals start from similar
situations as their parents’, repeat the history or happen to
explore the unknown.

The story can be extended to another understanding. As a
necessary procedure to achieve final fitness used in selection,
the learning scheme is also an entity the individuals have to
fit, similar to the environment. If an individual always goes
in the same direction in learning, its offspring will not lose
track to the direction. On the other hand if every individual
has multiple random choices, who can survive through gen-
erations must be those surrounded by good fitness areas, as
they have to achieve good fitness in all the directions they
may go. To be strict, in either situation the true goal of evo-
lution is not ”the solution with best fitness”. It is replaced
by ”the base point to achieve good fitness through the given
learning scheme”. The request of achieving high fitness in
all possible directions thus may limit the search.

What the result means in application is: to improve the
performance of Baldwinian search, it is better to make sure
that individuals can usually follow their parents’ learning
footsteps. It is something before the trade-off of exploration
and exploitation, and looks strange to some extent. If the
individuals should follow the parents, why not Lamarckism?
It is different. Lamarckian evolution completely fixes the
learning products. The offspring do not have chances to
go elsewhere for exploration, to correct possible mistakes
the ancestors happened to make. It is necessary to de-
sign Baldwinism-Lamarckism combinations to avoid disad-
vantages of the both.

This paper contributes in knowledge accumulation of Bald-
winian evolution, yet the discussion on learning behavior
between generations is not enough. This time we mainly
concentrated on the different learning schemes. However,
it is also related to the variation part (crossover, mutation,
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etc.), as children are not copies of parents. The imitation, if
happens, starts with the traits varies from parents with the
given operators. This is even further related to the land-
scape and calls for more studies.

Looking ahead even further, there is the problem of what
to encode and inherit in Baldwinian evolution. Basically the
genotype for initial phenotype, as the start point of learn-
ing, has to be encoded. Then plasticity of genes is usually
mentioned in conventional studies. However it is still simple
and vague. For example in this paper, the three schemes
take the same genotype encoding and similar meanings of
the codes, but applying different learning schemes, the evo-
lution goes different directions. Inheritances can have, and
are containing further information concerning the learning
scheme. Similar ideas are already mentioned in some recent
works such as Downing’s [6]. In solving real world computa-
tional problems, surely we can try to encode further infor-
mation into the genotypes and have the contents selected,
to improve the performance.

5. CONCLUSION
This paper presents an study on how individuals realize

learning potential inherited from parents in Baldwinian evo-
lution. It is revealed that evolution pushes the population
to fit the applied learning scheme. Learning schemes with
higher tendencies of imitating parents enable the population
to better receive inheritances, thus lead to greater potential
scales, and furthermore advantages in converging speed and
final fitness. The results help to further understand Bald-
winian evolution, and can be a reference for attempts of
applications. It is worth studying more precise descriptions
of the issue, and how it is related to other aspects of Bald-
winian evolution.
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