P-GLS-II: An Enhanced Version of the Population-based
Guided Local Search

Nasser Tairan
University of Essex
School of Computer Science and Electronic
Engineering
Wivenhoe Park, Colchester, CO4 3SQ, U.K.
nmtair@essex.ac.uk

ABSTRACT

We have recently proposed a Population-based Guided Lo-
cal Search (P-GLS) framework for solving difficult combina-
torial optimization problems. In P-GLS, several agents of
guided local search (GLS) procedures are run in a parallel
way. These agents exchange information acquired from their
previous search to make their further search more rational.
We suggested based on the well-known proximate optimal-
ity principle (POP) that the shared features between the
current agents’ local optimal solutions are more likely to be
part of the best solution to the problem; therefore these fea-
tures should not be penalized. However, sometimes some of
these common features may not exhibit in a global optimal
solution. In this paper, a new framework is proposed to im-
prove the performance as well as overcome the limitations
in P-GLS. It applies two new different penalization strate-
gies that increase favouring common features based on their
occurrences in the agents’ local optimal solutions during the
search. The performance of the new algorithm, examined on
the Traveling Salesman Problem (TSP), is investigated and
evaluated in terms of solution quality and the speed. The
experimental results demonstrate that the new algorithm
outperforms the parallel GLS algorithm without collabora-
tion and other state-of-the-art algorithms.

Categories and Subject Descriptors

1.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search Heuristics

General Terms
Algorithms

1. INTRODUCTION

Over the past few decades, metaheuristics have proven to
be successful for dealing with difficult optimization prob-
lems. These techniques can obtain high quality solutions

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

GECCO’11, July 12-16, 2011, Dublin, Ireland.

Copyright 2011 ACM 978-1-4503-0557-0/11/07 ...$10.00.

537

Qingfu Zhang
University of Essex
School of Computer Science and Electronic
Engineering
Wivenhoe Park, Colchester, CO4 3SQ, U.K.
gzhang@essex.ac.uk

within reasonable computational time for many hard prob-
lems.

Population-based algorithms, including evolutionary algo-
rithms have shown a good performance in solving many opti-
mization problems [8, 6, 5]. One of the reasons behind their
success is the cooperation among their individuals (agents)
during the search.

Single-point based iterated metaheuristics, such as Sim-
ulated Annealing [12], Tabu Search [7] and Guided Local
Search [16], have been well developed. We believe that us-
ing cooperative agents equipped with advance single point
meta-heuristic is a natural way for designing efficient opti-
mization methods. Some effort has been made along this
line [10, 3, 9, 4, 2, 1], but it is still in its very infancy.

Guided Local Search (GLS) is a simple single-point meta-
heuristic for optimization and has many successful applica-
tions [16]. GLS has been applied to TSP and compared
with other well known or T'SP-specific metaheuristic tech-
niques such as Tabu search, Simulated Annealing, Genetic
Algorithm and Iterated Lin-Kernighan. It showed a superior
performance in comparison with other methods [15]. Very
recently, we have proposed a cooperative algorithm based on
GLS, called Population-based Guided Local Search (P-GLS)
[13]. P-GLS runs several GLS procedures (agents) in a paral-
lel way. The agents exchange their information periodically
during the search to make the search effective. In this pa-
per, we propose a new version of P-GLS, called P-GLS-II to
overcome the limitations as well as enhance the performance
in P-GLS. It adopts two new different penalty strategies for
implementing cooperation among different agents. It has
been tested on the traveling salesman problem (TSP) test
instances.

This paper is organized as follows. Section 2 explains
GLS and how it can be applied to TSP. Section 3 reviews
the previous algorithm, population based guided local search
(P-GLS). Section 4 describes, in details, the new algorithm
P-GLS-II. The experimental results and the discussion are
presented in sections 5. Section 6 concludes the work.

2. GUIDED LOCAL SEARCH

GLS is a general meta-heuristic framework for solving op-
timization problems. It has a simple penalty-based approach
for helping the local search (LS) to escape from local optima
[16]. The basic idea is to use a new guided function to guide
the LS procedure to explore the solution space. This new
function is a result of augmenting the given objective func-
tion by adding penalties to selected features of solutions.



Therefore, before applying GLS, one needs to define features
for the given problem. These features are used through the
search to distinguish between the solutions. Every feature
in a solution is assigned a penalty or a weight to indicate its
attractiveness.

In the GLS framework, the new guiding function is defined
as follows:

h(s) = cost(s) + X x Zpk x Ir(s) (1)

where s is a candidate solution, cost(s) is the main objective
function. A is a control parameter, k ranges over all the
features , and py is the penalty for featurey. Ix(s) is 1 if s
has featurey, otherwise it is zero.

The utility of featurey is defined as follows:

Ck
2
1+ pr 2)

where ¢, is the cost of featurer. When the LS algorithm
traps in a local optimum s*, for every featurey exhibited in
s* with the greatest utility value, GLS increase its penalty:

3)

Then the LS algorithm is restarted from s* with the new
guided function. In such a way, GLS can iterate its LS
algorithm as many times as one likes.

It is clear from (2) that the penalty of pi is more likely to
be increased if featurex has a higher cost. Moreover, py has
few chances to be increased if featurex has been penalized
for many times. The idea behind it is that a feature might
be part of a best solution if it appears in many local optima.

2.1 GLS for the Traveling Salesman Problem

The Traveling salesman problem (TSP) is one of well-
known NP-complete combinatorial optimization problems.
Given a set of cities and a distance between any two cities,
the goal of the TSP is to find the shortest tour for visiting
all cities once and returning to the starting city. There are
many variations of the Traveling Salesman Problem. In this
paper we consider the classic symmetric TSP, in which the
distance from city ¢ to city j is equal to the distance from
city j to i. Therefore, a tour is undirected.

In order to apply the GLS to TSP the following compo-
nents are used in our work:

2.1.1 Local Search:

Fast local search (FLS) under the 2-opt neighbourhood
[16] is used as the LS algorithm in our method. The idea
is to divide the neighbourhood of the current solution into
several small sub-neighbourhoods with activation bits as-
sociated with everyone. In the case of n cities, the 2-opt
neighbourhood is divided into n sub-neighbourhoods. At
the beginning of the search, all the sub-neighbourhoods will
be activated by assigning 1 to their activation bits. Then,
those sub-neighbourhoods that do not cause any improve-
ment will be deactivated by flipping their activation bits to
0. These inactive sub-neighbourhoods will not be considered
in the later search [15]. More information about FLS can be
found in [15].

U = Ik(s*) X

Pr=pr+1

2.1.2  Features and their Costs:

A feature in the TSP can be defined as a link between two
cities [15]. Therefore, there are n x (n — 1) features in the
TSP. A candidate solution (i.e tour) can exhibit n features.

538

The cost c¢x for every featurey is its length. The penalty
pr for each featurey is assigned 0 at the beginning of the
search.

3. POPULATION-BASED GUIDED LOCAL
SEARCH (P-GLS)

P-GLS is a population-based guided local search method
[13] which applies the proximate optimality principle (POP)
via a simple cooperation mechanism.

POP is a well-known principle in meta-heuristics which
assumes good solutions should have similar structures [7].
Based on this principle, we suggest in P-GLS that the shared
features which appear in all agents’ local optimal solutions
should be considered good features and not be penalized
during the next search stage.

In P-GLS, several GLS procedures (agents) are run in a
parallel way. After a number of LS calls, these agents ex-
change information obtained during previous search to speed
up their search and to move to promising search regions.

P-GLS with I GLS agents works as follows:

Step 0 Initialization: For i =1 to I,

1. Agent ¢ randomly selects a solution as its current solu-
tion.

2. Agent i sets its penalty to featurey, pi, = 0

Step 1 GLS: For i = 1 to I, each agent ¢ runs GLS, start-
ing from its current solution with its feature penalty
values for a number of iterations.

Step 2 Stopping Condition: If a present stopping condi-
tion is met, stop and output the best solution obtained
by these agents.

Step 3 Information Collection: The manager agent col-
lects the current optimal solutions of all the agents and
finds all the common features in these solutions.

Step 4 Behaviour Adjustment: For i = 1 to I, agent &
resets its utility of featurer to zero if k is a common
feature found by the manager in Step 3. Then go to
Step 1.

P-GLS had shown a good performance in terms of the
quality of solution and speedy convergence compared to the
standard GLS and parallel independent GLS algorithms.
The obtained results show that the cooperation between
GLS agents can speed the search and make the further search
more concentrated. It also helps to achieve a high rate of
convergence to promising parts of the search space with less
effort.

Although P-GLS has achieved good results, it suffers from
some drawbacks that need to be investigated. These disad-
vantages are listed as follows:

1. Preserving the common features by not penalizing them
sometimes makes the search traps in a local optimum
of low quality. This is because some common features
may not exhibit in a global optimal solution.

2. Tuning the points for exchanging information is a prob-
lem dependant and need to be carefully adjusted to
avoid premature convergence or, being trapped in lo-
cal optima.



3. The agents may acquire good information at early stages
of the search that helps the search to early converge to
the global solutions before reaching the predetermined
exchanging information points.

4. P-GLS-1I

4.1 General Framework

In this section, we turn our discussion to how P-GLS al-
gorithm is improved and extended to overcome the above
limitations. So, we propose a substantial improvement of
P-GLS which applies new different penalization strategies
that work by increasing the favor of the common features
based on their occurrences in the agents local optimal solu-
tions during the search. For distinguishing, we called this
new enhanced version P-GLS-II. The general idea is to do a
wide search at the beginning of the search and then directs
the further search toward promising directions. A new util-
ity function for achieving that is devised and incorporated
in P-GLS-II agents as follows:

Cr
(14 pr)

Where, wy, is a parameter € [0,1) and used to indicate the
amount of influence of featurey on its utility ug. wi can be
statically adjusted in advance before the beginning of the
search or dynamically tuned during the search. It is used
to control the speed of the convergence rate to the final
solution. More precisely, wy, determines how fast P-GLS-II
converges. An extreme case when wy = 0; in this case the
common features will not be penalized. On the other hand,
when wr = 1 the common features will be considered as
normal features and P-GLS-II will behave like the parallel
independent GLS. In general, the bottleneck in designing an
efficient metaheuretsic algorithm is to balance between the
speedy convergence and the diversity. In most cases, one
of these two factors is sacrificed. In P-GLS-II, wy plays a
very important role in trying to balance these two factors
during the search. More information about adjusting wyg in
the next sub-sections.

In P-GLS-II, All the GLS agents run a local search; when
all the agents reach their local optima. Then, each agent
uses information, the locations of local optima, from other
agents to adjust its search behaviour. Apart from the run-
ning GLS agents in P-GLS-II, a manager agent is used for
collecting and analysing all the local optimal solutions ob-
tained by the agents at the points of information exchange.
In this paper, the manager only finds the features which
appear in all these optimal solutions and then passes these
common features on to all the GLS agents. Then, each GLS
agent will evaluate the utilities for these features using the
new utility function (4) during the next search stage. The
utilities values for un-common features will be normally cal-
culated using the original utility function (2).

The proposed algorithm with I GLS agents works as fol-
lows:

uk:Ik(s*) X X W

(4)

Step 0 Initialization: For i =1 to I,

1. Agent ¢ randomly selects a solution as its current solu-
tion.

2. Agent i set its penalty to feature k, pt =0

539

Step 1 LS: For ¢ = 1 to I, each agent ¢ run LS, starting
from its current solution until it trapped in a local
optimum solution.

Step 2 Information Collection: The manager agent col-
lects the current optimal solutions of all the agents and
finds all the common features in these solutions.

Step 3 GLS: For ¢ = 1 to I, agent i does:

Step 3.1 Behaviour Adjustment: Calculating the util-
ity for feature k, uj, using the new utility function (4).

Step 3.2 Penalizing: Finding the maximum feature’s
utility ux and penalize it

Step 4 Stopping Condition: If a present stopping condi-
tion is met, stop and output the best solution obtained
by these agents. Otherwise go to Step 1

Due to the behaviour adjustment through calculating the
features utilities based on wy parameter in Step 3.1, these
GLS agents will search in more promising regions in the
solution space.

4.2 Variants of P-GLS-1II

As already mentioned, the value of wy in (4) can be ad-
justed in two ways: statically before the search or dynami-
cally during the search. The main idea that should be taken
into consideration while adjusting wy is to care about the
diversity as well as the speedy convergence. In this paper
two approaches have been suggested and used as following.

4.2.1 Static

In this approach, the influence of the weight, wy, for fea-
ture k on its utility uy is statically increased during the
search if feature k is a common. For distinguishing we call
P-GLS-II based on this approach P-GLS-II-Constant; sim-
ply ¢P-GLS-II. In ¢P-GLS-II, wy, is assigned a constant value
before the search procedure starts and will not be changed
through the search.

To find a suitable constant value that tries to equitably
balance between the speedy convergence and the diversity,
we test different values of [0, 1) for wy on TSP instances of
different size from TSPlib [11]. The reason behind selecting
these instances is to ensure choosing the right parameter
that represents the whole problem with its classes. As men-
tioned before, when wy = 1 this represents parallel indepen-
dent GLS (indP-GLS). In these experiments we include 1 in
the weight domain to compare ¢P-GLS-II with different val-
ues of wy to ndP-GLS. In ¢P-GLS-II and indP-GLS we run
2 agents of GLS procedures. The running length allowed for
each algorithm is expressed in term of number of LS calls
(mazLS). So, each algorithm stops when it finds the best
known solutions or has called LS as many as mazLS times.
The best well known solutions and the maximum allowed
LS calls for each agent on each instance are given in table 1.
We try to choose different values for wy that represent the
weight domain; these values are given in table 2. 30 runs
are carried out on each instance.

Table 2 shows the results for ¢cP-GLS-II based on different
values of w. We record the average of the best costs for the
best tours obtained during the 30 runs on each instance. The
best and second best obtained performance for each tested
instance are identified in table 2 using bold and italic font



Table 1: Parameter setting of ¢cP-GLS-II. Best So-
lution: the cost (distance) of the shortest tour.
maxLS: number of local search (LS) calls allowed
on each instance for every agent.

Instance Name | Best Solution | maxLS
St70 675 2000

rd400 15281 100000

ul432 152970 200000

Table 2: Experimental results for ¢cP-GLS-II to indi-
cate the best and second best value for w parameter
on the tested instances. w: the weight value. AVG:
the average of the costs of the best tours obtained
during 30 runs.

Instance Name
w st70 rd400 ul432
AVG AVG AVG

0 677 15305 153479
0.2 | 676.03 | 15281.43 153234.70
0.4 675 15281.43 153050.43
0.6 | 675.67 | 15281.10 | 152998.57
0.8 | 675.27 15281 152994.63
1 675.57 15281.9 153045

respectively. It can be seen from the results that the best
value for wy that generally achieved a good performance on
all tested instances was when wg = 0.8. Thus, this value of
wy, is used for ¢P-GLS-II in all of the following experiments.

Table 3: Experimental results for aP-GLS-II to indi-
cate the best and second best value for § parameter
on the tested instances. AVG: the average of the
costs of the best tours obtained during 30 runs.

Instance Name

1 st70 rd400 ul432

AVG AVG AVG
0.2 | 675.60 | 15285.60 | 153193.67
0.4 | 675.57 | 15281.53 | 153118.33
0.6 | 675.47 | 15281.67 | 153074.86
0.8 | 675.43 15281.2 158026.73
1 675.4 | 15281.13 153020

4.2.2 Dynamic

In this approach the weight, wy, or importance of the com-
mon features are dynamically increased during the search.
The idea is to consider the common features at the early
stages of the search as normal features. Then, these features’
importance is exponentially increased during the search if
they are still common. This approach will help to avoid
favouring features that appear as common at the beginning
of the search and then disappear later. To distinguish this
variant of the previous one, we will call this approach P-
GLS-II-Annealing-like (aP-GLS-II).

The value of wy, in (4) for aP-GLS-II is adjusted using the
following equation:

1

Wk = QCu'rLSXB’

()

540

and
1
B = 6 X maxLS (6)

Where, CurLS is the current LS call, and CurLS > 1. § is
a tuning parameter and 6 € (0, 1].

[ is used to control the speed of the convergence rate to
the final solution. It is clear from (6) that its value is affected
by § parameter. At large values of §, the influence of infor-
mation exchanged with other agents is low, and thus agents
are more likely to be independent. As the value of ¢ de-
creases, the influence of feature’s commonality on its utility
increases, and the higher the speedy convergence of aP-GLS-
II. This strategy makes aP-GLS-II exponentially increases
the favour of common features based on when they occur in
the agents’ local optimal solutions during the search. The
aim is that this approach would help making the search to
be wide at the beginning and the further search more ratio-
nal, and therefore § should be carefully set to avoid speedy
convergence towards local optima of low quality.

It is clear from (5) that the value of wy in (4) is decreased
by a small amount during the search. At the beginning
of the search when CurLS is equal 0 (i.e., no LS call is
called), wy value will be equal to 1. Therefore, features
will be considered as normal feature if it is a common feature
and its probability to be penalized will be based on its cost
ck. With the increase of LS calls during the search, wy
value is decreased based on the CurLS parameter. As a
consequence, the probability of featurey to be penalized is
also exponentially decreased if it is still a common feature.

In order to choose the best value for §, we test different
values of 6 among its domain € (0,1]. We used the same
TSP instances and parameters setting used in table 1. Also,
2 agents were run in aP-GLS-II and 30 runs were carried
on each instance. Table 3 shows the results for aP-GLS-
IT with different values of §. As in table 2 we record the
average of the best costs for the best tours obtained during
the 30 runs for aP-GLS-II on each instance. The best and
second best value for § parameter on each tested instance are
identified using bold and italic font respectively. It clearly
obvious from the results that the performance of aP-GLS-II
increases with increasing the value of § parameter. Thus, the
best performance was achieved on all tested instances was
when 6 = 1. This indicates that it is better for the different
agents to exchange valuable features information which can
be obtained at later stage of the search. This value of § is
used for aP-GLS-II in all of the following experiments.

S. RESULTS AND DISCUSSION

Several experiments have been conducted in order to ex-
amine the performance of P-GLS-II algorithms as well as
to show how the incorporated collaborative mechanisms im-
prove the performance and speed up the search against indP-
GLS and other state-of-the art algorithms. In our experi-
ments, we used the Traveling Salesman Problem (TSP) as
a well defined standard combinatorial optimization prob-
lem. Also, many benchmarks for TSP are available through
TSPLIB [11]. The programs of P-GLS-II algorithms and
indP-GLS have been written in java and compiled using Jet-
Brains IntelliJ IDEA 8.1.4 for windows. All computations
were carried out on Intel Core 2 (2.13 GHz) with 3 of RAM.
The implementation of P-GLS-II and indP-GLS is based on
running several sequential search agents of GLS procedures



Table 4: Average percentage above optimal for 30 runs of indP-GLS-II, ¢cP-GLS-II and aP-GLS with four

hundred thousand local search calls performed.

Instance indP-GLS cP-GLS-II aP-GLS-II
Name avg. std. dev. avg. std. dev avg. std. dev
pr1002 | 0.1752 | 0.0678 0.0051 0.0101 | 0.0034 | 0.0119
ul060 | 0.1682 | 0.0430 | 0.0245 | 0.0152 0.0274 | 0.0210
vm1084 | 0.0825 | 0.0290 0.0207 | 0.0127 | 0.0199 | 0.0200
pcb1173 | 0.1582 | 0.0528 | 0.0189 | 0.0186 | 0.0204 | 0.0292
d1291 | 0.1741 | 0.0492 0.1213 | 0.0924 | 0.0952 | 0.0654
rl1304 | 0.1149 | 0.1185 | 0.0315 | 0.0720 | 0.0404 | 0.0702
rl1323 | 0.1619 | 0.0635 | 0.0781 | 0.0600 | 0.0837 | 0.0659
11400 | 1.0598 | 0.2080 | 0.9900 | 0.1881 1.0389 | 0.3820
ul432 | 0.0513 | 0.0246 | 0.0081 | 0.0178 | 0.0196 | 0.0237
vml748 | 0.2122 | 0.0489 | 0.0684 | 0.0374 | 0.0818 | 0.0460
rl1889 | 0.3393 | 0.1222 0.1605 0.0767 | 0.1160 | 0.0509
pr2392 | 0.4764 | 0.0859 | 0.2234 | 0.1112 0.2404 | 0.1198

and only simulates concurrency. To simplify the discussion
of the simulation results, the performance of algorithms is
measured by calculating the mean of the percentage excess
above the best solution. Ezcess in a single run is defined as
follows:

Solution cost-Best known solution cost
x 100

Best known solution cost (7)
Three sets of experiments are carried out. The first set of
experiments was carried out to compare the P-GLS-II with
its two variants, ¢P-GLS-II and aP-GLS-II, to indP-GLS.
In the second set of experiments, a set of comparison studies
was made to two cooperative algorithms designed based on
two state-of-the-art algorithms. The third set of experiments
was conducted to test the effect of increasing the number of
agents on the performance of ¢P-GLS-II and aP-GLS-II.

5.1 Experiments 1

The aim of these experiments is to study the effectiveness
of P-GLS-II algorithms compared with indP-GLS. The two
variants of P-GLS-II, ¢P-GLS-II and aP-GLS-II, are com-
pared with indP-GLS. The total number of the allowed calls
of LS for each algorithm on each instance (mazLS) is set
to 400000 which are divided equally between the running
agents. Therefore, the algorithm stops when it finds the
best well known solution or when the total number of LS
called exceeds maxzLS. The number of agents used in the
algorithms is set to 2. 30 independent runs of each algorithm
on each instance have been carried out.

The results for experiment are given in Tables 4, 5 and
6. Table 4 shows the Mean Ezxcess% of cP-GLS-II, aP-
GLS-II and indP-GLS on the tested instances. The results
show that ¢P-GLS-II and aP-GLS-II outperform indP-GLS
on all instances. ¢P-GLS-II beats the other two algorithms
on 8 out of 12 of the tested instances. Also, aP-GLS-II
was the best on 4 out of 12 of tested instances. In table
6, the one tailed t-test results at the 0.05 significant level
are performed on each instance to confirm that the results
for ¢P-GLS-II and aP-GLS-II are significantly better than
indP-GLS-II. Also, table 6 shows that there is no significant
difference in the performance between cP-GLS-II and aP-
GLS-II algorithms except one instance which is r11889. On
this instance aP-GLS-II is significantly better than ¢P-GLS-
1I.

541

To do further investigations about the performance of cP-
GLS-IT and aP-GLS-II we record the best and worst ob-
tained solutions during their runs in table 5. The results
show that aP-GLS-II outperforms ¢P-GLS-II on 5 out of 12
of tested instances in terms of the best solutions obtained
during its runs. In terms of the worst obtained solutions, aP-
GLS-II was worse than ¢P-GLS-II on 7 out of 12 of tested

instances.

Table 5: Experimental Results for ¢P-GLS-II and
aP-GLS-II. Worst: the worst final solution among

30 runs. Best: the best final solution among 30

runs.
Instance cP-GLS-IT aP-GLS-II
Name Worst Best Worst Best
pr1002 0.0309 | 0.0000 | 0.0537 | 0.0000
ul060 0.0518 | 0.0000 | 0.0701 | 0.0000
vm1084 | 0.0476 | 0.0000 | 0.0685 | 0.0000
pcb1173 | 0.0809 | 0.0018 | 0.1195 | 0.0018
d1291 0.2854 | 0.0018 | 0.2008 | 0.0000
rl1304 | 0.2708 | 0.0000 | 0.2487 | 0.0000
rl1323 | 0.1958 | 0.0100 | 0.1902 | 0.0037
11400 1.4011 | 0.7304 | 2.2557 | 0.6757
ul432 0.0490 | 0.0000 | 0.0536 | 0.0000
vm1748 | 0.1471 | 0.0033 | 0.1581 | 0.0089
rl1889 | 0.3102 | 0.0256 | 0.2275 | 0.0196
pr2392 0.4492 | 0.0751 | 0.4568 | 0.0513

From this experiment we can come up with the following
findings:

1. The collaboration among agents does improve the per-
formance in P-GLS-II algorithms.

2. The improvements observed with the two designed al-
gorithms, ¢P-GLS-II and aP-GLS-II, are statistically
significant better than the standard parallel GLS (indP-
GLS).

3. In the comparison between c¢P-GLS-II and aP-GLS-
II, every algorithm beats the other in some instances.
This observation indicates that these two algorithms
are different and it is worth to be all considered while
solving a problem.



Table 6: Results of t-tests comparing methods of
indP-GLS, ¢cP-GLS-1II and aP-GLS-II.

Instance | ¢P-GLS-II | aP-GLS-II | aP-GLS-II
Name vS. vS. vS.
indP-GLS | indP-GLS | ¢P-GLS-II
prl002 0.0000 0.0000 0.6455
ul060 0.0000 0.0000 0.6093
vm1084 0.0000 0.0000 0.9056
pcb1173 0.0000 0.0000 0.8672
d1291 0.0523 0.0003 0.3671
rl1304 0.0157 0.0053 0.7219
rl1323 0.0000 0.0015 0.8034
11400 0.1410 0.7687 0.5446
ul432 0.0000 0.0015 0.0990
vm1748 0.0000 0.0000 0.3232
r11889 0.0000 0.0000 0.0393
pr2392 0.0000 0.0000 0.5688

5.2 Experiments 2

The motivation behind doing this set of experiments is to
evaluate the effectiveness of ¢P-GLS-II and aP-GLS-II with
some other state-of-the-art algorithms. Hence, we compared
c¢P-GLS-IT and aP-GLS-II algorithms to a method which
was recently published in [14]. The method is called Pattern
Reduction Enhanced Ant Colony Optimization (PREACO).
We compared our algorithms to the results in [14]. Eight
instances from TSPLIB [11] were used in [14], we just com-
pared our methods with the large instances that above 1000
cities. Similar to [14], 30 runs were carried out on each
instances and the various performance measures (solution
quality and running time) were averaged.

For convenience, we briefly explained PREACO with same
parameters setting and notations as in [14]. PREACO works
by running ACO with 25 ants (i.e. m = 25) for a number
of iterations set to 1000. Then after a predefined number of
iterations (o) set to 5, a threshold (¢) is calculated using this
formula: gmA, where A is a tuning parameter and was tested
using two constant values 0.9 and 1. PREACO finds the edge
among all edges that was traversed by all ants over the last
o iterations at least 1 time. Then sets a high probability for
this edge to be in the solution [14].

PREACO was firstly compared with indP-GLS and the
results are shown in table 7. The results indicates that indP-
GLS with less running times outperforms PREACO on all
tested instances in terms of the solution quality. This ob-
servation confirms the outstanding performance of GLS as
state-of-the-art algorithm for T'SP.

To ensure a fair comparison with our proposed methods,
we adapted the collaboration mechanism used between ACO
ants in [14] to work in our framework. Then we compare this
new method with our proposed methods. For distinguishing,
we denote this new method preP-GLS.

The adaptation of P-GLS-II to work with the collabora-
tion mechanism in [14] is simply applied through setting the
value of wy, in the utility function (4) for featurex to 0, if
featurey, is traversed by all the agents (GLS procedures) at
least ¢ time over the last o iterations. An iteration for P-
GLS-II is considered one LS iteration (i.e. complete search of
the neighbourhood). Due to the heavy nature of the agents
in P-GLS-II framework as every agent is considered an in-
dependent solution strategy, we set m in preP-GLS to 5.

542

Similar to PREACO in [14], g is set to 5 in preP-GLS which
means the agents exchange information acquired from their
previous search after each 5 LS iterations. Finally, A value
is set to be 0.9. Thus, preP-GLS will not consider just fea-
tures that appear in all agents but also those features that
appear in 90% of the agents. In case A is set to 1 (i.e fea-
tures should appear in all agents), preP-GLS behaviour will
be quite similar to first version of P-GLS framework [13] and
the only difference is the time for exchanging information.
30 runs were carried out on each instance and every algo-
rithm stops when it performs two hundred million of 2-opt
swaps on each instance.

The results of indP-GLS, preP-GLS, ¢P-GLS-II and aP-
GLS-II are given in table 8. The best and second best per-
formance obtained by the algorithms are identified using the
bold and italic font respectively. The results show that aP-
GLS-II obtains better results on all tested instances than
others. It also shows that the second best performance was
achieved by c¢P-GLS-II. For example, apart from d1291 and
d1655 instances, cP-GLS-II obtains better result than indP-
GLS-IT and preP-GLS. It also can be noticed from the re-
sults that indP-GLS-II was better than preP-GLS-II and
c¢P-GLS on d1291 instance while preP-GLS-II beats indP-
GLS-II and ¢P-GLS on d655 instance. It can also be no-
ticed from results that the performance of ¢P-GLS-II and
aP-GLS with running 2 agents as in table 4 using the same
instances is better than running 5 agents. This observation
encourages studying the affect of increasing the number of
agents for proposed algorithms on the performance in the
next sub-section. In general, the results confirm the signif-
icant enhancement that our collaboration mechanisms have
made to the performance of P-GLS-II framework in terms
of the solution quality.

Table 7: Experimental Results for indP-GLS and
PREACO. AVG: the average percentage above op-
timal of the best tours obtained during 30 runs. Ts:
the average of the time in seconds of the best tours
obtained during 30 runs.

Instance ndP-GLS PREACO
Name AVG Ts AVG Ts
pr1002 2.24 | 40.26 | 5.37 67.36
d1291 4.56 | 34.38 | 8.85 62.01
uld32 1.46 | 80.28 | 5.92 | 165.05
d1655 5.74 | 76.02 | 8.70 | 144.43

We also, compared our algorithms with another coopera-
tive algorithm called SAGA [3]. SAGA was designed based
on the well known meta-heuristic method SA. SAGA runs
parallel agents of SA and after a number of annealing stages
uses crossover/mutation operator from Genetic Algorithm
as an exchanging information operator between the agents.
The idea is to preserve the common components of the solu-
tions at the exchanging information point and concentrate
the crossover /mutation operator on un-common components
with the hope of the further search to be more focus. The
first preliminary results with same parameter settings in [3]
show that indP-GLS generally beats SAGA on the tested
instances. Again this confirms the outstanding performance
of GLS on TSP. In future, it will be interesting to study
the performance of P-GLS-II frameworks with applying the
exchanging information mechanism used in SAGA.



Table 8: Average percentage above optimal for 30 runs of indP-GLS, preP-GLS, cP-GLS-II and aP-GLS-II

with two hundred million of 2-opt swaps performed.

Instance indP-GLS preP-GLS cP-GLS-IT aP-GLS-II
Name avg. | std. dev. | avg. | std. dev. | avg. | std. dev. | avg. | std. dev.
pr1002 | 1.87 0.20 1.84 0.19 1.80 0.16 1.77 0.21
d1291 2.56 0.76 2.64 0.81 2.86 0.76 2.53 0.90
ul432 1.46 0.19 1.57 0.20 1.44 0.36 1.43 0.34
d1655 5.50 0.58 5.27 0.47 5.49 0.66 5.22 0.46

5.3 Experiments 3

The aim of this final set of experiments is to study the sen-
sitivity of the performance to the ¢P-GLS-IT and aP-GLS-II
algorithms of increase in the number of agents. Three in-
stances of TSP have been arbitrary chosen from the tested
instances, namely pr1002, d1291 and ul432. The domain
values of number of agents is 2, 4, 6 and 8 respectively. Sim-
ilar to the previous experiments, the running lengths allowed
for algorithms are expressed in terms of the 2-opt swaps per-
formed on each agent and set to two hundred million 2-opt
swaps. Then, every algorithm stops when it find the best
solution or when the number of 2-opt allowed exceeds. Ta-
ble 9 and 10 show the results on pr1002, d1291 and ul432
forcP-GLS-IT and aP-GLS-II respectively. Results are again
reported as percent distance above the known optimal so-
lution. In general, the results show that the performance
of the both methods degrades with increasing number of
agents. This can be attributed to the applied condition of
a common feature which is defined as the one that appears
in all agents’ local optimal solutions. Therefore, the number
of common features would shrink as the number of agents
grows. This remark encourages further search on the defini-
tion of features’ commonalty.

6. CONCLUSION

A cooperative framework based on GLS (P-GLS-II) for
dealing with difficult optimization problems is proposed in
this paper. It has been proposed to overcome the limita-
tions in the first version of P-GLS as well as to improve
the search efficiency. In P-GLS-II, several agents run GLS
in a parallel way. These agents exchange information ob-
tained during the previous search after every LS call during
the search process and then use such information for speed-
ing up their search. We have suggested that the common
features of agents local optimal solutions are very impor-
tant and their importance are gradually increased based on
their occurrences in the agents local optimal solutions during
the search. Based on this hypothesis, two P-GLS-II based
frameworks called ¢P-GLS-IT and aP-GLS-II are proposed.
The main idea in both frameworks is to increase the favour of
those features that always shared by the current solutions of
all the agents during the search in static or dynamic man-
ners. The performance of ¢P-GLS-II and aP-GLS-II was
tested on the TSP. The obtained experimental results show
the effectiveness of ¢P-GLS-II and aP-GLS-II compared to
parallel GLS without cooperation and other state-of-the-art
algorithms. The results confirm that the new defined collab-
oration mechanisms do improve P-GLS-II algorithm’s per-
formance significantly. Finally, the applications of P-GLS-II
to other combinatorial optimization problems have their po-
tential. Also, the definition of features’ commonality should
be more investigated and studied to consider not only those

543

features that appeal in all agents but also those that appear
in some agents.

7. REFERENCES

[1] G. Acampora, M. Gaeta, and V. Loia. Hierarchical
optimization of personalized experiences for e-learning
systems through evolutionary models. Neural
Computing & Applications, pages 1-17, 2009.

G. Acampora, V. Loia, and M. Gaeta. Exploring
e-learning knowledge through ontological memetic
agents. Computational Intelligence Magazine, IEEE,
5(2):66-77, 2010.

S. Chen. SAGA: Demonstrating the benefits of
commonality-based crossover operators in simulated
annealing. Technical report, School of Analytical
Studies and Information Technology, York University,
CANADA, 2003.

M. Daum and W. Menzel. Parsing natural language
using guided local search. In Proceedings in 15th
European Conference on Artificial Intelligence,
(ECAI-2002), pages 435439, Lyon, France, 2002.

M. Dorigo and T. StAijtzle. Ant Colony Optimization.
MIT Press, 2004.

R. C. Ebehart and Y. Shi. Particle swarm
optimization: Developments, applications and
resources. In Proceedings of the IEEE International
Conference on FEvolutionary Computation, volume 1,
pages 81-86, 2001.

F. Glover and M. Laguna. Tabu Search. Kluwer
Academic Publishers, 1997.

D. E. Goldberg. Genetic Algorithms in Search
Optimization and Machine Learning. Addison-Wesley,
1989.

Y. He, G. Liu, and Y. Qiu. A parallel tabu search
algorithm based on partitioning principles for tsps.
1JCSNS Journal of Computer Science and Network
Security, 6(8A), 2006.

D. J. Ram, T. H. Sreenivas, and K. G. Subramaniam.
Parallel simulated annealing algorithms. Journal of
Parallel and Distributed Computing, 37(2):207-212,
1996.

G. Reinelt. A traveling salesman problem library.
ORSA Journal on Computing, 3:376-384, 1991.

R. A. Rutenbar. Simulated annealing algorithms : An
overview. IEEE Circuits and Devices Magazine,
15(1):19-26, 1989.

N. Tairan and Q. Zhang. Population-based guided
local search: Some preliminary experimental results.
In Proceedings of the IEEE World Congress on
Computational Intelligence, Barcelona-Spain, 2010.

2l

[5]

(6]

(7]

(9]

(10]

(1]

(12]

(13]



Table 9: Average percentage above optimal for 30 runs of ¢cP-GLS-II with two hundred million of 2-opt swaps
performed on each agent.
Instance 2 4 6 8
Name avg. | std. dev. | avg. | std. dev. | avg. | std. dev. | avg. | std. dev.
prl002 | 0.79 0.21 1.71 0.23 1.87 0.22 2.17 0.34
d1291 1.80 0.65 2.56 0.71 3.19 0.68 3.13 0.90
ul432 0.74 0.15 1.31 0.17 1.88 0.26 2.50 0.33

Table 10: Average percentage above optimal for 30 runs of aP-GLS-II with two hundred million of 2-opt
swaps performed on each agent.

Instance 2 4 6 8
Name avg. | std. dev. | avg. | std. dev. | avg. | std. dev. | avg. | std. dev.
pr1002 | 0.80 0.17 1.68 0.18 1.87 .22 2.13 0.18

d1291 1.62 0.60 2.42 0.70 2.98 0.84 3.21 0.67
uld32 0.71 0.16 1.35 0.16 1.75 0.26 2.59 0.26

[14] S. Tseng, C. Tsai, M. Chiang, and C. Yang. A fast ant
colony optimization for traveling salesman problem. In
Proceedings of the IEEE World Congress on
Computational Intelligence, Barcelona-Spain, 2010.

[15] C. Voudouris and E. P. Tsang. Guided local search
and its application to the travelling salesman problem.
FEuropean Journal of Operational Research,
113:469-499, 1999.

[16] C. Voudouris, E. P. Tsang, and A. Alsheddy.
Handbook of Meta-heuristics, chapter Guided Local
Search, pages 321-362. Springer Verlag, 2010.

544





