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ABSTRACT 
Standard particle swarm optimization cannot guarantee 
convergence to the global optimum in multi-modal search spaces, 
so multiple swarms can be useful. The multiple swarms all need 
initial positions and initial velocities for their particles. Several 
simple strategies to select initial positions and initial velocities are 
presented. A series of experiments isolates the effects of these 
selected initial positions and velocities compared to random initial 
positions and velocities. A first set of experiments shows how 
locust swarms benefit from “scouting” for initial positions and the 
use of initial velocities that “launch away” from the previous 
optimum. A second set of experiments show that the performance 
of WoSP (Waves of Swarm Particles) can be improved by using 
new search strategies to select the initial positions and initial 
velocities for the particles in its sub-swarms. 

Categories and Subject Descriptors 
I.2.8 [Artificial Intelligence]: Problem Solving, Control 
Methods, and Search – Heuristic methods 

General Terms 
Algorithms 

Keywords 
Particle swarm optimization, coarse search-greedy search, 
exploration-exploitation, locust swarms, WoSP, multi-swarm 
system 

1. INTRODUCTION 
Particle swarm optimization (PSO) [10] mimics the flocking of 
birds and the schooling of fish to perform a greedy search around 
the best found location. This “global best” location acts as a 
position-based attractor which draws the other particles in the 
swarm to search around it. The convergent nature of each 
particle’s search trajectory encourages the swarm to perform a 
highly exploitive search around the global best location.  

A key challenge in the implementation of heuristic search 
techniques is the balancing of exploration and exploitation. One 
way to promote more exploration in particle swarms is to use a 
ring topology (i.e. LBest) instead of a star topology (i.e. GBest) 
[1]. With less communication among the particles, there is less 
convergence towards the global best location (i.e. exploitation), 
and more opportunity for (groups of) particles to explore areas 
around different local best locations. However, the cost of 
increased exploration can be greater computational effort/reduced 
computational efficiency. 

One general framework that can reduce the conflict between 
exploration and exploitation is the multi-optima particle swarm – 
a multi-swarm system where each swarm converges to a 
(different) local optimum. The underlying sub-swarms focus more 
on exploitation, and a new mechanism is added between each sub-
swarm to focus more on exploration. As opposed to a compromise 
which may weaken both the exploitive and explorative 
mechanisms of a search process, using two distinct phases can 
potentially increase the efficiency of the exploitive components. 
Multiple executions of these more concentrated, exploitive 
searches may then lead to a more efficient and effective overall 
algorithm. The use of this two-phase process adds three new 
design decisions – multi-optima particle swarms must specify the 
number of swarms to use and/or the stopping criteria for each of 
the sub-swarms; have a strategy to select the initial positions of 
the particles in the sub-swarms; and have a selection strategy for 
the initial velocities of these particles. 

The first multi-swarm system studied in this paper is locust 
swarms [3]. In locust swarms, the overall strategy is based on a 
“devour and move on” strategy. Addressing the three new design 
issues, locust swarms use a fixed number of sub-swarms which 
converge more rapidly than standard PSO – each of these sub-
swarms “devours” a relatively small region of the search space to 
find a local optimum. For these sub-swarms, the initial positions 
are selected by “scouts” [4]. If the scout position is fitter/better 
than the previous optimum, it is possible that the scout particle 
has found an underlying gradient in the search space. Thus, the 
initial velocity of a locust/particle in locust swarms is on a line 
from the previous optimum towards the scout location. 

Locust swarms obtain both positional and directional information 
from the scouts to initialize the positions and velocities of the 
particles in each new sub-swarm. Variations of locust swarms that 
use only positional information or only directional information 
are created to isolate the effects of these two independent design 
decisions. The goal of these experiments is to demonstrate how 
the selection of both initial positions and initial velocities can 
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each have important effects on the performance of multi-optima 
particle swarms. 

The second multi-swarm system studied in this paper is WoSP 
(Waves of Swarm Particles) [9]. WoSP uses a short-range force 
which (under the effects of discrete time updates) prevents 
complete convergence. Specifically, as two particles become 
closer together (e.g. as they near convergence), the magnitude of 
this force becomes larger. Based on discrete updates, the 
magnitude of this force on any particle within a certain radius will 
be sufficient to cause the two particles to radically overshoot from 
their previously convergent trajectories.  

Starting a new wave/sub-swarm after such a divergence, WoSP 
addresses the new design issues by focusing primarily on the 
stopping criteria – the subsequent number of swarms is based on 
how many expulsions occur during the total number of allowed 
function evaluations. For the two remaining design issues, WoSP 
does not explicitly select initial positions or initial velocities for 
its new waves/sub-swarms. When two particles become 
sufficiently close such that the effects of the short-range force 
lead to divergence instead of convergence, a new wave is created 
using initial positions and initial velocities that are inherited relics 
from the previous wave. With respect to features of the search 
space, these values are effectively random. 

New experiments are designed to first show that the performance 
of WoSP with these inherited values is essentially the same as it is 
with randomly selected initial positions and initial velocities. A 
modified version of WoSP is then developed in which the creation 
of a new wave leads to a search procedure that selects the initial 
positions and initial velocities for the particles in the new wave. 
The goal of these experiments is to further analyze the effects of 
initial positions and initial velocities on the operation and 
performance of a vastly different multi-optima particle swarm. 

It is obvious that well-selected initial positions can improve 
search performance. Thus, the isolation of the effects of initial 
velocities is the key goal of this paper. The development of 
supporting results begins with an introduction of locust swarms in 
Section 2 and baseline results for locust swarms on the Black Box 
Optimization Benchmark (BBOB) problem set [7] in Section 3. In 
Section 4, variations of locust swarms are developed to isolate the 
effects of the initial positions and initial velocities selected by 
scouting and to show comparisons with randomly selected initial 
positions and initial velocities. This analysis is extended to WoSP 
which is introduced in Section 5. A new selection technique for 
initial positions and initial velocities is presented in Section 6 and 
their combination with WoSP follows in Section 7. The 
discussion in Section 8 highlights contrasting selection techniques 
for initial positions and initial velocities used by other PSO 
researchers. Finally, a brief summary of the paper’s results is 
provided in Section 9. 

2. LOCUST SWARMS 
Locust swarms were developed based on a “devour and move on” 
strategy. After the particles/locusts have spent sufficient time 
“devouring” an area (to the point that further improvements are 
unlikely), there comes a time to “move on” to new (ideally 
unexplored) regions of the search space. Locust swarms use 
periodic restarts, so the number of swarms is selected a priori, 

and the swarm parameters must be selected to ensure adequate 
convergence in the allotted time/function evaluations. 

The benchmark and embedded PSO for the current experiments is 
a constricted LBest version (i.e. standard PSO [1]) developed 
from the published source code for the constricted GBest version 
by El-Abd and Kamel [6] – code was added to convert the star 
topology into a ring topology. In a constricted PSO, each 
dimension d of a particle’s velocity v is updated for the next 
iteration i+1 by 

( ) ( )( )didididididi xgbestcxpbestcvv ,,22,,11,,1 −+−+=+ εεχ  (1) 

where χ is the constriction factor, c1 and c2 are weights which 
vary the contributions of attractions towards personal best and 
global best locations, ε1 and ε2 are independent uniform random 
numbers in the range of [0,1], x is the location of the particle, 
pbest is the best position found by the current particle, and gbest 
is the best position found by any particle communicating with the 
current particle (i.e. all particles in the GBest star topology or two 
neighbouring particles in an LBest ring topology). 

The specific weights used in [6] are 792.0=χ and χ* c1 = χ* c2 = 
1.4944, i.e. 887.121 ≈= cc . The published implementation uses 

40=p particles, so the use of 5000 times the number of 
dimensions D as the limit for function evaluations 
( DFE *5000= ) leads to Dn *125= iterations per particle in the 
swarm. Results for the original constricted GBest version of this 
benchmark PSO on the BBOB problem set are reported in [5][6], 
and results for the constricted LBest version are presented in 
Section 3. 

To build a multi-optima particle swarm on top of this constricted 
LBest implementation, the number of function evaluations in each 
embedded swarm is reduced. The comparison of the effectiveness 
of multi-swarm systems with standard PSO is made using a 
constant number of function evaluations (i.e. DFE *5000= ). 
Previous work with locust swarms showed that 1000 function 
evaluations per swarm (5 particles * 200 iterations) can lead to 
good overall results [5]. To benefit from the increased explorative 
capabilities of the constricted LBest implementation, this has been 
increased to 1500 function evaluations with 10=p particles per 
swarm. Previous implementations also balanced the explorative 
nature of the scouts with the exploitive nature of the swarms (i.e. 
the number of scouts npS *= ), but the LBest implementation is 
more explorative than previously used GBest versions. Thus, the 
number of scouts S is left at 1000 for 2500 total function 
evaluations per optimum/swarm. Given the overall limit of 

DFE *5000= function evaluations, the experiments in Sections 
3 and 4 use DN *2= for the total number of optima/swarms. 

With fewer iterations per particle (i.e. n = 150), the rate of 
convergence is increased by multiplying the previous constriction 
factor by 0.9, i.e. 7128.0=χ  is used in the sub-swarms. Having 
decided on DN *2= swarms and a fixed number of function 
evaluations per swarm, the remaining design decisions are to 
select the initial positions and the initial velocities for the particles 
in each of the 1−N new swarms. (Note: the initial positions and 
initial velocities for the first swarm are all uniform random 
numbers drawn from the range of the search space – see (2) and 
(3) respectively.) 
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( ) ddddo lowerboundlowerboundupperboundx +−= ε,  (2) 
( ) ddddo lowerboundlowerboundupperboundv +−= ε,  (3) 

ε is a uniform random number in the range of [0,1] and the upper 
and lower bound for all dimensions of all BBOB functions are 

5+ and 5− respectively. 

The obvious goal for the selection of initial positions is to do 
better than random initial positions. The simplest search strategy 
is random search, and it has been shown that a (greedy) search 
technique (like PSO) can perform better when it is started from 
points selected by random search as opposed to purely random 
points [4]. Thus, the 10=p points used as the initial particle 
positions are the p best of S = 1000 (random) scout points. 

Unlike a completely random restart (where the scouts/initial 
positions are randomly distributed throughout the entire search 
space – see (2)), locust swarms “move on” from the previous 
optimum. Scout points are created from the previous optimum by 
using (4) for DIMr randomly selected dimensions and (5) for the 
remaining DIMrD − dimensions. Previous work in [5] has shown 
that reducing the number of dimensions being actively searched 
has an important effect on the performance of locust swarms. In 
the following experiments, DIMr for each scout is drawn 
randomly with a uniform distribution from 1 to 10 inclusive. 
Compared to the fixed value of DIMr = 5 used in [5], the 
randomly drawn values lead to much better performance on the 
separable and unimodal functions at the cost of slightly lower 
performance on some of the non-separable, multi-modal 
functions. 

d
j

d
j

d deltaoptimumscout += −1  (4) 
1−= j

d
j

d optimumscout  (5) 

The scouts for swarm j of N are distributed around the previous 
optimum (i.e. optimumj-1) by adding a delta (6) to DIMr terms. In 
(6), gap = 0.01 and spacing = 0.3 are used for the experiments in 
Sections 3 and 4, and randn() is a normally distributed random 
number with mean = 0 and standard deviation = 1. The 
performance of locust swarms is actually quite sensitive to these 
parameters with the best performance occurring when their values 
are matched to the spacing of local optima (or other gradient 
features) in the search space. For unimodal problems, gap = 0 
works best, but preliminary parameter tuning discovered that a 
gap of 0.01 was sufficient for most of the multi-modal problems 
without degrading the performance on the other problems too 
severely. 

( )( )spacingrandnabsgaprangedelta dd *()* +±=  (6) 

Better scouts are likely located in more promising areas of the 
search space, and global structure could lead to even more 
promising areas in the direction of the best scouts – see Figure 1. 
The primary component of the initial velocity in (7) attempts to 
exploit any such underlying gradients and/or global structure that 
may exist in a search space. As shown in Figure 1, the initial 
velocity will “launch” the locust away from the previous optimum 
and towards these promising new areas of the search space. Note: 
a “noise” term of 1% of (3) is also added to the initial velocity to 
improve local search capabilities. 

1
00

−−= jjj optimumxv  (7) 

3. RESULTS FOR LOCUST SWARMS 
The experiments on locust swarms have been performed using the 
Black-Box Optimization Benchmarking (BBOB) functions [7]. 
The BBOB problems are broken into five sets – (1) separable 
functions, (2) functions with low or moderate conditioning, (3) 
unimodal functions with high conditioning, (4) multi-modal 
functions with adequate global structure, and (5) multi-modal 
functions with weak global structure. In Table 1, some key 
attributes of the functions (fn) are indicated – i.e. whether or not 
they are separable (s), unimodal (u), or have (adequate) global 
structure (gs). 

The BBOB results are reported as expected running times to 
certain levels of performance. However, the benchmark PSO 
implementation [6] has a limit of DFE *000,10=  – the 
constriction factor effects a convergence rate, and additional 
computational effort after the expected time to convergence is 
most likely wasted. Although expected running times are a useful 

Table 1. BBOB Functions 
Attribute Set fn Function Name s u gs 

1 Sphere X X X 
2 Ellipsoidal, original X X X 
3 Rastrigin X  X 
4 Büche-Rastrigin X  X 

1 

5 Linear Slope X X  
6 Attractive Sector  X  
7 Step Ellipsoidal   X 
8 Rosenbrock, original    2 

9 Rosenbrock, rotated    
10 Ellipsoidal, rotated  X X 
11 Discus  X X 
12 Bent Cigar  X  
13 Sharp Ridge  X  

3 

14 Different Powers  X  
15 Rastrigin, rotated   X 
16 Weierstrass   X 
17 Schaffers F7   X 
18 Schaffers F7, moderately ill-conditioned   X 

4 

19 Composite Griewank-Rosenbrock F8F2   X 
20 Schwefel    
21 Gallagher’s Gaussian 101-me Peaks    
22 Gallagher’s Gaussian 21-hi Peaks    
23 Katsuura    

5 

24 Lunacek bi-Rastrigin    

f(x) 

x 

Unselected scout 

Selected scout 

Initial velocity 

Figure 1. Example of directed initial velocity 

Previous 
optimum 
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measure for multi-optima search techniques, the current focus is 
on analyzing the improved efficiencies that multi-swarm 
techniques can have over standard PSO. With additional 
computational resources, multi-swarm techniques should be easier 
to scale since more optima can be explored without requiring 
more complicated adjustments to swarm parameters (e.g. the 
constriction factor χ). Using fixed computational resources in the 
following experiments, the choice of DFE *5000=  provides 
some consistency with other results (e.g. [2][5][16][17]). 

On the BBOB functions, the “devour and move on” strategy for 
locust swarms was designed to provide a specific advantage on 
multi-modal functions [3] (e.g. BBOB fn 15-24). Dimension 
reductions in the scouts (which allow lower-dimensional 
searches) should also provide locust swarms with an advantage on 
separable functions [5] (i.e. BBOB fn 1-5). The aim of using all 
the functions in the standardized BBOB problem set is to show 
the robust improvements available with locust swarms, and to 
allay any concerns that only functions with specific features 
advantageous to locust swarms were selected. 

Previous implementations of locust swarms [2][3][5] have been 
based on GBest sub-swarms. Compared to the GBest benchmark 
[6], the superior performance of locust swarms demonstrates that 
the initialization of the new swarms with the help of scouts does 
indeed provide some advantages. However, these advantages 
were not enough to overcome the superior performance of an 
LBest PSO (i.e. standard PSO [1]). Thus, the current 
implementation of locust swarms is based on LBest sub-swarms. 
The following results again help to show that there are 
performance advantages available to a multi-optima particle 
swarm when scouts are used to select the initial positions and 
initial velocities of each new sub-swarm. 

The current experiments compare standard PSO [1] and the 
implementation of locust swarms as described in Section 2 by 

using the BBOB problem set with D = 20 dimensions (see Table 
2) and D = 200 dimensions (see Table 3). The presented results 
are the mean errors from optimum and standard deviations (std 
dev) for five trials on each of the first five instances of each 
BBOB function (i.e. 25 independent trials for each function). The 
relative improvement (%-diff) achieved with locust swarms 
versus standard PSO is shown, and so is the p-value of a t-test to 
help measure the significance of these differences in performance. 

The results in Tables 2 and 3 show that the relative performance 
of locust swarms as compared to standard PSO improves greatly 
with increasing dimensionality. As discussed in [5], this result is 
primarily caused by the ability of locust swarms to use lower 
dimensional searches, and these benefits exist even in non-
separable search spaces. In addition to this overall trend, it can be 
seen that locust swarms have trouble finding exact (local) optima 
(e.g. BBOB fn 1 and 2 in Table 2) because each sub-swarm does 
not converge to the same extent as a single large swarm. For D = 
20 dimensions (see Table 2), locust swarms have some relative 
performance weaknesses on the unimodal functions (BBOB fn 
10-14) but have significant advantages as intended on the multi-
modal functions with adequate global structure (BBOB fn 15-19).  

4. ISOLATION OF THE EFFECTS OF 
NEW POSITIONS AND NEW VELOCITIES 
It is claimed that the performance of locust swarms benefits from 
the selection of both initial positions and initial velocities during 
the scouting phase. To isolate each of these benefits, modified 
versions of locust swarms have been created – the “positions 
only” version uses the scout positions (4)-(6) with random 
velocities (3) and the “velocities only” version uses the scout 
velocities (7) on a set of particles initially located at the previous 
optimum. A final version uses random velocities (3) with particles 
at the previous optimum. All sub-swarm parameters for this 

Table 2. Locust Swarms vs. Standard PSO – D = 20 
Locust Swarms Standard PSO fn mean std dev mean std dev %-diff p-value 

1 7.50e-6 5.20e-6 0.00e+0 0.00e+0 - ∞ 0.0% 
2 5.55e-3 6.38e-3 0.00e+0 0.00e+0 - ∞ 0.0% 
3 9.59e+0 3.30e+0 2.56e+1 4.99e+0 62.5% 0.0% 
4 1.44e+1 3.53e+0 3.23e+1 8.55e+0 55.6% 0.0% 
5 0.00e+0 0.00e+0 0.00e+0 0.00e+0 0.0%  
6 4.15e-1 2.42e-1 8.53e-1 8.89e-1 51.3% 3.1% 
7 2.72e+0 9.57e-1 7.04e+0 2.68e+0 61.4% 0.0% 
8 1.29e+1 4.01e+0 1.22e+1 3.67e+0 -5.4% 53.4% 
9 1.58e+1 1.97e+0 1.55e+1 2.24e+0 -1.8% 66.8% 

10 3.30e+3 1.66e+3 6.85e+3 3.39e+3 51.8% 0.0% 
11 2.84e+1 6.39e+0 6.54e+1 1.71e+1 56.6% 0.0% 
12 1.79e+1 1.57e+1 1.53e+0 4.23e+0 -1.0e3% 0.0% 
13 3.49e+0 3.43e+0 1.50e+0 1.99e+0 -132.9% 3.6% 
14 3.35e-3 8.77e-4 1.34e-3 2.66e-4 -150.5% 0.0% 
15 3.05e+1 7.87e+0 6.05e+1 1.46e+1 49.6% 0.0% 
16 2.91e+0 1.13e+0 5.37e+0 1.53e+0 45.8% 0.0% 
17 1.81e-1 7.24e-2 6.61e-1 2.64e-1 72.6% 0.0% 
18 1.00e+0 4.00e-1 2.87e+0 1.28e+0 65.1% 0.0% 
19 3.16e+0 4.34e-1 3.61e+0 4.32e-1 12.6% 0.0% 
20 6.95e-1 1.62e-1 1.14e+0 1.38e-1 38.7% 0.0% 
21 2.85e+0 3.00e+0 1.41e+0 1.21e+0 -101.7% 5.1% 
22 4.92e+0 5.43e+0 1.69e+0 1.51e+0 -190.2% 1.1% 
23 6.43e-1 2.69e-1 1.33e+0 2.49e-1 51.7% 0.0% 
24 7.23e+1 1.57e+1 1.13e+2 1.12e+1 35.8% 0.0% 

Table 3. Locust Swarms vs. Standard PSO – D = 200 
Locust Swarms Standard PSO fn mean std dev mean std dev %-diff p-value 

1 4.90e-2 1.54e-2 1.49e-7 1.03e-7 -3.2e6% 0.0% 
2 4.72e+1 1.39e+1 1.52e+0 7.57e+0 -3.0e3% 0.0% 
3 2.46e+2 1.88e+1 1.10e+3 1.13e+2 77.7% 0.0% 
4 3.19e+2 2.97e+1 1.64e+3 2.04e+2 80.5% 0.0% 
5 0.00e+0 0.00e+0 4.91e+1 3.43e+1 100.0% 0.0% 
6 3.26e+1 6.19e+0 1.95e+3 1.73e+2 98.3% 0.0% 
7 1.43e+2 2.51e+1 1.34e+3 1.87e+2 89.3% 0.0% 
8 3.22e+2 5.18e+1 1.00e+3 7.97e+2 67.8% 0.0% 
9 2.25e+2 2.64e+1 7.08e+2 1.79e+2 68.2% 0.0% 

10 5.84e+4 1.05e+4 8.36e+5 1.67e+5 93.0% 0.0% 
11 1.53e+2 1.31e+1 5.54e+2 3.29e+1 72.3% 0.0% 
12 4.40e+4 1.40e+4 3.09e+4 1.54e+5 -42.4% 67.3% 
13 5.07e+1 7.49e+0 2.55e+2 1.77e+2 80.1% 0.0% 
14 6.02e-2 6.37e-3 2.74e-1 4.03e-1 78.1% 1.4% 
15 1.11e+3 1.19e+2 2.37e+3 3.50e+2 53.2% 0.0% 
16 7.68e+0 9.47e-1 3.18e+1 2.50e+0 75.9% 0.0% 
17 5.28e+0 7.76e-1 6.82e+0 8.66e-1 22.6% 0.0% 
18 1.67e+1 2.46e+0 2.60e+1 3.52e+0 35.9% 0.0% 
19 9.17e+0 2.83e-1 1.29e+1 7.77e-1 28.6% 0.0% 
20 1.39e+0 8.28e-2 1.81e+2 6.76e+2 99.2% 19.6% 
21 2.75e+0 2.39e+0 2.56e+0 1.68e+0 -7.4% 71.8% 
22 4.11e+0 4.16e+0 4.01e+0 4.17e+0 -2.6% 91.1% 
23 1.80e+0 1.68e-1 3.07e+0 1.65e-1 41.3% 0.0% 
24 1.80e+3 7.76e+1 2.96e+3 1.24e+2 39.3% 0.0% 
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“random” version are held constant which causes this version to 
use 40% fewer function evaluations (i.e. no scouting) – these 
results isolate the potential benefits of specifically selected initial 
positions and initial velocities without pursuing a full analysis of 
the costs associated with the involved selection strategies. 

The results in Tables 4 and 5 show the ratio of the mean error for 
each version relative to the mean error for the base 
implementation of locust swarms (see Tables 2 and 3). The most 
consistent trend in the data is the advantage of scout-based initial 
velocities compared to random initial velocities. Specifically, the 
versions in column one and two both use scout-based initial 
positions, so they only differ by the use of scout-based initial 
velocities in the first column and random initial velocities in the 
second column. Similarly, the versions in column three and four 
both use the previous optimum as the initial position, so they only 
differ by the use of scout-based initial velocities in the third 
column and random initial velocities in the fourth column. In each 
of these column pairs, the value in the left column is almost 
always lower than the value in the right column – the specific 
selection of initial velocities (in isolation) has led to performance 
improvements in these otherwise identical implementations of 
multi-optima particle swarms. Table 6 shows the p-values for t-
tests in these column-to-column comparisons – the bold values 
indicate that the use of selected initial velocities has led to a 
significant performance advantage compared to random initial 
velocities (i.e. p < 5.0%). The scout-based selection of initial 
velocities is particularly effective on separable functions (BBOB 
fn 1-5) and unimodal functions (BBOB fn 10-14) for the higher 
dimensional problems. 

The best overall results occur with the base version of locust 
swarms in which both scout-based initial positions and scout-
based initial velocities are used. This is consistent with the goals 
of the initial parameter selection which attempted to avoid 
optimizing the parameters for one (set of) function(s) at the cost 

of another. However, it should be noted that using the previous 
optimum instead of the scout-based positions in the velocities 
only version has many advantages on the unimodal functions (e.g. 
BBOB fn 10-14). Conversely, the lack of scout-based initial 
positions in the same velocities only version has many 
disadvantages on the multi-modal functions (e.g. BBOB fn 15-
19). Overall, the importance of initial positions and initial 
velocities will vary in different fitness landscapes. 

Table 4. Effects of initial positions and velocities – D = 20 
Locust Positions Velocities fn Swarms Only Only Random 

1 1.0 13.2 0.0 0.0 
2 1.0 15.5 0.0 16043.5 
3 1.0 1.3 0.8 3.6 
4 1.0 1.2 1.0 4.3 
5 1.0 1.0 1.0 1.0 
6 1.0 2.3 0.5 9.0 
7 1.0 1.0 4.9 5.3 
8 1.0 1.1 0.6 1.4 
9 1.0 1.2 0.9 1.1 

10 1.0 1.3 0.8 0.9 
11 1.0 1.1 1.2 1.7 
12 1.0 4.5 0.3 0.2 
13 1.0 1.8 2.4 2.8 
14 1.0 1.8 0.1 0.2 
15 1.0 1.2 2.1 2.5 
16 1.0 1.0 2.9 2.8 
17 1.0 1.2 11.0 11.7 
18 1.0 1.3 6.2 7.2 
19 1.0 1.0 0.6 0.7 
20 1.0 1.4 1.8 2.1 
21 1.0 1.4 1.0 1.5 
22 1.0 0.5 0.6 0.8 
23 1.0 1.0 1.5 1.5 
24 1.0 1.3 1.0 1.1 

Table 5. Effects of initial positions and velocities – D = 200 
Locust Positions Velocities fn Swarms Only Only Random 

1 1.0 6.1 0.0 23.2 
2 1.0 3.0 4.9 888.9 
3 1.0 1.3 0.9 5.2 
4 1.0 1.3 1.1 6.1 
5 1.0 1.0 1.0 ∞ 
6 1.0 5.0 6.6 13.9 
7 1.0 1.1 13.9 15.1 
8 1.0 2.6 1.2 17.6 
9 1.0 1.9 1.1 1.1 

10 1.0 2.2 0.9 1.7 
11 1.0 1.3 0.5 1.4 
12 1.0 6.4 0.0 111.6 
13 1.0 2.6 0.0 3.5 
14 1.0 2.6 0.0 17.9 
15 1.0 1.3 3.0 3.1 
16 1.0 1.4 4.9 5.2 
17 1.0 0.9 1.4 1.4 
18 1.0 1.0 1.7 1.6 
19 1.0 1.0 1.9 2.1 
20 1.0 1.4 1.2 1.2 
21 1.0 1.0 1.0 1.4 
22 1.0 0.8 0.9 1.1 
23 1.0 1.1 1.4 1.4 
24 1.0 1.2 1.3 1.4 

Table 6. Significance of initial velocities 
D = 20 D = 200 

fn 
Columns 1-2 Columns 3-4 Columns 1-2 Columns 3-4 

1 0.0% 73.7% 0.0% 0.5% 
2 0.0% 8.2% 0.0% 0.0% 
3 0.4% 0.0% 0.0% 0.0% 
4 0.3% 0.0% 0.0% 0.0% 
5    32.7% 
6 0.6% 4.8% 0.0% 0.0% 
7 86.9% 54.4% 5.6% 13.5% 
8 5.5% 3.5% 0.0% 7.3% 
9 30.5% 22.5% 0.0% 75.1% 
10 5.6% 36.3% 0.0% 0.0% 
11 9.1% 0.3% 0.0% 0.0% 
12 0.0% 54.0% 0.0% 2.0% 
13 0.4% 65.0% 0.0% 0.0% 
14 0.0% 0.0% 0.0% 0.2% 
15 0.2% 7.1% 0.0% 29.1% 
16 96.8% 49.4% 0.0% 1.1% 
17 6.5% 60.1% 15.3% 10.3% 
18 1.6% 12.6% 71.1% 0.6% 
19 55.5% 60.1% 0.0% 5.9% 
20 0.0% 0.3% 0.0% 96.7% 
21 29.8% 37.5% 96.5% 30.1% 
22 2.5% 15.6% 39.0% 32.8% 
23 98.3% 68.2% 0.5% 96.6% 
24 0.0% 10.4% 0.0% 11.0% 
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5. WOSP 
The effects of selecting initial positions and initial velocities will 
also depend on the particular multi-optima particle swarm. WoSP 
(Waves of Swarm Particles) is a multi-optima particle swarm that 
adds a short range force to prevent complete convergence [9]. As 
particles converge, this short range force (under the effects of 
discrete time updates) causes them to accelerate greatly and 
subsequently diverge instead. After divergence, a new wave is 
created which is not attracted to the pbest and gbest locations of 
any previous wave. Specifically, WoSP starts with the same 
velocity update equation as standard PSO in (1) 

( ) ( )( )nnnnnn
di dididididi

xgbestcxpbestcvv
,,,,, 2211,1 −+−+=+ εεχ  (8) 

except that particles are now grouped into waves numbered by n. 
The short range force adds another velocity component: 

p
ij

ij d
Kv =  (9) 

where dij is the distance between particles i and j, K is a constant, 
and p is power factor that ensures that vij is small except for very 
small dij. 

Whenever the total velocity of a particle is above a certain 
threshold, the new location for that particle will be so far away 
from the previous “promotion point” that it is considered to be in 
a new wave. Since this total velocity specifies a limit on the 
distance to which particles can converge (i.e. within this radius, 
the velocity component due to (9) alone will be sufficient to 
promote the particles into a new wave), WoSP typically requires 
local optimization of the promotion points to find exact optima. 
Further, the efficiency and effectiveness of WoSP benefit greatly 
if this “radius of convergence” is well matched to the size of the 
local optima wells in the search space. In general, the 
performance of WoSP can be quite sensitive to the short range 
force and other parameters related to wave promotion. 

6. IMPROVED SCOUTING FOR WOSP 
Upon promotion, the particle in the new wave keeps its existing 
position and velocity. The largest influence on these values will 
be from the short range force which is a function of the relative 
position between the current particle and the other particle that it 
interacted with. Essentially, with respect to information from the 
search space or previously found local optima, these values are 
effectively random. Further, based on the promotion criteria, the 
position will be quite far away from the promotion point and the 
magnitude of the velocity will be quite large. In terms of the three 
specified design criteria for multi-optima particle swarms, WoSP 
focuses primarily on a stopping condition for the sub-swarms, and 
it uses effectively random initial positions and velocities for its 
new sub-swarms. 

The results of Sections 3 and 4 suggest that the performance of 
WoSP can be improved by better selection of the initial positions 
and initial velocities that it uses in its sub-swarms. A procedure 
similar to that used by locust swarms in (6) could be used, but the 
inability of locust swarms to “scale” the search process [12] to 
find the exact optimum on simple problems like sphere (BBOB fn 
1) encourages the introduction of a search procedure that can be 
greedier and more adaptive.  

In Differential Evolution (DE) [14], a solution x is created by 
applying a difference vector to a base solution 

( )321 xxFxx −+=  (10) 

where x1, x2, and x3 are unique solutions drawn from the 
population, and F is a scaling factor. To the extent that scouts in 
locust swarms are tasked with finding exploitable gradients in the 
search space, difference vectors which are essentially slopes 
between two points may also be a promising way to identify 
exploitable gradients. Building from (10), the following search 
procedure is used 

( ) cban optimumoptimumoptimumtionsearchloca +−= ε  (11) 

where a and b are randomly selected without replacement from 
n/2 to 2−n such that optimuma has a better fitness than optimumb. 
Setting 1−= nc  causes “scouting” to occur around the most 
recently found optimum/promotion point. Note: normal WoSP 
occurs for n < 20 – the initial waves are more explorative and the 
later waves are more exploitive. The difference vector is scaled 
by ε, a uniform random number drawn from a range of [0.5,1]. 
Similar to (7), the slope of the difference vector may represent an 
underlying gradient in the search space. Thus, the initial velocity 
uses this direction. 

( )ban optimumoptimumv −= ε0  (12) 

Preliminary experiments with locust swarms suggest that these 
“DE-based” scouts are more effective than the scouting procedure 
described in Section 2. The purpose of the following experiments 
is to study the potential effects of adding new selection techniques 
for initial positions and initial velocities on the performance of 
other multi-swarm systems – i.e. WoSP in this case. 

7. RESULTS FOR WOSP 
The BBOB problem set is not available in the programming 
language of the original implementation of WoSP. Further, the 
performance of WoSP is highly sensitive to its parameters, so it 
was desirable to work on only the original functions for which 
properly selected parameters were already available. Of these 
available functions, the Rastrigin function is the only one in 
common with the BBOB problem set. The parameters in (9) for 
WoSP on this function are K = 1.675 and p = 3.5. 

This original version of WoSP is compared against several 
modified versions (all versions are allowed 000,100*5000 =D  
function evaluations). In Table 7, the mean and standard deviation 
(std dev) for 25 independent trials of each version are reported. 
The p-value of a t-test helps to show the likelihood that the given 
version has substantially similar performance to the base version 
of WoSP. The first modification replaces the initial position and 
initial velocity of each wave with a randomly selected initial 
position and initial velocity. The performance of this “random” 

Table 7. Effects of initial positions and velocities – WoSP 
Version mean std dev t-test 

WoSP 91.6 9.3 - 
Random 91.8 11.5 90.6% 
Position and Velocity 61.0 13.4 0.0% 
Position only 73.1 19.1 0.0% 
Velocity only 103.3 11.7 0.0% 
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version of WoSP is similar to the performance of the original 
version of WoSP – a result that supports the previous claim that 
WoSP focuses only on the first of the three proposed design 
criteria for multi-optima particle swarms (i.e. specifying the 
stopping criteria for each sub-swarm) and that it uses effectively 
random initial positions and random initial velocities. 

The second modification adds the search/scouting procedure 
presented in Section 6. Upon the termination of a wave 
(numbered n > 20), 250 scouts are created according to (11), and 
the fittest of these scouts is used to set the initial position and 
initial velocity for the particle in the new wave. Variations of this 
version involve using only the initial position or the initial 
velocity from (11) or (12) and matching that with the initial 
position or initial velocity from WoSP. Among these variations, 
the best results occur with specifically selected initial positions 
and initial velocities. The selection of initial positions also helps, 
but the selection of initial velocities alone does not help. (In 
locust swarms, the “velocities only” version also tended to be less 
effective on the multi-modal functions BBOB fn 15-19 – see 
Table 4.) 

8. DISCUSSION 
In general, it is well known that initial positions can affect the 
performance of heuristic search techniques. Since many 
techniques display a central bias (i.e. they can more easily find a 
globally optimal solution that is near the centroid of their initial 
positions), it has become standard for benchmark problem sets to 
shift the location of the global optimum away from the center of 
the search space (e.g. [7][15][16]). Further, to help demonstrate 
that the performance of PSO is independent from its initial 
positions, the experiments with standard PSO explicitly ensured 
that “All swarms were randomly initialized in an area equal to one 
quarter of the feasible search space in every dimension that was 
guaranteed not to contain the optimal solution.” [1] However, if 
the goal is to achieve the best overall performance, there is no 
reason to place such negative restrictions on the initial positions 
of a swarm. 

In multi-swarm systems, the obvious initial positions for 
subsequent swarms are (around) the convergence point of the 
previous swarm(s) (e.g. [3][9][11]). In many search spaces, 
information from previously found local optima can help search 
techniques (e.g. [13]) find better optima. Although this basic 
information from previous local optima is used by other multi-
swarm systems (e.g. WoSP [9] and DMS-PSO [11]), the results in 
Section 4 with locust swarms [3] show that these initial positions 
can be improved further by adding a simple search procedure. 
This result has been successfully transferred to WoSP as shown in 
Section 7. 

For initial velocities, it is typical to use random values (e.g. 
[1][9][11]). However, recent work with bounds handling has 
shown that search space biases and negative performance effects 
can result with bounds handling techniques that use random 
velocities [8]. Since bound handling techniques which change a 
particle’s position and/or its velocity are similar to a re-
initialization, these results offer some insights into how multi-
optima particle swarms might also behave. In particular, if there 
can be a negative effect from randomly selected initial velocities, 
it is reasonable to assume that there could be a positive effect 
from actively selected initial velocities. The results in Section 4 

with locust swarms demonstrate this positive effect is indeed 
possible. The results in Section 7 with WoSP show that these 
positive effects can be achieved in other multi-swarm systems. 

One of the best multi-swarm systems is DMS-PSO [11] which 
achieved superior results [18] in the recent Large Scale Global 
Optimization contest [15]. DMS-PSO does not explicitly select 
initial velocities for each of its sub-swarms. Instead, like WoSP, 
the initial velocities for the new sub-swarms are inherited relics 
from the previous swarm(s). Although the idea of adding a 
selection mechanism for initial velocities to DMS-PSO is 
appealing, the implementation difficulties encountered with 
WoSP give pause for concern. Even though the “inherited” initial 
values were effectively random in performance (see Table 7), 
their values were still critical to the overall performance of WoSP. 
In particular, insufficiently large magnitudes for initial velocities 
would lead to rapid convergence and an explosion in the number 
of waves. 

Although the results in Section 4 show that performance gains can 
be achieved through improved selection of initial positions and 
initial velocities, it can be difficult to add these features to 
existing multi-swarm systems. Therefore, these design 
suggestions are probably best directed towards future developers 
of multi-swarm systems. Further, for multi-optima particle 
swarms that use a fixed number of sub-swarms (e.g. [3][11]), the 
establishment of guidelines for sub-swarm parameters would also 
be useful – e.g. the recommended constriction factor for χ in 
standard PSO [1] is likely too large for sub-swarms which must 
converge in a much smaller number of iterations. 

9. SUMMARY 
The development of multi-optima particle swarms involves three 
additional design decisions: the number of sub-swarms to use 
and/or the stopping criteria for each sub-swarm, the selection of 
initial positions for the particles in each of the new sub-swarms, 
and the selection of initial velocities for all of these particles. 
Since most particle swarm implementations use the default of 
random initial velocities, the last design criterion is particularly 
overlooked. Experimental results isolate and demonstrate how the 
specific selection of initial positions and initial velocities can both 
improve the performance of multi-optima particle swarms. The 
presented strategies to select initial velocities are quite simple, so 
the current results are best viewed as the identification of a 
promising area for further research. 
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