
An Efficient Hierarchical Parallel Genetic Algorithm for
Graph Coloring Problem

Reza Abbasian
Department of Computer Science

University of Regina
Regina, Canada

abbasiar@cs.uregina.ca

Malek Mouhoub
Department of Computer Science

University of Regina
Regina, Canada

mouhoubm@cs.uregina.ca

ABSTRACT
Graph coloring problems (GCPs) are constraint optimiza-
tion problems with various applications including schedul-
ing, time tabling, and frequency allocation. The GCP con-
sists in finding the minimum number of colors for coloring
the graph vertices such that adjacent vertices have distinct
colors. We propose a parallel approach based on Hierarchi-
cal Parallel Genetic Algorithms (HPGAs) to solve the GCP.
We also propose a new extension to PGA, that is Genetic
Modification (GM) operator designed for solving constraint
optimization problems by taking advantage of the properties
between variables and their relations. Our proposed GM for
solving the GCP is based on a novel Variable Ordering Al-
gorithm (VOA). In order to evaluate the performance of our
new approach, we have conducted several experiments on
GCP instances taken from the well known DIMACS website.
The results show that the proposed approach has a high per-
formance in time and quality of the solution returned in solv-
ing graph coloring instances taken from DIMACS website.
The quality of the solution is measured here by comparing
the returned solution with the optimal one.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Heuristic methods

General Terms
Algorithms

Keywords
Graph Coloring Problems (GCPs), Parallel Genetic Algo-
rithms (PGAs)

1. INTRODUCTION
Graph Coloring Problems (GCPs) are very interesting

constraint optimization problems with many real world ap-
plications such as Frequency Allocation for Mobile Radio

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’11, July 12–16, 2011, Dublin, Ireland.
Copyright 2011 ACM 978-1-4503-0557-0/11/07 ...$10.00.

and WLANs [17], Register Allocation [5], Time Tabling and
Scheduling [11]. A GCP on a given graph G is defined
as finding the graph’s chromatic number denoted by χ(G).
χ(G) is the minimal number of colors needed to color the
graph vertices such that two adjacent (neighbouring) ones
have different colors. The GCP is an NP-Hard problem
[8] where optimal solutions can be found for its simple or
medium sized instances [4, 16].

There are generally three approaches to solve the GCP
[14, 15]. The first one consists in directly minimizing the
number of colors by working in the legal colors space of the
problem. In the second approach, the number of colors is
fixed and no conflict is allowed, thus, some vertices might not
be colored. The objective here is to maximize the number
of colored vertices [2, 19]. The third approach consists of
first choosing a number of colors K, and then iteratively try
to minimize the number of conflicts for the candidate K.
Whenever a solution with zero conflicts has been found, K
is decremented by one and the procedure continues until we
reach a K where the number of conflicts cannot be equal to
zero. As a result, the last legal K will be returned as the
best solution [14].

This last approach suffers from two major problems. First,
we have to solve the GCP assuming that the graph is K col-
orable, and if solved via K colors, we reduce K by one and
solve the problem again and continue this process until we
find the minimum possible K. This phenomenon causes a
waste of time and resources since it takes the opportunity
to consider other solutions at the same time. The second
problem is that the number of vertices is used as the initial
value of K. This will affect the efficiency of the solving al-
gorithm especially for large problems instances where there
is a big difference between the initial value of K and the op-
timal one. In this paper we propose an extension of the last
approach addressing its two limitations and improving it as
follows. To address the first problem, we solve the GCP in
parallel using a set of collaborating Parallel Genetic Algo-
rithms (PGAs) by taking advantage of Hierarchical PGAs
(HPGAs). Each PGA in the HPGA is assigned to work on
solving the GCP using a unique number of colors. More-
over, given the fact that in genetic algorithms, the random
crossover operator performs poorly for combinatorial opti-
mization problems [7], we extend the standard genetic algo-
rithm to have an additional operator, namely Genetic Modi-
fication (GM), specifically designed for constraint optimiza-
tion problems. GM is embedded in the PGA and performs
in parallel with the PGA. The design of the GM operator is
problem specific and varies amongst different constraint op-

521

Figure 1: Architecture of the HPGAGCP

timization problems. Therefore, we propose a specific Vari-
able Ordering Algorithm for the GCP, namely Dependency
Variable Ordering for Graph Coloring Problem (DVOGCP),
to operate with GM.

To overcome the second drawback, we designed a novel
greedy algorithm to estimate the upper-bound for the graph’s
chromatic number. We then use this estimator to evaluate
the initial value of K.

In order to evaluate the performance of our new approach,
we have conducted several experiments on GCP instances
taken from the well known DIMACS graphs website. The
results of these experiments show that our proposed algo-
rithm solves the GCP efficiently and in a timely manner
with a great accuracy in finding the optimal solution.

The rest of the paper discusses our contributions in de-
tail. Section 2 briefly describes PGAs. In Sections 3 and
4, the design of the proposed HPGA and the estimator are
respectively covered. Section 5 introduces the different com-
ponents of the PGA designed specifically to solve the GCP.
Then, an algorithm to solve the GCP is proposed in Sec-
tion 6. Section 7 is dedicated to the experimentation we
conducted in order to evaluate the performance of our pro-
posed method. Finally, concluding remarks and possible
future works are presented in Section 8.

2. PARALLEL GENETIC ALGORITHMS
Genetic Algorithms (GAs) [9] are evolutionary algorithms

based on the idea of natural selection and evolution. GAs
have been successfully applied to a wide variety of problems.
In GAs, there is a population of potential solutions called

individuals. The GA performs different genetic operations
on the population, until the given stopping criteria are met.

The Parallel Genetic Algorithm (PGA) is an extension of
the GA. The well-known advantage of PGAs is their ability
to facilitate different subpopulations to evolve in diverse di-
rections simultaneously [12]. It is shown that PGAs speed
up the search process and can produce high quality solutions
on complex problems [13, 6, 18].

There are mainly three different types of PGA [3]. First,
Master-Slave PGA in which, there is only one single pop-
ulation and the population is divided into fractions. Each
fraction is assigned to one slave process on which genetic op-
erations are performed [12]. Second, Multi-Population PGA
(also called Island PGA) that contains a number of subpop-
ulations, which can occasionally exchange individuals. The
exchange of individuals is called migration. Migration is con-
trolled using several parameters. Multi-population PGAs
are also known as Island PGA, since they resemble the “is-
land model” in population genetics that considers relatively
isolated demes. Finally, the Fine-Grained PGA which con-
sists of only one single population, that is designed to run
on closely linked massively parallel processing systems.

3. DESIGNING THE HIERARCHICAL PGA
FOR THE GCP

As mentioned in the introduction, our proposed approach
for solving a GCP executes PGAs in parallel using a Hi-
erarchical PGA (HPGA) architechture. A HPGA can be
obtained by any combination of the PGA types discussed in
Section 2. Figure 1 shows the architecture of our proposed
HPGA for GCP (HPGAGCP). To design the HPGAGCP,

522

we use the Island PGA (IPGA) for the top level and Master-
Slave PGA (MSPGA) for the lower level. Each MSPGA, is
actually an island of the IPGA. However, there is a Coor-
dinator Process (CP) in the IPGA which is in charge of as-
signing different GCP problem domains to each island of the
IPGA. The CP can communicate with each MSPGA using
the chosen Inter-Process Communication (IPC) technique.
The rest of this section covers the design of the HPGAGCP
in depth.

3.1 Designing the MSPGA for the GCP
Each MSPGA has only one goal, that is, solving the GCP

problem via a color domain of size N . A MSPGA consists
of one Master Process (MP) and its Slave Processes (SPs)
(as shown in Figure 1). Each SP performs genetic opera-
tions on a subpopulation assigned to it by the MP. At each
step of the GA, MP nominates P best individuals gathered
from each SP’s population and distributes them to SPs for
the reproduction. For the sake of efficiency, we used Shared
Memory for the IPC since the MP and its SPs need to in-
teract a lot in each generation of the GA.

3.2 Extending the PGA using Genetic Modifi-
cation (GM)

We define the term Genetic Modification (GM) as gener-
ating individuals outside the boundaries of the GA based
on reasoning or inference on relations between variables and
constraints in an optimization problem. This means that,
the GM operator would purposefully insert some engineered
individuals into the GA’s population to give them a chance
to participate in reproduction. The process of generating in-
dividuals based on this idea might be time consuming com-
pared to just randomly generate individuals or perform a
random crossover. Thus, to resolve this issue, the GM oper-
ator should not interfere between the flow of the PGA and
the PGA should not wait for the GM operator results to en-
ter the reproduction. The idea here is that the GM should
concurrently and independently operate beside the PGA.
Whenever the GM produces a population of engineered in-
dividuals, the PGA keeps them until the next reproduction.
Then, just before the reproduction, the PGA distributes
them between the subpopulations. Figure 2 shows the ar-
chitecture of a MSPGA including the GM operator.

The GM operator generates a modified population of size
PM . Figure 3 presents a general pseudo-code for the GM
operator process. The GM operator should be designed ac-
cording to the nature of the optimization problem of interest.
A specific GM operator for the GCP is introduced in Section
5.

3.3 Managing MSPGAs Using the CP
As shown in Figure 1, the interaction between a CP and

its islands (MSPGAs) can use different strategies of IPC. For
instance, we could choose either Shared Memory or Message
Passing. If we choose Message Passing, the CP can be con-
sidered as a machine with not necessarily high capabilities
in a network with highly capable machines. On the other

Figure 2: Architecture of a MSPGA with GM op-
erator.

Begin

Initialize a list of modified individuals modified list

Wait for a command from MP

while command �= STOP do

Generate a modified population of size PM

for i := 1 to PM do

Generate a modified individual I

Add I to modified list

Signal the MP

Wait for a command from MP

End

Figure 3: Pseudo-code of the general GM process

hand, we can use a multi-core super computer and choose
the Shared Memory strategy for IPC.

The CP is in charge of coordinating M MSPGAs. The
value of M can be evaluated by considering available hard-
ware resources. For example, in a Message Passing strategy,
M would be the maximum number of highly capable ma-
chines available in the network for use. At the beginning
of the algorithm, the CP assigns a distinct coloring domain
from [N −M,N) ⊂ N to each MSPGA (N is the estimated
upper-bound for χ(G)). MSPGAs then compete with each
other to find a solution to the GCP with their given num-
ber of colors. Whenever the CP receives a solution from
a MSPGA, it suspends the operation of MSPGAs that are
working on color domains greater than the received solu-
tion. The CP then updates N to the current known chro-
matic number and assigns a distinct coloring domain from
[N − Msuspended, N) ⊂ N to each suspended MSPGAs and
resumes them. This process continues until the algorithm
finds the minimum possible chromatic number or a given
time is passed.

4. PROPOSED ESTIMATOR
The Estimator algorithm receives a graph G as input and

initializes an empty graph A. At each step, the estimator
algorithm adds a vertex to A according to vertices in G.
More precisely, the details of the algorithm are as follows.

523

1. Create a list from vertices of G based on their degrees
in a decreasing order.

2. Choose an uncolored vertex gi from G with the maxi-
mum degree, add it to A and name it ai.

3. Apply the constraints between the newly added vertex
ai and the rest of vertices in A according to G.

4. Solve the sub-GCP and mark gi as colored in G.

5. While there exists an adjacent vertex adjgi to gi in G
that does not have a corresponding vertex adjacent to
ai in A, do the following.

(a) Choose the vertex adjgi with maximum degree,
add it to A and name it adjai.

(b) Apply the constraints between adjai and the rest
of vertices in A according to its correspondence
to G.

(c) Solve the sub-GCP and mark adjgi as colored in
G.

6. If there exists an uncolored vertex goto step 2.

7. Return the total number of colors used.

The idea behind the Estimator algorithm is to first identify
the most constrained sub-graph of G (which is the sub-graph
created by the most constrained vertex and its adjacent ver-
tices) and then solve the whole sub-graph according to the
constraints that we have so far in the partially constructed
graph A. Once a sub-graph is solved, the algorithm moves
to the next most constrained unsolved sub-graph. This pro-
cess continues until the whole problem is solved and there is
no other uncolored vertex left. The algorithm uses a greedy
method for choosing a color for a vertex since it always seeks
for the minimum available color.

Figure 4: Steps of Estimator algorithm for a sample
graph

Figure 4 shows the steps of the algorithm for a sample
graph. For the sake of simplicity, we suppose that colors

are enumerated starting with zero. In each step of the al-
gorithm, we add one vertex to the partial graph A. As a
result, we just need to check the adjacency matrix for newly
added vertex and choose a color with the minimum possi-
ble number for the added vertex. The algorithm discussed
above is rather conceptual as we can implement it without
actually using the partial graph A. We only need to keep
track of the colored vertices (every colored vertex is in A).
The algorithm can be implemented to run in O(|V |2) where
|V | is the number of vertices.

5. DIFFERENT PGA COMPONENTS

5.1 Representation of Individuals
Each individual in the population is represented with an

integer array, which has a length equal to the number of
graph vertices. The value of each array entry is a color
number within the color domain. Figure 5 illustrates an
example of an individual for an eight vertex graph with a
color domain of size 5 and its correspondence in the graph.

Figure 5: Individual representation of an eight ver-
tex graph

5.2 Fitness Function
The fitness function of an individual is the number of con-

flicts between adjacent vertices. This corresponds to the
number of adjacent vertices with the same color. In order
to compute this value, we simply find adjacent vertices from
the graph adjacency matrix and check their color number in
the integer array of the individual. When the fitness func-
tion is equal to zero, a solution is found. The fitness of an
individual, fI , is defined as follows:

fI =
∑
i∈VG

∑
j∈adji

conflict(i, j)

where VG is the set of all vertices of the graph and adji is
the set of all vertices adjacent to vertex i.

The conflict function is defined as follows:

conflict(i, j) =

{
1 if i and j have the same color
0 otherwise

524

5.3 Reproduction and Crossover
Reproduction takes place amongst a number of fittest in-

dividuals in each subpopulation. The chosen individuals are
then passed to crossover as parents of new individuals. For
the reproduction, we chose a k-point crossover. At the time
of the crossover, the value of k is generated randomly. Figure
6 shows an example of a 1-point crossover on two individuals
of a five vertex graph coloring problem.

Figure 6: A one point crossover of a five vertex
graph

5.4 Mutation
We propose two different methods for the mutation.

5.4.1 Mutation to minimize the number of conflicts
In this type of mutation, Nmutation random vertices of

the individual are selected and the numbers of color con-
flicts around the chosen vertices and their adjacent vertices
are minimized. Say vertex A is randomly chosen for the
mutation. Then, according to the adjacency matrix of the
graph, for every vertex B that is adjacent to A, if their col-
ors are the same, B will take a new random color that is not
equal to A’s color.

5.4.2 Stochastic color change
This mutation method randomly chooses Nmutation ver-

tices and assigns a random color to each.

5.5 Genetic Modification (GM) Operator
We implemented the GM using a Variable Ordering Al-

gorithm (VOA) that we propose for solving the GCP. At
the beginning of the GM process, a variable ordering of the
GCP is calculated using the proposed VOA. This variable
ordering is considered as the best order for vertices to be
colored in turn. Each variable in this ordering has an initial
color domain of size N . Whenever the GM needs to create a
new individual, it starts from the first variable in the order-
ing and generates a random value for each variable in turn.
When a variable (vertex) is initialized with a value, the GM
dynamically removes that value (color) from the color do-
main of its neighbours. This way, it is guaranteed that at
each time, the chosen value for a variable (vertex) will not
cause a conflict. However, at the end of initializing variables,
we might end up with some variables that have empty color
domains. In this case, the GM randomly chooses a color for
them.

5.5.1 Dependency Variable Ordering for GCP
In Dependency Variable Ordering for GCP (DVOGCP),

the dependency level of a vertex means coloring a vertex A
depends on the color of k adjacent vertices that are in a de-
pendency relation with A. For instance, to color a vertex A
with dependency level 2, we first have to color the 2 adjacent

vertices involved in a dependency relation with A. A depen-
dency relation between two vertices A and B is denoted by
A → B and is interpreted as the color of vertex B depends
on the color of vertex A. Figure 7 illustrates A → B in a
graph.

Figure 7: An Illustration of A → B

We propose the following preceding rules in DVOGCP.

• A vertex with a lower dependency level always pre-
cedes the one with higher dependency.

• If two vertices have the same dependency, the one with
the higher degree precedes the other.

• There is no ordering between two vertices with the
same degree and dependency level.

Before creating the dependency relations, the graph vertices
are sorted in a descending order of their degree. The first
vertex in the sorted list, that is the vertex with maximum
degree is the starting point in the algorithm. This vertex
has a dependency level of zero. Dependency relations are
created according to the following rule:

• Considering two vertices A and B, A → B holds if
and only if A has a higher degree and a lower or equal
dependency level in comparison to B. Otherwise, B →
A holds.

Creating relations starts from the first vertex in the sorted
list and continues for the rest of vertices in the list. At each
iteration of the algorithm, we create dependency relations
between the chosen vertex from the list and its adjacent
vertices. Note that, the dependency relations become effec-
tive only when the algorithm is done creating them for the
current vertex. The algorithm continues until we create all
dependency relations for the vertices in the list. Then, the
variable ordering is generated by creating a list of vertices
with the following properties.

• First, the list is created by sorting vertices according
to their dependency level in an ascending order.

• Second, each subsequence of vertices with the same
dependency level in the list will be sorted according to
their degree in a descending order.

Figure 8 shows a GCP instance and its DVOGCP.

5.6 Stopping Criteria
The algorithm stops if a given timeout T is reached or a

maximum number of generations is exceeded without finding
a solution to the GCP.

6. THE PROPOSED ALGORITHM
Consider M as the total number of PGAs, Msuspended as

the number of PGAs in the suspend state, and N as the
estimated chromatic number received from our proposed es-
timator.

525

Figure 8: A GCP instance and its DVOGCP

6.1 IPGA Algorithm
At the beginning, all the MSPGAs are suspended.

1. Assign to each MSPGA, a distinct color domain size
from [N −Msuspended, N) ⊂ N.

2. Start suspended MSPGAs. Wait for a MSPGA to find
a solution. If a solution is found go to step 3. Mean-
while, if the Stopping Criteria are satisfied, stop the
algorithm and return the best result so far.

3. Suspend the MSPGAs that have an equal or greater
color domain than the current solution. Update N to
the color domain size of the current solution.

4. Assign to each suspended MSPGA, a distinct color do-
main size from [N − Msuspended, N) ⊂ N. Go to step
2.

6.2 MSPGA Algorithm

1. In Parallel: generate a random population of size P .
Calculate the fitness of each individual.

2. If a solution is found (an individual with zero conflicts),
signal the CP and wait for a task from the CP. Else,
go to the next step.

3. Before entering the reproduction, check if the GM pro-
cess has created a modified population. If so, dis-
tribute them amongst subpopulations.

4. In Parallel: perform reproduction, mutation, and fit-
ness calculation. Go to step 2.

7. EXPERIMENTATION
Our proposed algorithm has been implemented using Java

language (JDK 1.6) and has been applied to a variety of
graph coloring instances. The GCP instances used in this
section are from a benchmarking website formally named
DIMACS graphs1.

1http://mat.gsia.cmu.edu/COLOR03/

Table 1: Comparison of the Estimator and DSATUR
algorithms

Problem χEP χDSATUR χ(G)

zeroin.i.2.col 31 31 30

mulsol.i.1.col 49 50 49

queen10 10.col 15 15 ?1

mulsol.i.2.col 31 32 31

2-Insertions 4.col 5 5 4

1-Insertions 5.col 6 6 ?

myceil7.col 8 8 8

miles1500.col 73 73 73

le450 25b.col 25 25 25
1.The chromatic number is not reported by DIMACS.

First, we have compared our proposed estimator with
a well-known sequential graph coloring algorithm, namely
DSATUR of Brèlaz [1] in terms of resulting estimations of
chromatic number (χ). Table 1 which lists the results of
this comparison shows that in some cases our proposed al-
gorithm returns better results. However, in other instances
both algorithms return the same result. Note that in theory,
the complexity of our estimator algorithm is O(|V |2) while
the complexity of DSATUR is O(|V |3) [10].

Table 2 shows the results of solving selected GCP in-
stances with our proposed algorithm. The problem instances
are taken from a range of small to large DIMACS problems
that their chromatic number is reported. In this experiment,
we used Shared Memory as the IPC technique between the
CP and the MSPGAs. We defined 5 processes as the MPs
(islands), and depending on the size of the problem, a vari-
able number of processes for SPs operating under each MP
in MSPGAs (see Table 2, “SPs per MSPGA” column). The
test machine is a Ciaratech FUSION SMP with 72 CPU
cores. In the experiments, the top 30% of each subpopu-
lation plus a number of randomly selected individuals are
chosen for the crossover. The mutation probability is set
to 0.2. The probability to choose mutation to minimize the
number of conflicts (described in Section 5.4) is 0.66 and the
probability to choose the Stochastic color change mutation
is 0.34. Moreover, Nmutation = |V |/10.

Next, we have compared our algorithm with the paral-
lel genetic-tabu algorithm (PGTA) designed to solve GCPs
[14]. In terms of the resulting chromatic number, both al-
gorithms return the same result, except for the problem in-
stance queen7 7.col, that the PGTA returns 7 while the HP-
GAGCP returns 8. Figure 9 shows the comparative results
of our proposed algorithm and PGTA with 24 processors in
terms of runtime. According to the figure, the results of our
proposed algorithm are much better in all cases. The rea-
son for such a significant improvement is that our Estimator
finds a very good upper-bound for the chromatic number,
causing the algorithm to start from a point near the opti-
mal solution. This way, if the algorithm reaches the optimal
solution, considering the fact that determining whether or
not a solution is optimal is not possible for the algorithm,
the maximum number of permitted generations without any
solution is executed more quickly. The Estimator also in-

526

Figure 9: Comparison of the proposed algorithm and PGTA with 24 Processors

Table 2: Results of The Proposed Algorithm on Different GCP Instances

Problem Proposed Algorithm

Instances Results

Instance V E χ Testimator(s) Run Time(s) SPs per MSPGA χ

myciel3.col 11 20 4 0.001 0.12 2 4

myciel4.col 23 71 5 0.002 0.44 2 5

queen5 5.col 25 160 5 0.002 0.65 3 5

queen6 6.col 36 290 7 0.002 0.84 4 8

myciel5.col 47 236 6 0.002 0.43 4 6

queen7 7.col 49 476 7 0.007 1.13 4 8

queen8 8.col 64 728 9 0.009 1.59 6 10

huck.col 74 301 11 0.004 1.76 6 11

jean.col 80 254 10 0.008 1.31 6 10

david.col 87 406 11 0.007 1.57 6 11

games120.col 120 638 9 0.012 2.38 8 9

miles250.col 128 387 8 0.008 1.88 8 8

miles1000.col 128 3216 42 0.021 6.04 8 42

anna.col 138 493 11 0.009 2.43 8 11

fpsol2.i.1.col 496 11654 65 0.178 77.42 10 65

homer.col 561 1629 13 0.114 46.74 10 13

qg.order30.col 900 26100 30 0.131 85.18 12 31

527

credibly reduces the size of search space. Then, the GM
operator plays its role by inserting interesting individuals
in the population. This will increase the chance of moving
towards the optimal solution faster. In the end, since the
GA is running in parallel, the runtime is significantly re-
duced. This phenomenon suggests that using the Estimator
and utilizing the idea of the GM operator by DVOGCP, to-
gether with a set of collaborating PGAs, we can significantly
facilitate the conventional design of the genetic algorithms
for solving a GCP.

8. CONCLUSION AND FUTURE WORK
In this paper, we discussed some general problems in solv-

ing the GCP using evolutionary algorithms. To address
those issues, we proposed a number of different algorithms
including the HPGAGCP to solve the GCP with different
color domains simultaneously and to search in diverse direc-
tions of the search space. We also proposed a novel estimator
to find an upper-bound for the graph’s chromatic number.
Furthermore, we proposed an extension to the genetic al-
gorithms, namely Genetic Modification (GM), specifically
designed for solving discrete optimization problems. Then,
we introduced a novel variable ordering algorithm to operate
with the GM operator.

In the experimentations that we conducted on various
GCP instances, we showed that our proposed algorithms
were very accurate and fast in solving the GCP. Apart from
the efficiency provided by using a Hierarchical PGA, our pro-
posed estimator and GM operator play an important role re-
spectively in reducing the search space and generating near
optimal solutions.

In the near future, efforts will be made to generalize the
whole proposed system to solve a variety of structured con-
straint optimization problems. One possible future work
is to design a generalized estimator for discrete optimiza-
tion problems based on the idea of our proposed Estima-
tor. Moreover, different algorithms can be embedded into
the GM operator for solving various optimization problems.
One specific development is to generalize the Dependency
Variable Ordering (DVO) to operate on a wide range of
problems.

9. REFERENCES
[1] D. Brélaz. New methods to color the vertices of a

graph. Commun. ACM, 22:251–256, April 1979.

[2] P. Briggs, K. D. Cooper, and L. Torczon.
Improvements to graph coloring register allocation.
ACM Trans. Program. Lang. Syst., 16(3):428–455,
May 1994.

[3] E. Cantu-Paz. Efficient and Accurate Parallel Genetic
Algorithms. Kluwer Academic Publishers, 2000.

[4] M. Caramia and P. Dell’Olmo. Iterative coloring
extension of a maximum clique. Naval Research
Logistic, 48(6):518–550, 2001.

[5] G. Chaitin. Register allocation and spilling via graph
coloring. SIGPLAN Not., 39(4):66–74, 2004.

[6] J. Cui, T. C. Fogarty, and J. G. Gammack. Searching
databases using parallel genetic algorithms on a
transputer computing surface. Future Gener. Comput.
Syst., 9(1):33–40, May 1993.

[7] V. Cutello, G. Nicosia, and M. Pavone. A hybrid
immune algorithm with information gain for the graph
coloring problem. In Proceedings of the 2003
international conference on Genetic and evolutionary
computation: PartI, GECCO’03, pages 171–182,
Berlin, Heidelberg, 2003. Springer-Verlag.

[8] M. R. Garey and D. S. Johnson. Computers and
Intractability; A Guide to the Theory of
NP-Completeness. W. H. Freeman & Co., New York,
NY, USA, 1990.

[9] D. E. Goldberg. Genetic Algorithms in Search,
Optimization and Machine Learning. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA,
1989.

[10] W. Klotz. Graph coloring algorithms. In Mathematics
Report, pages 1–9. Technical University Clausthal,
2002.

[11] F. T. Leighton. A graph coloring algorithm for large
scheduling problems. Journal of Research of the
National Bureau of Standards, 84(6):489–506, 1979.

[12] D. Lim, Y.-S. Ong, Y. Jin, B. Sendhoff, and B.-S. Lee.
Efficient hierarchical parallel genetic algorithms using
grid computing. Future Gener. Comput. Syst.,
23(4):658–670, May 2007.

[13] Z. Liu, A. Liu, C. Wang, and Z. Niu. Evolving neural
network using real coded genetic algorithm (ga) for
multispectral image classification. Future Gener.
Comput. Syst., 20(7):1119–1129, October 2004.

[14] B. B. Mabrouk, H. Hasni, and Z. Mahjoub. On a
parallel genetic-tabu search based algorithm for
solving the graph colouring proble. European Journal
of Operational Research, 197(3):1192–1201, 2009.

[15] D. Marx. Graph coloring with local and global
constraints. PhD thesis, Budapest University of
Technology and Economics, 2004.

[16] A. Mehrotra and M. A. Trick. A column generation
approach for graph coloring. INFORMS Journal on
Computing, 8:344–354, 1995.

[17] J. Riihijarvi, M. Petrova, and P. Mahonen. Frequency
allocation for wlans using graph colouring techniques.
In Proceedings of the Second Annual Conference on
Wireless On-demand Network Systems and Services,
pages 216–222, Washington, DC, USA, 2005. IEEE
Computer Society.

[18] G. A. Sena, D. Megherbi, and G. Isern.
Implementation of a parallel genetic algorithm on a
cluster of workstations: traveling salesman problem, a
case study. Future Gener. Comput. Syst.,
17(4):477–488, January 2001.

[19] P. Svenson and M. G. Nordahl. Relaxation in graph
coloring and satisfiability problems. Phys. Rev. E,
59(4):3983–3999, April 1999.

528

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

