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ABSTRACT
The issue addressed in this paper is how to build low-level
hybrid cooperative optimization methods that combine a
Genetic Algorithm (GA) with a Branch-and-Bound algo-
rithm (B&B). The key challenge is to provide a common
solution and search space coding and associated transfor-
mation operators enabling an efficient cooperation between
the two algorithms. The tree-based coding is traditionally
used in exact optimization methods such as B&B. In this
paper, we explore the idea of using such coding in Genetic
Algorithms. Following this idea, we propose a pioneering
approach hybridizing a GA with a B&B algorithm. The
information (solutions and search sub-spaces) exchange be-
tween the two algorithms is performed at low-level and dur-
ing the exploration process. From the implementation point
of view, the common coding has facilitated the low-level cou-
pling of two software frameworks: ParadisEO and BOB++
used to implement respectively the GA and the B&B algo-
rithms. The proposed approach has been experimented on
the 3D Quadratic Assignment Problem. In order to support
the CPU cost of the hybridization mechanism, hierarchical
parallel computing is used together with grid computing.

Categories and Subject Descriptors
D.2.8 [Combinatorics]: Permutations and combinations,
Combinatorial algorithms; G.1.6 [Optimization]: Global

optimization
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1. INTRODUCTION
Genetic algorithms (GAs) [8] have been combined with

different optimization methods (heuristic or exact ones) in
order to obtain a new class of methods, that explore more
efficiently the search space of large and complex combinato-
rial optimization problems. The basic idea of such hybrids is
to take advantage from the complementary of the methods
they combine. In this paper, the focus is set on combining
GAs and the branch-and-bound algorithm (B&B) [13]. This
later uses a tree structure to progressively cover the search
space and uses relaxation techniques to eliminate sub-trees
that are not likely to lead to optimal solutions.

Relevant ways to combine these two algorithms have been
largely discussed in the literature and successfully applied to
different classes of optimization problems ( [17], [7], [3], [5]).
Those methods could be classified in two categories: re-
lay methods working in a pipelined mode (the input of one
method is the output of the previous method) or cooperative
methods where the two algorithms are executed in a paral-
lel or intertwined way and exchange information to guide
their respective searches. Generally, the main information
exchanged in a cooperative hybridization between GAs and
the B&B algorithm is new best found solutions and the ini-
tialization of the GA’s population from the B&B’s pool of
nodes. However, the advantages took from the cooperation
between GA and B&B could go beyond the traditional weak-
ness/strength balance, best solutions exchanges, etc., if the
characteristics of the two algorithms are exploited to find
some ”connections” between their respective searches.
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The idea in this paper is to reuse the B&B tree-based
representation in GAs in order to design a tight cooperating
strategy. Indeed, special tree-based crossover and mutation
operators are introduced in order to control the GA’s search
in unexplored areas, not yet visited by the B&B and ex-
clude pruned sub-spaces from the search. In addition, the
best individuals in GA’s final populations are used by the
B&B to localize near-optimal solutions. This new coopera-
tive scheme is based on a coding approach of the B&B tree
proposed in [15] and applied to permutation problems.

Applications of permutation problems could be found in
different areas: assignment problems (which alone include
a variety of design problems in different areas), schedul-
ing and production sequencing problems, classical traveling
salesman problem etc.

In this paper, the new hybrid cooperative scheme GA-
B&B is evaluated on standard benchmarks of the 3 dimen-
sional quadratic assignment problem (Q3AP) [10], one of
the hardest permutation problems. The Q3AP arises in a
wireless communication design problem used in the HARQ
protocol (hybrid automatic repeat request) and whose so-
lution can significantly increase throughput and reduce the
cost for providing reliable digital transmission over noisy
fading channels. The largest Q3AP benchmark solved to
optimality is of size 14 [6] but real life application sizes in
the telecommunication field are of size 16, 32 and even 256!.
Solving large benchmarks of this problem to optimality is a
big challenge for exact algorithms. Thus, metaheuristics are
more suitable for large instances of the problem. However,
hybrid methods combining both exact search algorithms and
metaheuristics may help to solve larger instances to optimal-
ity or to provide near-optimal solutions of better quality.

When applied to large benchmarks of this problem, the
hybrid method GA-B&B proposed in this paper is CPU time
intensive. Therefore, in order to speed up the execution,
we proposed a hierarchical master/slave parallelization on
hundreds of processing cores belonging to a computational
grid (Grid’5000), to solve benchmarks up to size 15.

The rest of the paper is organized as follows: in Section 2,
GA and the B&B algorithm are presented, and some insights
are given on hybrid methods combining them. The new
hybrid method is described in Section 3 and in Section 4 we
present the frameworks used to implement the cooperative
optimization method and the tackled problem, Q3AP. In
Section 5, the results of the experiments conducted using
Grid’5000, are reported. Finally, concluding remarks and
future research perspectives are drawn in Section 6.

2. RELATED WORKS

2.1 Genetic algorithms
Genetic Algorithms (GAs) [8] are a very popular class of

evolutionary algorithms (EAs). They are stochastic search
and optimization techniques inspired from the theory of evo-
lution and the adaptation of species. Techniques inspired by
natural evolution such as inheritance, mutation, selection,
and crossover, are used to generate fitter individuals through
generations (see Algorithm 1). As population-based meta-
heuristics, GAs are exploration-oriented search algorithms:
the use of multiple starting search points (the individuals of
the population) allows a diversification of the search. On
the other hand, it is acknowledged that integrating a local
search during the different steps of a GA, enables to exploit

promising solutions, as local search methods are known for
their intensification capacities. This kind of hybridization,
commonly known as memetic algorithms or hybrid genetic
algorithms in the literature [7] [17], allows to balance be-
tween diversification and intensification phases. GAs have
also been associated with exact methods. The advantages
taken from a hybridization with an exact algorithm goes
beyond the traditional balance between diversification and
intensification. Indeed, if we consider the B&B algorithm
for discrete combinatorial optimization problems, the search
space is explored in a different way compared to GAs or to
metaheuristics in general. A tree is used to progressively
enumerate all the solutions of the search space. This repre-
sentation allows a complete control of the search space, as
large as it can be:

• A memory module allows one to memorize the ex-
plored sub-spaces (nodes in the tree), those sub-spaces
will not be re-explored,

• The search can be concentrated and maintained in a
given sub-space (sub-tree).

All those characteristics, if re-used in GAs, will allow a tight
cooperation with tree-based exact methods. For example,
special GA operators could use the tree-representation and
the B&B’s memory in order to maintain the search exclu-
sively in the non explored sub-spaces. The basics of the
B&B algorithm are given in the next section.

Algorithm 1 Template of an evolutionary algorithm

Generate initial population: P (0)
t ⇐ 0
while (not stop creterion(P(t)) do

Evaluate (P (t))
P ′(t) ⇐ Selection(P (t))
P ′(t) ⇐ ReproductionOps(P ′(t))
P (t + 1) ⇐ Replacement(P ′(t), P (t))
t ⇐ t + 1

end while

2.2 The Branch-and-bound algorithm
The branch-and-bound (B&B) algorithm [13] is based on

an implicit enumeration of all the solutions of the consid-
ered problem. The search space is explored by dynamically
building a tree whose root node represents the problem be-
ing solved and its whole associated search space. The leaf
nodes are the potential solutions and the internal nodes are
sub-problems of the total solution space. The construction
of such a tree and its exploration are performed as follows:
two containers are allocated. The first one stores the best
solution found so far (called the upper-bound) and it is ini-
tialized to ∞, and the second one stores the set of yet unex-
plored sub-problems and initially stores the root node. At
each iteration, a sub-problem is selected according to some
criterion (bound value of the sub-problem, depth of the sub-
problem) from the container of yet unexplored sub-problems.
Then, a ”branching”operation is applied on the selected sub-
problem, subdividing the sub-problem’s solution space into
two or more subspaces to be investigated in a subsequent
iteration. For each one of these, it is checked whether the
subspace consists of a single solution, in which case it is com-
pared to the best solution found so far and the best one is
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kept (updating the upper-bound). Otherwise, a ”bounding”
function for the subspace is calculated and compared to the
upper-bound. If the bound of the subspace is higher than
the upper-bound (in the case of a minimization problem)
which means that all the solutions contained in this sub-
space have higher costs than the best solution found so far,
the whole subspace is discarded. Otherwise, the subspace
and its bound are stored in the container of yet unexplored
sub-problems. This process is repeated until the container
of yet unexplored sub-problems is empty.

2.3 Hybrid methods
Approaches combining exact methods and metaheuristics

have been largely studied in the literature ( [17], [7], [3], [5]).
A review of the most important works in this field could be
found in [16] and a classification could also be found in [11].
In this paper, the focus is set on hybrid methods combining
GAs and the B&B algorithm. If we consider the way the
methods interact with each other (design point of view), we
may distinguish between:

• Sequential execution (or relay): each method uses the
output of the previous one as its input, acting in a
pipeline fashion.

• Cooperative (teamwork): many cooperating search agents
evolve in parallel, each agent carries out a search in a
solution space and cooperates with the other agents to
find the global optimum.

The most important issue in a cooperative search is the na-
ture of the information exchanged between the two meth-
ods. In many works from the literature, the information
exchanged from the B&B to the GA is either the initial
populations (taken from the B&B’s pool of promising nodes
to explore (as in [7], [5] and [3]), and/or the best found solu-
tions to integrate in the GA’s population as in [17]. In [17],
a Branch-and-cut (B&C) algorithm is cooperating with a
memetic algorithm. The B&C also sends the current dual
variable values to the GA each time a new incumbent so-
lution is found, in order to lead the GA to a better global
solution. Alternatively, the information exchanged from the
GA to the exact algorithm is first of all, new upper-bounds.
This is generally the only information exchanged from the
GA to the B&B in most of the reviewed works from the
literature. In [5], if the best solution returned by the GA
improves the upper-bound of the B&B, this solution will
be grafted onto the B&B tree and if it contains variables
that are not yet branched, new nodes are built in the tree
and the B&B solves them immediately. A similar idea is
used in the cooperation strategy proposed in this paper, for
permutation-based problems.

Indeed, the new cooperative scheme uses a special rep-
resentation of the search space, the coded B&B tree [15],
in both sides GA and B&B. Using the same representation,
the exchanged information between the two algorithms is no
longer limited to initial populations (from the B&B to the
GA) and best found solutions (from the GA to the B&B).
The principles of the new scheme are explained in the next
section.

3. A NEW HYBRID GA-B&B COOPERATIVE
SCHEME FOR PERMUTATION-BASED
PROBLEMS

In this section, we present the new cooperative hybrid GA-
B&B scheme. To make this paper self-sufficient, we need to
introduce the coded B&B tree representation of the search
space [15]. Then, the new hybridization scheme is presented
as well as the special transformation operators used in the
GA.

3.1 The coded tree-based representation of the
search space

In order to enumerate all the solutions of the search space,
the B&B algorithm progressively builds a tree that covers
the search space. The root node is the initial problem to be
solved of size N and intermediate nodes are sub-problems
of size N − d (d is their depth in the tree). Finally, the
leaves represent complete solutions of the problem. In [15],
a special coding for this tree is used to facilitate the decom-
position of the search space between several B&B processes.
Indeed, each tree node is assigned a unique number (iden-
tifier) and any set of contiguous nodes (having successive
numbers) could be represented as an interval.

The node’s path, node’s weight and node’s rank define the
number associated to any node in the tree. The number as-
sociated to any node in a m-permutation tree (a tree used to
represent the search space of a permutation-based problem
where a solution is represented by m permutations) is cal-
culated using Equation (1) where path(n) is the set of nodes
from the root to the node n, including both the root and n,
weight(n) is the number of leaves of the sub-tree of the node
n computed by Equation (2), and rank(n) is the position of
a node n among its sibling nodes. Using this approach, any
set of contiguous nodes can be represented by an interval as
shown in Figure 1, which is an example for coding a one-
permutation tree of size N = 3. Assuming that m is the
number of permutations in the tackled problem and N is
the size of the permutations, the size of the search space is
S = N !m and the global search space can be represented by
the global interval I = [0, N !m[.

number(n) =
P

i∈path(n) rank(i) ∗ weight(i) (1)

weight(n) = (N − depth(n))!m (2)

range(n) = [number(n), number(n) + weight(n)[ (3)

0

20 1 53 4

2

0

4

[3,6[[0,3[

[0,6[

Figure 1: The tree-based representation where each
node has a unique number and contiguous nodes are
represented by intervals
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In Figure 1, the global interval is equal to [0, 6[. Finally,
the notion of range of n, noted as range(n), defines the
interval that contains all the nodes in which the node n is the
root node (see Equation (3)). This method is used in [15] to
share the global search space interval between several B&B
processes. Each process will get a sub-interval to solve. A
special operator named ”unfold” is used to transform any
interval to a minimal set of nodes in each B&B process.

3.2 Basics of the new hybrid GA-B&B coop-
erative scheme

The new hybrid GA-B&B cooperative scheme is designed
as an island couple: a GA island and a B&B island. The
two islands are able to asynchronously exchange informa-
tion. The B&B island holds three pools: a pool of yet un-
explored intervals (initialized with the global interval at the
starting of the application), a pool of nodes to solve (gen-
erated from the first pool) and a pool of promising nodes
(empty at the beginning of the method). The GA island
contains a population of individuals that is initialized from
the global unexplored interval. After the initialization step,
both islands begin exploring in parallel their search spaces
using the B&B algorithm or the GA. The B&B island starts
solving sequentially the nodes in its pool. When a node is
solved to optimality, its range (the sub-interval containing
all the solutions for whom the solved node is root) is deleted
from the list of yet unexplored intervals.

On the other hand, the GA evolves its population until a
given number of generations. This parameter represents the
migration frequency between the GA island and the B&B
island. Afterward, the GA sends its final population to the
B&B island in order to inform the B&B algorithm of the
best solution it has found and to point out promising re-
gions to the B&B algorithm. Indeed, when the B&B island
receives the population, it compares the best solution in this
population to its upper-bound and if it is fitter than the
upper-bound, the upper-bound is replaced by the new best
solution. Moreover, for each different solution taken from
the GA’s population, a deviation, equal to the difference
between the fitness value of the solution and of the best so-
lution value found so far, is computed. If the deviation Δ
is less than a threshold Ω � 30% of the upper-bound, this
solution is used to identify promising regions by choosing
its largest ancestor belonging to one of the yet unexplored
intervals. This ancestor is stored in the pool of promising
nodes because its range may contain good solutions for the
problem. Thus, the B&B interrupts its sequential explo-
ration of the search space and starts solving the promising
nodes first. Therefore, the GA is not limited to finding a
global optimum to the problem.

Finally, the B&B generates a new initial population from
an unexplored interval and sends it to the GA. If the pool
of intervals is empty, if the biggest interval is too small or
if the time limit predefined by the user is reached, the GA
gets an empty population as a stopping criterion. The new
population, sent to the GA, represents a new sub-space to
explore by the GA and the GA’s search is limited to that
sub-space with the use of special transformation operators
(see Section 3.3). The cooperation steps between the two
islands are illustrated in Figure 2.

3.3 The GA’s side: interval-based transforma-
tion operators

The transformation operators (crossover and mutation)
used in the GA are made in such a way that the resulting
offspring through generations do not fall outside the sub-
space delimited by the interval used to initialize the GA’s
first population.
The crossover proposed in this paper is an adaptation of
the one point Partially Mapped Crossover (PMX) [9]. This
latter consists in randomly selecting a cutting point in the
two parents. Then, the first part of the first offspring C1

(respectively the second offspring C2) is inherited from the
first part of the first parent P1 (respectively the second par-
ent P2) and the remaining positions are completed from the
appropriate alternate parents.

In order to control the behavior of this operator, we pro-
ceed as illustrated in Figure 3. First of all, the GA is given
a sub-interval representing the search sub-space to be ex-
plored. When the operator is applied on a pair of individu-
als (parents), each parent is mapped to the tree-based rep-
resentation by generating its associated number in the tree.
Then, the ranges associated to all intermediate tree nodes
that lead to the considered individual (which is also a final
solution in the tree) are computed. For example, in Figure 3
for the node P , the ranges of all its predecessors, represented
by the blue intervals, are computed. Next, the node with
the largest range and whose range is included in the initial
interval given to the GA is chosen ( in Figure 3 it’s the pre-
decessor of P with depth = 1). The depth of this node will
be used as a minimum cutting point in the PMX crossover.
Indeed, if only genes after this cutting point are modified,
the resulting offspring will not fall outside the range of the
selected node and consequently it will be inside the GA’s in-
terval. This procedure is not much time consuming because
the determination of the appropriate cutting limit is done
only once, when the initial population is given to the GA.
This point is inherited by the next generations.

The mutation operator has also been modified using the
same strategy. For example, if we consider a pairwise ex-
change (swap) mutation operator, two points are selected at
random and the genes in these positions are swapped. The
depth of the largest node included in the interval is used as
a lower bound for the swapping points in the individual to
mutate.

3.4 Parallelization of the hybrid scheme GA-
B&B

The cooperative GA-B&B algorithm is CPU time inten-
sive when used to solve large benchmarks of permutation-
based problems. Therefore, the benefits of parallelizing this
method are obvious. A hierarchical master/slave parallelism
is used. The later is composed of two levels of parallelism.
The first one (Figure 4) consists on using the master/slave
model in each island (B&B and GA).

The GA uses additional resources (slaves) in order to par-
allelize the evaluation and the transformation tasks while
the B&B uses additional resources in order to solve a group
of nodes simultaneously. Each B&B slave includes a B&B
solver that simply receives one node to be solved and returns
the result to the B&B island.
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Unexplored intervals

Initialize the GA
from an unexplored 
interval

Branch and bound island

Pool of unsolved nodes

B&B solver

Get unsolved
nodes

Promising nodes
Solve promising

nodes first

Transform unexplored
intervals to nodes

Eliminate explored
intervals

Genetic algorithm island

Initial population

Genetic algorithm

Final population

Apply

Generate

Generate promising 
nodes from final

population

Figure 2: Data exchanged between the pair of B&B and GA islands in the cooperative model
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Depth=0

Global interval (search space) = [0,24[

Depth=1

P

Figure 3: Selecting the cutting point limit in the interval-based crossover and mutation operators

Figure 4: The first level of parallelism in the hybrid
GA-B&B: a master-slave model on the top of each
island

Figure 5: The second level of parallelism in the hy-
brid GA-B&B: a hierarchical master-slave model

The second level of the parallelism is illustrated in Fig-
ure 5 and consists of dividing the global search space, rep-
resented by the global interval I , into k equal sub-intervals
{I1, I2, . . . , Ik}. These sub-intervals will be distributed among
k couples of islands GA-B&B. The B&B islands in all the
couples GA-B&B are connected to each other via a complete
topology in order to exchange their best found solutions. On
the other hand, the GA islands do not exchange data with
each other.

4. IMPLEMENTATION
In this section, we present the two frameworks used in

the implementation of the hybrid method: ParadisEO and
BOB++.

4.1 ParadisEO framework
The GA has been implemented using ParadisEO (PAR-

Allel and DIStributed Evolving Objects) [2] which is a C++
open source framework dedicated to the reusable design of
parallel hybrid metaheuristics. ParadisEO provides a broad
range of features for solving optimization problems, such
as evolutionary algorithms, local search methods, different
hybridization mechanisms for metaheuristics, etc. It also
includes the most common parallel and distributed mod-
els adapted to distributed-memory machines and shared-
memory multiprocessors, as they are implemented using stan-
dard libraries such as MPI and PThreads.
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4.2 BOB++ framework
The B&B algorithm used in our experiments for the Q3AP

is developed using the BOB++ framework, this algorithm
could be found in [6]. BOB++ [4] is a C++ framework ded-
icated to the design of exact optimization methods for solv-
ing combinatorial optimization problems on parallel archi-
tectures. The parallelization is done using POSIX threads.
However, the framework is easily expendable and other par-
allelization models are under development. Moreover, BOB++
provides many search algorithms (such as B&B, divide and
conquer,...) applied to many problems (e.g. TSP, QAP, and
Q3AP).

5. EXPERIMENTS
In order to evaluate the hybrid model presented in this

paper, we have applied it to the three dimensional quadratic
assignment problem (Q3AP [12]) and solved many instances
of this problem over Grid’5000. In the following section, we
present this problem and the different instances tackled in
our experiments.

5.1 The three dimensional quadratic assign-
ment problem

This problem was initially introduced to model a problem
arising in data transmission system design. More exactly
the problem of finding optimal mappings for two successive
transmissions in the hybrid automatic repeat request pro-
tocol (HARQ). For each transmission, a mapping should be
used between N QAM (quadratic amplitude modulation)
symbols and N segments of the message to send. To each
assignment is associated a probability of error related to the
noise of the channel. Those probabilities are stored in a ma-
trix C. Diversifying the mappings in each (re)transmission
helps to globally minimize the bit-to-error rate (BER). Solv-
ing the Q3AP consists in finding an optimal or a good solu-
tion minimizing the BER in the two mappings. A solution
for this problem is represented by two permutations of size
N . Thus, the solution space size is N !2. The objective
function is given by Equation (4). Equations (6), (7) and
(8) express the uniqueness constraints (one symbol to one
segment and vice versa in the two mappings).

min

8>>>><
>>>>:

NP
i=1

NP
j=1

NP
p=1

bijpxijp +

NP
i=1

NP
j=1

NP
p=1

NP
k=1

NP
n=1

NP
q=1

Cijpknq xijp xknq

(4)

x ∈ I ∩ J ∩ P, x = 0, 1 (5)

With: I , J , P sets of same cardinality N , and:

I =

j
x ≥ 0 :

NP
j=1

NP
p=1

xijp = 1 for i = 1, .., N (6)

J =

j
x ≥ 0 :

NP
i=1

NP
p=1

xijp = 1, for j = 1, .., N (7)

P =

j
x ≥ 0 :

NP
i=1

NP
j=1

xijp = 1, for p = 1, .., N (8)

Note that the artificial Q3AP benchmarks could be ob-
tained from QAP ones using Equation (9). F and D are
the two matrices representing the flues and the distances
between factories/sites in the QAP. C is the data matrix of
the Q3AP.

Cijpknq = Fik ∗ Djn ∗ Fik ∗ Dpq ; (i, j, p, k, n, q = 1..N) (9)

The only exact method used for this problem in the liter-
ature is the B&B algorithm proposed in [12] and a parallel
version for shared memory architectures in [6]. The first
heuristic methods used to solve Q3AP are reported in [10].
These algorithms are derived from the most successful meth-
ods used to solve the QAP (simulated annealing algorithm,
fast ant colony algorithm (FANT), etc.). Parallel genetic al-
gorithms have also been used in some works to solve larger
benchmarks [14].

5.2 Grid5000 experimental testbed
We conducted the experiments over Grid’5000 which is the

French nation-wide experimental grid that inter-connects 9
sites via RENATER (the French academic network). Cur-
rently, the GRID is composed of more than 6200 cores. The
inter-connections sustain communications of 10 Gbps.

5.3 Global settings
To evaluate the performances of the new hybrid scheme,

our experimental process is composed of several steps de-
tailed in the following sections. The Q3AP benchmarks used
are all derived from standard QAP benchmarks which could
be found in the QAPLIB [1]. Some benchmarks are gen-
erated from other instances of larger size in the QAPLIB:
Nug12c is generated from Nug13 in the QAPLIB (one col-
umn and one row form each matrix of the Nug13 are with-
drawn), Had12b is obtained after permuting the two ma-
trices of the Had12, Had15 is generated from Had16 and
Nug15a from Nug16a. The parameters used in the GA is-
lands of the cooperative model are listed in Table 1. The
migration frequency between a couple of islands (a B&B
island and a GA island) was fixed to 200 generations: af-
ter 200 generations, each GA sends its final population to
the B&B island and gets a new initial population. These
parameters were chosen because after many sets of exper-
iments conducted on many benchmarks they proved to be
sufficient for the convergence of the GA.

Table 1: Global settings used for the islands of GA
Pop.Size Cross.Rate Mut.Rate

60 1 0.6

Mig.Freq Nb.Migrants Stop.criterion
200 60 empty pop.received

5.4 Evaluation of the performances of the GA-
B&B algorithm against the B&B alone

In this stage, the two algorithms GA-B&B and B&B alone
are executed for 2 hours on the following Q3AP benchmarks:
Had12, Had12b, Nug12, Nug12c. The objective of this step
of the experiments is to explain the behavior of the two algo-
rithms and show the benefits gained from the hybridization
with the GA.
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The machine used in this set of experiments is a 4 Dual
Core CPU, 2.5 GHZ, 64 bits. The results are reported in
Table 2. In order to give the two models (GA-B&B and B&B
alone) equal chances, the same initial solutions are used in
both of them (column 3). Since the B&B is deterministic
we need only one run for this model. On the other hand,
in the cooperative model (GA-B&B), the global behavior of
the hybrid algorithm is stochastic. Thus, we need several
runs for this model. The reported results are the average
values among 8 runs. The experimental results show that the
hybrid GA-B&B model finds a better solution than the B&B
for the benchmarks Had12 and Nug12c. Equal solutions are
found for Had12b and Nug12 but in less time while using
the GA-B&B.

In addition, we expected that the hybrid cooperative model
explores more space than the B&B alone because of the ear-
lier improvement of the upper-bound in the B&B solver (in
the B&B algorithm the best found solution is the upper-
bound and the better is the upper-bound the less it takes
time to solve the nodes because of the pruning operations).
The last column of Table 2 represents the percentage of the
big interval (representing the complete search space) that
is not yet explored. We notice an important improvement
made by the GA-B&B according to the number of the ex-
plored nodes and to the percentage of unexplored space, in
the benchmarks Nug12 and Nug12c: the unexplored interval
is 61% of the global interval with the hybrid model and 83%
with the B&B alone for Nug12, and 76% vs 95% for Nug12c.
This impact is less important with the benchmarks Had12
(88% vs 90%) and not apparent with the benchmark Had12b
where the two models have explored the same percentage
of the search space. From this step of the experiments we
clearly notice that the use of the GA island allows the B&B
to find the optimal solutions more quickly. However, the im-
pact on the execution speed is not always significant. The
next step of the experiments consists in evaluating the two
models: B&B and the hybrid GA-B&B while solving larger
benchmarks but in parallel on the computational grid.

5.5 Evaluation of the performances of the par-
allel hybrid GA-B&B against the parallel
B&B on the grid

In this step of the experiments, both methods (B&B alone
and GA-B&B) were given equal execution time periods (2
hours or 5 hours for large instances) to solve each benchmark
using the same parallel hierarchical master/slave model on
the same number of machines (from Grid’5000: 4 Dual core
CPUS, 2.5 GHZ, 64 bits). In Table 3, the number of islands
(column 3) represents the number of B&B islands used in
the parallel B&B alone and the number of B&B plus GA is-
lands (each B&B island is collaborating with one GA) used
in the parallel hybrid GA-B&B model. We notice that after
the maximum execution time (2 or 5 hours), the B&B alone
was not able to provide a better solution while in the hybrid
model (GA-B&B) a better solution was found for all bench-
marks. In order to check the impact of the initial upper-
bound on the percentage of unexplored space, we used ∞ as
a starting solution for the last benchmark: Nug15. Never-
theless, the percentage of the unexplored search-space is the
same for both models. At this scale, it is difficult to measure
the impact of each factor on the speed up.

5.6 Proving the optimality of the solutions found
by the GA-B&B

After comparing the performances of the two algorithms
(GA-B&B and B&B alone) we are interested in solving to
optimality some benchmarks and hopefully, prove the op-
timality of some of the solutions found previously by the
GA-B&B. For this step, the hybrid GA-B&B could also be
used as an exact method and the stopping criterion is the
end of the exploration in all the couples GA-B&B. However,
since the objective in this step is only to prove the optimal-
ity of the best found solutions by the B&B-GA, the order
used to solve the remaining sub-spaces by the B&B solvers
is not important. Therefore, the cores occupied by the GA
islands should be exploited by the B&B islands. In addi-
tion, the sub-spaces solved by the GA-B&B model in the
previous stage are not re-explored in this step. The results
of these experiments are given in Table 4, the best found so-
lutions for the benchmarks Had12, Nug12c, Had12b, Had14
and Nug15 are optimal.

Table 4: Solving some benchmarks to optimality
Bench. Initial sol. Optimal Time(s) Cores
Had12 19430 19430 2008 440
Had12b 21128 21128 67 440
Nug12c 1326 1326 7429 200
Had14 37598 37598 18h42mn 528
Nug15 2230 2230 9 days 7h 300

6. CONCLUSION AND PERSPECTIVES
In this paper, a new cooperative hybrid scheme combin-

ing genetic algorithms and the branch-and-bound (B&B) is
proposed to solve large benchmarks of permutation-based
problems. The particularity of the new scheme is the use
of the same representation of the search space in both algo-
rithms, a coded B&B tree, in order to enable a tight coop-
eration between them. Because such method is CPU time
intensive when applied to large permutation problems, a hi-
erarchical master/slave parallelism is used to speed up the
execution. A set of experiments on Q3AP benchmarks are
conducted over a computational grid and the performances
of the hybrid scheme GA-B&B in localizing optimal solu-
tions are compared to the performances of the B&B when
used alone. The objectives of these experiments are to assess
the efficiency and effectiveness of the cooperation between
the two algorithms. The obtained results indicate that the
proposed cooperation strategy enables the B&B to local-
ize optimal or near-optimal solutions more quickly in huge
search spaces. In addition, some of the obtained best so-
lutions by the hybrid GA-B&B are proved to be optimal.
Indeed, unsolved benchmarks of the Q3AP up to size 15
(Had12, Nug12c, Had12b, Had14 and Nug15), are solved to
optimality using the parallel version of the hybrid algorithm,
over a computational grid (Grid’5000).

One of the challenging perspectives of this work is to de-
termine the minimum percentage of search space that need
to be explored by the hybrid cooperative scheme before one
could stop the GA islands and continue only with the B&B
to prove the optimality of the best found solution.
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Table 2: Results obtained on small Q3AP benchmarks (*the best found value for Nug12 is optimal [12])
Bench. Algo. Initial sol Cons. nodes Best found Average time(s) Left job (%)
Had12 GA-B&B 19600 17 19430 4099 87

B&B 19600 14 19600 7216 90
Had12b GA-B&B 21190 122 21128 1374 15

B&B 21190 122 21128 1763 15
Nug12 GA-B&B 680 28 580* 1999 61

B&B 680 23 580* 3442 83
Nug12c GA-B&B 1328 6 1326 2331 76

B&B 1328 5 1328 8171 95

Table 3: Results obtained using the parallel master-slave model on both the hybrid GA-B&B and the B&B
algorithms (*the best found value for Nug15 corresponds to the best known value from the literature [12])

Bench. Algo. Islands Cores Initial sol. Best found Time(s) Left job %
Nug14 GA-B&B 14 200 8140 8084 4652 98

B&B 7 200 8140 8140 8040 98
Had14 GA-B&B 14 256 37726 37598 4222 96

B&B 7 256 37726 37726 7315 96
Nug15a GA-B&B 18 464 12952 12776 7011 99

B&B 9 464 12952 12952 7614 99
Had15 GA-B&B 18 640 43396 42860 2690 99

B&B 9 640 43396 43396 19092 99
Nug16a GA-B&B 16 640 15372 15132 11155 88

B&B 8 640 15372 15372 18013 88
Nug15 GA-B&B 30 720 ∞ 2230* 533 99

B&B 15 720 ∞ 2620 18000 99
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