
Evolving Optimal Agendas for Package Deal Negotiation

Shaheen Fatima
Department of Computer Science

Loughborough University
Loughborough LE11 3TU, UK

s.s.fatima@lboro.ac.uk

Ahmed Kattan
Department of Computer Science

Loughborough University
Loughborough LE11 3TU, UK

a.j.kattan@lboro.ac.uk

ABSTRACT
This paper presents a hyper GA system to evolve optimal
agendas for package deal negotiation. The proposed sys-
tem uses a Surrogate Model based on Radial Basis Func-
tion Networks (RBFNs) to speed up the evolution. The
negotiation scenario is as follows. There are two negotia-
tors/agents (a and b) and m issues/items available for ne-
gotiation. But from these m issues, the agents must choose
g < m issues and negotiate on them. The g issues thus cho-
sen form the agenda. The agenda is important because the
outcome of negotiation depends on it. Furthermore, a and
b will, in general, get different utilities/profits from different
agendas. Thus, for competitive negotiation (i.e., negotiation
where each agent wants to maximize its own utility), each
agent wants to choose an agenda that maximizes its own
profit. However, the problem of determining an agent’s op-
timal agenda is complex, as it requires combinatorial search.
To overcome this problem, we present a hyper GA method
that uses a Surrogate Model based on Radial Basis Func-
tion Networks (RBFNs) to find an agent’s optimal agenda.
The performance of the proposed method is evaluated ex-
perimentally. The results of these experiments demonstrate
that the surrogate assisted algorithm, on average, performs
better than standard GA and random search.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Game Theory; I.2.8 [Heuristic
Methods]; I.2.11 [Intelligent Agents]; I.2.11 [Multiagent
Systems]: Electronic Commerce; J.4 [Economics]: [Nego-
tiation Agendas]

General Terms
Theory

1. INTRODUCTION
Negotiation is a process in which disputing agents decide
how to divide the gains from cooperation between them-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’11, July 12–16, 2011, Dublin, Ireland.
Copyright 2011 ACM 978-1-4503-0557-0/11/07 ...$10.00.

selves. Since this decision is made jointly by the agents [15],
each agent can only obtain what the other is prepared to
allow them. The simplest form of negotiation involves two
agents and a single-issue. For example, consider a scenario
in which a buyer and a seller negotiate on the price of a
good. To begin, the two agents are likely to differ on the
price at which they believe the trade should take place, but
through a process of joint decision-making they either ar-
rive at a price that is mutually acceptable or they fail to
reach an agreement. Since agents are likely to begin with
different prices, one or both of them must move toward the
other, through a series of offers and counter offers, in order
to obtain a mutually acceptable outcome.

However, before the agents can actually perform such ne-
gotiations, they must decide the rules for making offers and
counter offers. These rules are called the negotiation pro-
tocol or procedure [16, 6]. On the basis of this procedure,
each agent chooses its strategy (i.e., what offers to make dur-
ing the course of negotiation). For competitive negotiations,
which are the focus of this work, each agent chooses a strat-
egy that maximizes its own utility/profit and is therefore its
optimal strategy. For example, buyer-seller negotiations are
competitive in nature. For such negotiations, game theory
[14] provides methods for analyzing the strategic behavior of
utility maximizing agents. It provides methods for identify-
ing those strategies that are optimal and stable. Strategies
that are optimal and stable are said to form an equilibrium.
There are various notions of equilibrium but the one relevant
to our work is Nash equilibrium [14].

Now, in many buyer-seller negotiations, the agents need
to settle the price of not one but multiple items. Such ne-
gotiations are called multi-issue negotiations [10]. Multiple
issues can be negotiated using different procedures. These
include the package deal procedure (PDP), the sequential
procedure (SQP), and the simultaneous procedure (SP). Dif-
ferent procedures are known to result in different outcomes,
and the choice of a procedure depends on the characteristics
of its outcome. One of the desirable characteristics is Pareto-
efficiency. Between the PDP, the SQP, and the SP, only the
PDP is known to result in Pareto-efficient outcomes. The
PDP will therefore be the focus of this work.

For the PDP all the issues are bundled and discussed to-
gether as a package [3]. Now, for the PDP, the outcome
depends on the set of issues chosen for negotiation. This
set is called the negotiation agenda. Different agendas yield
different profits to the agents [6]. So an agent wants to know
what agenda maximizes its profit and is therefore its opti-
mal agenda. In many real-world settings, a negotiator has

505

the option of choosing an agenda. For example, consider a
car dealer who has m cars to sell. A potential buyer may
be interested in buying g < m of these. So the buyer must
first choose which cars to negotiate the price for (i.e., from
all possible subsets of size g, the buyer must choose the one
that maximises its utility). Note that here, the buyer has
choice over the agenda but the seller does not. Given this,
our goal is to determine what agenda will be optimal from
the perspective of an individual agent (i.e., the buyer or the
seller). We will provide an analysis of this problem form
the perspective of the buyer (the analysis from the seller’s
perspective will be analogous).

In more detail, there are C(m, g) possible agendas of size
g. In order to find which of these is optimal for the buyer,
we need to determine the buyer’s equilibrium profit for each
possible agenda and then choose the one that yields highest
profit. Thus, we have two problems to solve:

P For a given agenda, determine the buyer’s equilibrium
utility. This is a constrained nonlinear optimization
problem.

Q Search the space of C(m, g) possible agendas and choose
the one that yields highest equilibrium utility to the
buyer. Here the size of search space is combinatorial.

Thus, both P and Q are computationally complex problems.
Hence we need a solution method that is computationally
feasible. To this end, we propose a hyper GA system to
solve P and Q. The proposed system uses a Surrogate Model
based on Radial Basis Function Networks (RBFNs) to evolve
optimal agendas. The system is comprised of two GA sys-
tems: an outer GA and an inner GA. The inner GA solves
the problem P while the outer GA solves Q. The outer GA
is assisted by a surrogate model based on Radial Basis Func-
tion Networks (RBFNs) (Sections 5 and 4 provide details).
In the course of evolution, the surrogate’s role is to point
to the most promising agendas, and thereby speed up the
process of evolutionary search.

In order to evaluate the effectiveness of the proposed method,
we experimentally compared its performance with that of
two other methods: standard GA and random search. This
comparison was done on the basis of an agent’s profits from
the optimal agendas generated by these methods. The re-
sults of these experiments demonstrate that the proposed
surrogate assisted algorithm, on average, performs better
that a standard genetic algorithm and random search.

This paper makes the following main contribution. We
present a new method for determining an agent’s optimal
agenda and the optimal allocations for the agenda, for the
PDP. Most of the existing work on negotiation has taken
the agenda as given, and dealt with finding effective meth-
ods for determining the equilibrium. However, the agenda is
a key negotiation parameter and it is crucial in determining
the outcome of negotiation. Thus, from the perspective of
competitive agents, it is important not just to optimally ne-
gotiate over a given set of issues, but also to choose the best
agenda before negotiation begins. The proposed method al-
lows agents to perform both these tasks.

The rest of this paper is organised as follows. Section 2
discusses previous work related to this research. Section 4
provides background on RBFNs and its mathematical no-
tation. In Section 5, a detailed description of the proposed
model is given. Section 6 describes the experimental eval-

uation of the proposed model, and Section 7 provides an
analysis of the results. Finally, Section 8 draws conclusions.

2. RELATED LITERATURE
We first discuss related work for negotiation and optimal
agendas, and then for surrogate models.

2.1 Optimal Agendas
Negotiation has long been studied by game theorists. How-
ever, in this work, the analysis of negotiation typically begins
with a given set of issues and the parties’ utilities for dif-
ferent possible settlements of the issues. Within this frame-
work, theorists have investigated a range of procedures such
as the PDP, the SP, and the SQP [6] and shown that different
procedures yield different outcomes. Hence, it is important
to choose the right procedure. Furthermore, irrespective of
the procedure, it is important to choose the right agenda.

Although the importance of agendas has been recognised,
most existing work has taken the set of issues as given and
analysed the equilibrium for different procedures. For in-
stance, [6, 1, 7] takes the set of issues as given and shows
that the order in which they are negotiated is important in
determining the outcome. The problem of determining op-
timal agendas for the PDP was addressed in [5], but in the
context of linear utilities. In contrast with [5], the focus of
this paper is on non-linear utility functions.

2.2 Surrogate Models
When the objective functions are expensive to evaluate, a
single optimisation case can take a very long time and make
the optimisation process infeasible. Furthermore, optimiza-
tion problems are, in many cases, black-box problems, i.e.,
whose problem class is unknown, and they are possibly math-
ematically ill-behaved (e.g., discontinuous, non-linear, non-
convex). Possible ways of dealing with such optimization
problems, include the use of use a high-performance com-
puting technology with multi-threading programming, or
an approximation model that approximates a given objec-
tive function. Surrogate models are approximation models
that have been employed to tackle expensive objective func-
tions. In these models, some of commonly used approxima-
tions include, Polynomial Regression (PR), Artificial Neural
Networks (ANN), Radial Basis Function Networks (RBFNs)
and Support Vector Machines (SVM) [8]. Existing work on
surrogate models includes the following.

Lim et al. in [12], proposed a generalised surrogate-assisted
evolutionary frameworks for optimisation of problems that
are computationally expensive to evaluate. The authors in-
troduced the idea of employing several on-line locale surro-
gate models which are constructed using data points that
lie in the vicinity of an initial guess. The improved solu-
tions generated by the local search surrogates are used to
replace the original individual. In this work, the framework
has been presented with single objective optimisation and
multi-objective optimisation.

In [11], proposed an enhancement for GA by using local
surrogate search to expedite convergence of GA. The model
uses GA to generate a population of individuals and rank
them with the real function. Afterwards, gradient-based lo-
cal search is performed on the surrogate model to find new
promising solutions. The GA and local search are alterna-
tively used under a trust-region framework until optimum
found. The trust-region framework is used to assure that

506

the surrogate’s solutions are converging toward the original
problem.

Recently in [13], Moraglio and Kattan showed that sur-
rogate models can be naturally generalised to encompass
combinatorial spaces based in principle on any arbitrarily
complex underlying solution representation by generalising
their geometric interpretation from continuous to general
metric spaces. An illustrative example is given related to Ra-
dial Basis Function Networks (RBFNs), which can be used
successfully as surrogate models to optimise combinatorial
problems defined on the Hamming space associated with bi-
nary strings. The authors illustrated the methodology with
NK-landscape problem.

Traditional surrogate model based optimisation (SMBO)
[9, 13, 11, 12, 8] uses generational evolutionary procedure
to infer the location of a promising solution (with the as-
sumption that its cost is negligible in comparison to the
expensive objective function). In contrast, in the proposed
surrogate model, we use a local search process on the sur-
rogate training set (details in Section 5). This local search
uses characteristics specific to the problem, in order to speed
up the search and to generate better solutions.

3. THE NEGOTIATION MODEL
As mentioned in Section 1, our aim is to effectively solve
problems P and Q. In this section, we define the prob-
lem P in more detail. This problem requires determining
the buyer’s/seller’s equilibrium utility for a given agenda.
Thus, we have two versions of problem P : one for the buyer
denoted Pb, and another for the seller denoted Pa. Now,
an agent’s equilibrium utility for a given agenda depends on
the negotiation setting, which is defined as follows.

There are two negotiating agents called a (a seller) and b
(a buyer). There is a set I = {1, 2, . . . , m} of m issues/items.
The agents are negotiating the price of these items. Each
issue is represented as a divisible ‘pie’ of size one [14]. So the
agents are negotiating about how to split each pie between
themselves. If we use xa

i and xb
i (where xa

i ∈ [0, 1] and xb
i ∈

[0, 1]) to denote a’s and b’s shares for issue i respectively,
then we have the following:

xa
i + xb

i = 1.

The issues are negotiated using a two-round PDP. This
procedure is an alternating offers protocol [14] in which one
of the agents, say a, starts in the first round (t = 1) by
offering xa (where xa

i ∈ [0, 1]) to b.
Here, xa denotes a vector that specifies an offer for each

of the m issues. Agent b can accept/reject the offer. If it
accepts, negotiation ends in an agreement with a getting
xa and b getting xb = 1 − xa. Otherwise, it goes to the
round two (t = 2), when b makes an offer. If a accepts this,
negotiation ends successfully in an agreement. Otherwise, it
ends in a conflict and both agents get zero utility.

Note that an agent is allowed to either accept a complete
offer (i.e., the allocations for all the issues) or reject a com-
plete offer. It cannot accept/ reject part of an offer.

For time t ≤ 2, agent a’s cumulative utility/profit from
xa is defined as follows:

Ua(xa, t) = δt−1
mX

i=1

Ca
i xa

i (1)

where Ca
i ∈ R+ are real valued constants, and 0 ≤ δ ≤ 1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
40

50

60

70

80

90

xb
1

The buyer’s utility function

xb
2

B
u

ye
r’
s

u
til

ity

Figure 1: Landscape for the Rastrigin function.

is the discount factor. The discount factor is a constant
that indicates the rate at which utility gets discounted with
time. Agent b’s cumulative utility/profit is defined with the
Rastrigin function as follows:

Ub(xb, t) = δt−1 ×
„

36g −
gX

i=1

Cb
i [(10.24xb

i − 5.12)2

−10 cos(2π(10.24xb
i − 5.12))]

«
(2)

where Cb
i ∈ R+ are real valued constants.

The reason for choosing the Rastrigin function is that
it represents a nonlinear landscape with a high degree of
ruggedness (i.e., it has the key features of a typical non-
linear utility function). Moreover, the ruggedness can be
varied by suitably varying the parameters of this function.
Figure 1 shows the landscape for a Rastrigin function in two
variables (i.e., two issues for which b’s shares are xb

1 and xb
2).

Since it is a two-round PDP, an agent’s utility for t > 2
is zero. For this model, the equilibrium was given in [4].
Below, we give a brief overview of this equilibrium. We
will describe the equilibrium for negotiation over all the m
issues. The equilibrium for a g < m can easily be obtained
from this.

Let sa(I, t) (sb(I, t)) denote a’s (b’s) equilibrium strategy
for time t for the issues in I . At t = 2, the offering agent
proposes to keep a 100% of all the pies and the other agent
accepts [4]. In the previous round, t = 1, the offering agent
(say b) offers (xa, xb) such that a’s cumulative utility from
it is what a would get from its own offer for t = 2. If there
is more than one such (xa, xb), then b must choose the one
that maximizes its own utility.

If we let Qa
t (Qb

t) denote a’s (b’s) equilibrium utility for t,

507

and 0 (1) denote a vector of m zeros (ones) we get:

Qa
2 = δ

mX
i=1

Ca
i

and

Qb
2 = Ub(1, 1).

So b must solve the following trade-off problem (called Pb(I, 1))
at t = 1:

Pb(I, 1) : max Ub(xb, 1)

s.t. Ua(xa, 1) ≥ Qa
2 xa

i ∈ [0, 1]; xb
i = 1 − xa

i

For agent a, the trade-off problem is defined as follows:

Pa(I, 1) : max Ua(xa, 1)

s.t. Ub(xb, 1) ≥ Qb
2 xa

i ∈ [0, 1]; xb
i = 1 − xa

i

Both Pa and Pb are nonlinear optimization problems. The
agents’ equilibrium strategies are defined in terms of Pa and
Pb as follows:

sb(I, 2) =

j
offer (1, 0) If b’s turn to offer
accept If b’s turn to receive

For t = 1, the strategies are:

sb(I, 1) =

8>><
>>:

offer Pb(I, 1) If b’s turn to offer

If (Ub(xb, 1) ≥ Qb
2) If b receives (xa, xb)

accept else reject

Agent a’s strategy (sa) is defined analogously in terms of Pa.
The above strategies form a Nash equilibrium and result in
an agreement at t = 1.

Given the above equilibrium, we can determine each agent’s
utility for a given agenda, and, on the basis os these, deter-
mine what agenda will maximize b’s utility.

Before closing this section, we will formally define the
terms agenda and optimal agenda.

3.1 The Negotiation Agenda
The term agenda is defined as follows:

Definition 1. Agenda: Given the set I of m issues and
an integer g ≤ m, an agenda Ag is a set of g issues, i.e.,
Ag ⊆ I where |Ag| = g.

Let AGg denote the set of all possible agendas of size g.
Then, an agent’s optimal agenda is defined as follows:

Definition 2. Optimal agenda: Given the set I of m
issues and an integer g ≤ m, an agenda (ABg) is agent b’s
optimal agenda if:

ABg = arg max
X∈AGg

Ub(sb(X, 1), 1).

An optimal agenda for a is defined analogously.
We showed how to find equilibrium for the set of m is-

sues in I . Given this equilibrium, the problem Q is to find
ABg. Sections 4 and 5 describe our approach for solving
the problems P and Q.

4. RADIAL BASIS FUNCTION NETWORKS
The evaluation of the functions in Pa and Pb (described in
Section 3) requires an optimisation process which may be
time consuming. Thus, instead of evaluating these functions
while exploring the space of possible agendas C(m, g), we
want to replace it with a surrogate model that approximates
Ub. If Ub approximation is promising, then we pass it to the
real function described in Section 3 to calculate its real value.

There are a number of known approaches to learn a func-
tion belonging to a certain class of functions from existing
data-points (i.e., finding a function in that class that in-
terpolates and best fits the data-points according to some
criteria). These include Genetic Programming, Radial Ba-
sis Function Network Interpolation, and Gaussian Process
Regression.

Genetic programming is very powerful framework for ap-
proximating unknown functions. However, its direct imple-
mentation is not suitable to be used as surrogate because
of its expensive learning process. Gaussian Process Regres-
sion has been often used as an approximation model with
a solid theoretical foundation, which not only can make a
rational extrapolation about the location of the global opti-
mum, but also gives an interval of confidence about the pre-
diction made. Radial Basis Function Network Interpolation
is conceptually simpler than Gaussian Process Regression
and can extrapolate the global optimum from the known
data-points. In this paper, we use the RBFNs because of
its simplicity and effectiveness [2]. As we will show in the
section on experiments, this approach works well. The fol-
lowing sub-sections provide a description RBFNs and how
we use them.

4.1 RBFN Representation
RBFNs are a variant of artificial neural network that uses
radial basis functions as activation functions [2]. They have
been used in function approximation, time series prediction,
and control [2]. A radial basis function (RBF) is a real-
valued function of the following form:

φ : Rn → R

whose value depends on the distance from some point c,
called a center, so that

φ(x) = φ(‖xq − c‖).
The point c is a parameter of the function and the point
xq is the query point to be estimated. The norm is usu-
ally Euclidean, so ‖x−c‖ is the Euclidean distance (radius)
between c and x. Since we use a generalised RBFN [13],
the Euclidean distance has been replaced with a metric dis-
tance that naturally encompasses the GA representation of
our optimisation problems Pa and Pb (see Section 4.3). The
most commonly used types of radial basis functions are the
Gaussian functions of the form

φ(x) = exp(−β‖x − c‖2)

where β > 0 is the width parameter. Radial basis functions
are typically used to build function approximations of the
form:

y(x) = w0 +
NX

i=1

wi φ(‖x− ci‖) (3)

508

Thus, y(x) is used to approximate Ub. The approximat-
ing function y(x) is represented as a sum of N radial basis
functions, each associated with a different center ci, a dif-
ferent width βi, and different weight wi, plus a bias term
w0. In principle, any continuous function can be approxi-
mated with arbitrary accuracy by a sum of this form, if a
sufficiently large number N of radial basis functions is used.
The bias w0 is set to the mean of the values of the known
data-points from the training set that are used to train the
surrogate model, or set to 0.

4.2 Training
Training the RBFNs amounts to find three parameters:

i) the centres ci,

ii) the weights wi, and

iii) the RBF width parameters βi.

These parameters must be found in such a way that the
predictions on the training set minimises any errors. We
choose the centers so as to coincide with the known data-
points. The values of β can either fixed for all N linear RBFs
(global), or they may be different for different RBFs (local).
Here, we use local values for β for each RBF. Specifically,
β is 1/D2 where D is the mean pairwise swap distance be-
tween the query data-point and its n closest neighbours in
the training set.1

The value of β controls the radius of each RBF to spread
on the space to cover all other centres so that each known
function value at a center can potentially contribute signif-
icantly to the prediction of the function value of any point
in space, and not only locally to function values of points
near the given center. In order to find the best value for
n, we conducted experiments. The results of these experi-
ments showed that the best value of n is 40% of the size of
the training set.

Finally, the weights vector is calculated by solving the
system of N simultaneous linear equations in wi obtained
by requiring that the unknown function interpolates exactly
the known data-points

y(xi) = bi, i = 1 . . . N

By setting

gij = φ(||xj − xi||),
the system can be written in matrix form as follows:

Gw = b

where b is a vector of the true fitness values of the data-
points that are used to train the surrogate. The matrix G
is non-singular if the points xi are distinct and the family of
functions φ is positive definite (which is the case for Gaussian
functions). Thus solving w = G−1b gives the weights w.

The value of the bias term w0 in Equation 3 is set to
the mean value of the known data-points, i.e., the mean of
vector b. So the predicted function value of a point which
is out of the influence of all centres, is by default set to the
average of their function values.

1The swap distance between two strings is the minimum
number of interchanges needed to transform one string to
the other.

4.3 Interpolation
The RBFNs can be naturally generalised from continuous
spaces to any representation [13]. This is done by consid-
ering distances defined directly on the underlying represen-
tation. The generalisation is possible because the represen-
tation of the RBFN, its training, and prediction does not
depend directly on the representation, but only on the dis-
tances between solutions [13]. Once the parameters of the
RBF are determined, the model is ready to estimate the fit-
ness of any unseen point. Thus, the fitness f(x) of unknown
point xq in the search space is predicted by weighted linear
combination of:

f(x) = w0 +
PN

i=1[wi ∗ φ(d(xq, ci))]

where, wi is a vector of weights that are calculated during
the training phase and φ is the kernel function which is de-
fined in Section 4.1. Finally, d(x, ci) is the swap distance
between the new point xq and the training points ci.

Traditionally, Hamming distance is used to measure the
distance associate between binary strings. However, the rea-
son we use the (adjacent) swap distance instead of the Ham-
ming distance is that the former is more natural to binary
strings constrained to have the same number of bits set to
one (i.e., the number of issues on the agenda).

5. THE SURROGATE-ASSISTED GA
As mentioned previously, we have two problems to solve:
find the equilibrium utility for an agenda, i.e., solve the
problem Pb (as defined in Section 3), and finding an optimal
agenda, i.e., solve problem Q (as defined in Section 1).

To solve these problems, the proposed surrogate assisted
GA uses a hyper GA system. This system is comprised
of two GA systems, one to solve the problem Pb, and the
other to solve the problem Q. These two GA systems are as
follows:

• an ‘outer’ GA to solve the problem Q, and

• an ‘inner’ GA to solve the problem Pb.

These two GAs work as follows. The outer GA searches the
space of possible C(m, g) agendas to solve Q. Each agenda is
represented as a binary string. A one in the string indicates
that the corresponding issues is included in the agenda. A
zero means the issue is not on the agenda. Since there are
m available issues, the size of a chromosome is equal to m.
Also, since we want to find an optimal agenda of size g, a
chromosome can have only g ones. Thus, all individuals in
the population must have the same number of ones.

Then, we have the inner GA to solve Pb. For a given indi-
vidual in the outer GA population, the inner GA optimises
Ub, i.e., finds b’s equilibrium utility. In other words, the in-
ner GA serves as a fitness evaluator for the outer GA, and
allows the individuals for the outer GA to be ranked on the
basis of their utilities/fitness. An individual for the inner
GA is a vector of m real numbers in the interval [0, 1]. The
element i represents xb

i (where xb
i is as defined in Section 3).

Clearly, the hyper GA method is expensive as it requires
each individual in the outer GA population to invoke an in-
ner GA run to evaluate its fitness. Also, due to the noisy
nature of evaluating the population (i.e., evaluating the same
agenda twice with the inner GA may produce a slightly dif-
ferent results), and hence the noisy nature of the landscape

509

it is not always easy to get an optimum (or more precisely
near optimum) solutions. To solve this problem, we used the
surrogate model based on RBFNs (described in Section 4)
to speed up the outer search.

The surrogate model is built solely from available known
values of the expensive objective function evaluated on a set
of solutions.2 We refer to the pair (solution, known objec-
tive function value) as data-point. Thus, data-points form
a sample of the expensive objective function and the surro-
gate model builds a function that approximates these data-
points.

The outer GA, assisted by the surrogate model, explores
as many agendas as possible and ranks them based on their
predicted fitness using the surrogate model. The most promis-
ing data-points (i.e., the points that have better estimated
fitness than the best known data-point) are re-examined
through the inner GA evaluation to calculate their real prof-
its, update the list of existing data-points, and update the
surrogate model (as described in Section 4.2).

Algorithm 1: Surrogate-Assisted GA search.

1 Surrogate-TrainingSet =
Generate-Solution(initial-set-size);

2 Evaluate-Inner-GA(SampleDataPonits, Ub);
3 Surrogate.Train(Surrogate-TrainingSet);

4 while Expensive-evaluation-budget Not Finished do
5 Promising-Point =

Tournament-selection(Surrogate-TrainingSet);
6 Mutation(Promising-Point);
7 Surrogate.Predict(Promising-Point);

8 if Promising-Point >
Best-item(Surrogate-TrainingSet) then

9 Evaluate-Inner-GA(SampleDataPonits, Ub);
10 Surrogate-TrainingSet.add(Promising-Point);
11 Surrogate.Train(Surrogate-TrainingSet);

12 if Maximum exploration elapsed then
13 Generate a new random data-point and

update the surrogate.

The surrogate’s search procedure is described in Algo-
rithm 1. To begin, some initial solutions are generated using
the real objective function. These form a sample of data-
points that are used to train the surrogate model as ex-
plained in Section 4.2 (see Lines 1-3 in Algorithm 1). Once
the surrogate model is trained, it becomes ready to the pre-
dict fitness of unseen points in the search space. The system
applies a simple mutation operator on a selected data-point
from the surrogate’s training set using Tournament selection
(we refer to this process as local search) (see Lines 5-6). The
newly mutated point is then evaluated using cheap surrogate
evaluation as explained in section 4.3 to obtain its estimated
fitness (Line 7).

Note that the role of the local search procedure is to infer
the location of a promising solution of the problem using the
surrogate model, and not to directly apply it to the original

2We refer to the inner GA evaluation as expensive evaluation
because it requires a complete GA run to evaluate the fitness
of a single individual in the outer search.

problem with the expensive objective function. Also, un-
like other surrogate models where number of explorations
is limited, our model has the freedom to explore as many
solutions as it requires until it finds promising solutions.

If the predicted fitness value of the mutated point is better
than the best known fitness value of the known data-points,
then it means that the model succeeded in extrapolating
from the data (see Line 8). Otherwise, it means that the
mutation operator failed at suggesting a promising solution
which improves over the best known point. If this happens,
we repeat the tournament selection and mutation process.
If the prediction is higher than the best point in the training
set, then the point is promising, and we evaluate it with the
real fitness function (Line 9). Thereafter, the new promising
point, with its true fitness, is added to the sample of data
points (Line 10). The resulting sample is then used to re-
train the surrogate model (Line 11).

To avoid the system from getting caught at a local optima,
the surrogate training set is updated at a uniformly gener-
ated random data-point and evaluated with the expensive
objective function. This allows us to gather more data about
under-sampled regions of the problem and improve the ac-
curacy of the surrogate model to help subsequent searches
on the model (Lines 12-13).

The outer GA, is designed to operate in conjunction with
a surrogate model. Thus, the training set is considered as
the GA population. The outer search process keeps increas-
ing the population size (i.e., adding new promising data-
points) until the maximum number of expensive evaluations
has been reached. The use of tournament selection and mu-
tation operator allows the newly added data-points to con-
verge toward optimum fitness.

6. EXPERIMENTAL ANALYSIS
The aim of the experiments is to evaluate the performance
of the proposed surrogate assisted GA model in a range of
settings. This requires determining ‘how optimal’ are the
agendas generated by this model. Here, we look at optimal
agendas from the buyers perspective (the same analysis ap-
plies to the seller as well). The higher the buyer’s utility for
an agenda, the better the agenda is.

In order to evaluate the proposed model, we compared its
performance with two other models:

• a standard GA (i.e., without surrogate assistance), and

• a random search.

The reason we included random search is that, although evo-
lutionary algorithms may generally be better than random
search, they may not be so for small search spaces. It should
be noted that, for the random search, the agendas are gen-
erated randomly, but their profit is fully evaluated with the
inner GA.

6.1 The Setting
The following experiments were conducted for δ = 0.5 as-
suming that both negotiators have complete information
about the negotiation parameters. The remaining param-
eters are set as shown in Table 1. Recall that the surrogate
model uses the RBFNs to fit the available data-points us-
ing the learning procedure described in Section 4.2. So the
parameters were set partly by using values commonly found
in the surrogate literature, and by performing a variety of

510

Table 1: Surrogate Parameter Setting
Setting Value

Expensive Evaluation m × g
Initial sample size 2

Tournament selection 50% of Training Set size
θ Explorations (g × m)2

Table 2: Inner GA Parameter Setting
Setting Value

Population 1000
Generations 100

Tournament selection size 10
Mutation 100%

preliminary experiments and selecting the values that gave
us good results while keeping the processing time under con-
trol.

Our aim is to find the best solution (i.e., an optimal
agenda) in linear time with respect to m and g. As men-
tioned earlier, θ is the maximum number of explorations for
detecting that no further improvement is happening. If this
happens, we update the model with a randomly generated
data-point. Thus, θ is also related to the problem complexity
with respect to the number of possibilities to mutate data-
points in the training set. The use of tournament selection
with high pressure (i.e., 50%) allows the system to favour the
best data-points in the training set to locate new promising
solutions. And training points with inferior fitness still have
a chance to contribute to the process of finding new promis-
ing points.

The performance of the model was evaluated for 120 in-
dependent runs. The runs were divided into four sets. Each
set involved finding the best agenda for m = 10, m = 20,
m = 30, and m = 40. For each m, three different values of
g, where g = m/5, g = m/2, and g = m − 3 were used. For
each m and g, we conducted 10 independent runs.

Recall that we use standard GA and random search for
comparison. To allow a fair comparison, the standard GA
was applied directly to the problem with the expensive ob-
jective function. Also, the the standard GA and the random
search were given exactly the same number of expensive eval-
uations and the inner GA engine (see inner GA settings in
Table 2).

In standard GA, the GA has a population of size m and
runs for g generations. We used tournament selection of size
2 and a mutation operator. Each individual in the popula-
tion invokes the inner GA engine to evaluate its fitness.

The reason for conducting 10 independent runs for each m
and g, is that the experiments are very time consuming. So,
we balanced the experiments to show enough information
about the performance of the model while keeping the whole
process under control. For this setting, Section 7 shows the
best evolved agendas.

7. RESULTS AND ANALYSIS
Table 3 summarises the results of experiments. For each m
and g, the table illustrates the average profit for an agenda
over 10 independent runs. These results show that the sur-
rogate produced better agendas in all cases. Also, the profit
difference increased with the problem complexity. Thus, sur-

Table 3: The average profit (over 10 runs) for each
m,g combination.
m g Surrogate Standard

GA
Random
Search

10 2 65.8 63.9 64.5
10 5 168.7 166.3 165.4
10 7 209.6 209.1 209.1
20 4 137.9 130.5 132.6
20 10 309.9 299.4 297.6
20 17 452.8 432.6 433.4
30 6 204.3 197.6 193.6
30 15 460.9 445.8 435.2
30 27 750 739.05 738.1
40 8 275.4 262.2 258.1
40 20 617.8 596.7 577.2
40 37 1070 1024.5 1023.4
*Numbers in boldface represent the highest generated profits.

Table 4: The average improvement (over 10 runs)
for each m,g combination.

m g Average Im-
provement

Best Improve-
ment

10 2 0.54% 4.80%
10 5 0.98% 1.80%
10 7 0.05% 0.5%
20 4 3.69% 7.10%
20 10 2.39% 4.90%
20 17 4.40% 9.90%
30 6 3.17% 5.40%
30 15 3.39% 4.90%
30 27 1.40% 1.60%
40 8 4.63% 7.40%
40 20 3.42% 5.30%
40 37 4.40% 4.50%
Average 2.7% 4.8 %

rogate performs better with complex problems (i.e., those
with large m and g) than easier ones (i.e., those with small
m and g).

This is further illustrated in Table 4. This table shows the
best in all 10 runs for each m, g combination. For m = 10,
random search produced better or similar agendas relative
to the standard GA and the surrogate. This is no surprise,
because standard GA can get easily trapped in local optima,
whereas the solution found by random search exhibits a large
variance in quality so the best solution found can be compet-
itive by a “stroke of luck”, especially with small sample size
and in small problems (such as m = 10). However, as shown
in Tables 3 and 4, on average, the surrogate always comes in
the first place while standard GA and random search take
the second and third places respectively.

The reason why the GA assisted by the surrogate is bet-
ter is that it is able to infer promising solutions by making
rational use of the knowledge of the location and the real
fitness of previously sampled solutions.

As mentioned previously, the system has the freedom to
explore as many agendas as it requires, before it updates
the model with new promising point, or alternatively, with
a randomly generated point if no promising point can be
found. Thus, if the system updates the model at random

511

Table 5: The average number of random updates for
the surrogate for each m and g combination.

m g Random Updates

10 2 8.5%
10 5 13.4%
10 7 15.7%
20 4 0.12%
20 10 0.6%
20 17 0%
30 6 0%
30 15 0%
30 27 0.04%
40 8 0.03%
40 20 0%
40 37 0%
Average 3.19%

*The table shows the average over 10 runs for
each m and g combination.

points on a large norm, the whole process turns into some-
thing close to random search. Note that, for small spaces,
this may not necessarily be bad. Thus, in Table 5, we show
the number of times (in terms of the percentage over the
total number of expensive evaluations budget) the system
updates the model at random points.

As shown, when the problem space is small (e.g., m = 10)
the system injects the surrogate model with some random
samples to have a better approximation. However, for bigger
search spaces, only in rare cases the system updates the
model at random points. In fact, in 97 out of the total 120
runs the system did not add any random points to update
the surrogate. This indicates that the local search process
guided by the mutation operator and tournament selection
(see Section 5) did a good job at pointing out the most
promising solutions.

8. CONCLUSIONS
This paper proposed a hyper GA system to evolve optimal
agendas for package deal negotiation. The agenda is im-
portant in the context of negotiation because it effects the
agents’ profits. Thus, the agents want to know what agenda
will optimize their profit. But the problem of finding such
an agenda is complex, especially in the context of nonlinear
utilities. To solve this problem, we presented a hyper GA
system that uses a surrogate model based on Radial Basis
Function Networks (RBFNs) to assist the GA search. The
model speeds up the search by guiding the evolution in the
direction of promising agendas.

The method was evaluated experimentally. The results
demonstrate that the proposed model, on average, finds bet-
ter agendas in comparison with a standard GA (applied di-
rectly without surrogate assistance), and random search.

This paper has made two main contributions: proposed
a new method for finding an optimal negotiation agenda,
and showed that it works well in the context of a real-world
problem.

This research can be extended in many different ways.
In the future we will explore ways of extending the model
to those situations where the utility functions change with
time. Another extension would be to test the proposed sys-
tem with other optimization problems.

Acknowledgements
This research was supported by the EPSRC under grant
EP/G000980/1.

9. REFERENCES
[1] M. Bac and H. Raff. Issue-by-issue negotiations: the

role of information and time preference. Games and
Economic Behavior, 13:125–134, 1996.

[2] A. G. Bors. Introduction of the Radial Basis Function
(RBF) networks. Technical report, Department of
Computer Science, University of York, UK, 2001.

[3] S. Fatima, M. Wooldridge, and N. Jennings.
Multi-issue negotiation with deadlines. Journal of AI
Research, 27:381–417, 2006.

[4] S. S. Fatima, M. Wooldridge, and N. R. Jennings.
Approximate and online multi-issue negotiation. In
Proc. 6th Int. J. Conference on Autonomous Agents
and Multi-agent Systems, pages 947–954, 2007.

[5] S. S. Fatima, M. Wooldridge, and N. R. Jennings. On
optimal agendas for multi-issue negotiation. In Proc.
12th Int Workshop on Agent-Mediated Electronic
Commerce, pages 155–168, 2010.

[6] C. Fershtman. The importance of the agenda in
bargaining. Games and Economic Behavior,
2(3):224–238, 1990.

[7] R. Inderst. Multi-issue bargaining with endogenous
agenda. Games and Economic Behavior, 30:64–82,
2000.

[8] Y. Jin. A comprehensive survey of fitness
approximation in evolutionary computation. Soft
Comput., 9(1):3–12, 2005.

[9] D. R. Jones. A taxonomy of global optimization
methods based on response surfaces. J. of Global
Optimization, 21:345–383, December 2001.

[10] R. Keeney and H. Raiffa. Decisions with Multiple
Objectives: Preferences and Value Tradeoffs. New
York: John Wiley, 1976.

[11] Y. Lian, M. sing Liou, and A. Oyama. An enhanced
evolutionary algorithm with a surrogate model.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=?
doi=10.1.1.130.4692, 2008.

[12] D. Lim, Y. Jin, Y.-S. Ong, and B. Sendhoff.
Generalizing surrogate-assisted evolutionary
computation. Evolutionary Computation, IEEE
Transactions on, 14(3):329 –355, 2010.

[13] A. Moraglio and A. Kattan. Geometric generalisation
of surrogate model based optimisation to
combinatorial spaces. In EvoCop, Lecture Notes in
Computer Science. Springer, 2011.

[14] M. J. Osborne and A. Rubinstein. A Course in Game
Theory. The MIT Press, 1994.

[15] D. G. Pruitt. Negotiation Behavior. Academic Press,
1981.

[16] T. Schelling. An essay on bargaining. American
Economic Review, 46:281–306, 1956.

512

