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ABSTRACT 
Handling Multiobjective Optimization Problems (MOOP) using 
Hybrid Metaheuristics represents a promising and interest area of 
research. In this paper, a Hybrid Evolutionary Metaheuristics 
(HEMH) is presented. It combines different metaheuristics 
integrated with each other to enhance the search capabilities. It 
improves both of intensification and diversification toward the 
preferred solutions and concentrates the search efforts to 
investigate the promising regions in the search space. In the 
proposed HEMH, the search process is divided into two phases. In 
the first one, the DM-GRASP is applied to obtain an initial set of 
high quality solutions dispersed along the Pareto front. Then, the 
search efforts are intensified on the promising regions around 
these solutions through the second phase. The greedy randomized 
path-relinking with local search or reproduction operators are 
applied to improve the quality and to guide the search to explore 
the non discovered regions in the search space. The two phases 
are combined with a suitable evolutionary framework supporting 
the integration and cooperation. Moreover, the efficient solutions 
explored over the search are collected in an external archive. The 
HEMH is verified and tested against some of the state of the art 
MOEAs using a set of MOKSP instances commonly used in the 
literature. The experimental results indicate that the HEMH is 
highly competitive and can be considered as a viable alternative. 

Categories and Subject Descriptors 
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods 
and Search – heuristic methods. 
G.1.6 [Numerical Analysis]: optimization- constrained 
optimization, global optimization, integer programming. 

General Terms 
Algorithms, Experimentation, Performance, Verification. 

Keywords: 
Data Mining, Evolutionary Algorithm, GRASP, Hybridization, 
Metaheuristics, Multiobjective Optimization, Path-relinking. 

1. INTRODUCTION 
Many of the real-world problems can be modeled as 
Multiobjective Combinatorial Optimization Problems (MOCOP), 
which are often characterized by their large size and the presence 

of multiple, conflicting objectives. In general, the basic task in 
multiobjective optimization is the identification of the set of 
Pareto optimal solutions or even a good approximation set to the 
Pareto Front (ܲܨ). Despite the progress in solving MOCOP 
exactly, the large size often means that Metaheuristics (MH) are 
required for their solution in reasonable time. Many of MHs have 
been introduced in the last thirty years [7] such as Evolutionary 
Algorithms (EA), Simulated Annealing (SA), Tabu Search (TS), 
Scatter Search (SS), Path-Relinking, Iterated Local Search (ILS), 
Guided Local Search (GLS), Particle Swarm Optimization (PSO) 
and Greedy Randomized Adaptive Search Procedure 
(GRASP)…etc. More details are found in [1].  

Multiobjective Evolutionary Algorithms (MOEAs) are a very 
active research area. They have recently received increase interest 
because they offer practical advantages in facing difficult 
optimization problems. Solving MOOPs and their applications 
using evolutionary algorithms have been investigated by many 
authors [3] [5] [10] [22] [24]. NSGAII [3] and SEPA2 [24] are the 
most popular Pareto dominance based MOEAs that have been 
dominantly used. Based on many traditional mathematical 
programming methods for approximating the ܲ[14] ܨ, the 
approximation of the ܲܨ can be decomposed into a number of 
single objective subproblems. Some of the MOEAs adopt this idea 
such as MOGLS [11], MOEA/D [21]. Many of the search 
algorithms attempt to obtain the best from a set of different MHs 
that perform together, complement each other and augment their 
exploration capabilities. They are commonly called Hybrid MH. 
Diversification and intensification [1] are the two major issues 
when designing a global search method. Diversification refers to 
the ability to visit many and different regions in the search space, 
while intensification refers to the ability to obtain high quality 
solutions within those regions. A search algorithm must balance 
between sometimes-conflicting two goals. The design of Hybrid 
MH can give the ability to control this balance [13]. 

This paper tends to study the hybridization of different MHs and 
analyze its effect on handling MOCOP. It develops a Hybrid 
Evolutionary Metaheuristics (HEMH) which incorporates both of 
DM-GRASP [18] and Path-relinking within the framework of the 
MOEA/D. The main goals are to capture the benefits of those 
techniques with providing cooperation, integration and adequate 
balance between intensification and diversification to improve the 
search capabilities. This can be achieved by applying Path-
relinking or reproduction operators on high quality solutions 
obtained by DM-GRASP. The rest of the paper is organized as 
follows: section 2 presents some of the basic concepts and 
definitions. In section 3, an overview of GRASP and data mining 
is highlighted. The path-relinking strategy is discussed in section 
4. Section 5 reviews the MOEA/D framework. The proposed 
HEMH is motivated and presented in section 6. In additions, 
experimental design and experimental results are involved in 
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sections 7 and 8 respectively. Finally, section 9 presents the 
conclusions and some directions for further research. 

2. BASIC CONCEPTS AND DEFINITIONS  
Without loss of generality, the MOOP can be formulated as: 
ሻݔሺܨ  ݔܽܯ  ൌ ൫ ଵ݂ሺݔሻ, ଶ݂ሺݔሻ, … , ݂ሺݔሻ൯ (1) 

.ݏ  .ݐ ݔ : א  Ω. 
Where, ܨሺݔሻ is the m-dimensional objective vector, ݂ሺݔሻ is the 
݅௧objective to be maximized, ݔ ൌ ሺݔଵ, … , -ሻ் is the nݔ
dimensional decision vector and Ω is the feasible decision space. 
In case of  Ω ك Ժ, the MOOP is called multiobjective 
combinatorial optimization problem (MOCOP). 
Definition 1: A solution ݔ dominates ݕ (noted as: ݔ غ  :if (ݕ

݂ሺݔሻ  ݂ሺݕሻ ݅ א ሼ1, … , ݉ሽ and ݂ሺݔሻ  ݂ሺݕሻ for at least one ݅. 
Definition 2: A solution ݔ א Ω is called efficient (Pareto-optimal) 
if ݕ א Ω  ݕ  غ  .ݔ
Definition 3: The Pareto optimal set (ܲכ) is the set of all efficient 
solutions:  ܲכ ൌ ሼݔ א Ω: ݕ א Ω and ܨሺݕሻ   ሻሽݔሺܨ
Definition 4: The Pareto front (ܲܨ) is the image of the Pareto 
optimal set ܲכ in the objective space: 

ܨܲ ൌ ൛ܨሺݔሻ ൌ ൫ ଵ݂ሺݔሻ, ଶ݂ሺݔሻ, … , ݂ሺݔሻ൯: ݔ א  ൟכܲ
Definition 5: Given a reference point כݎand a weight vector 
߉ ൌ ሾߣଵ, … , ߣ ሿ such thatߣ  0, ݅ א ሼ1, … , ݉ሽ, ∑ ߣ 


ୀଵ ൌ 1, 

The weighted sum (ܨ௪௦ ) and the weighted Tchebycheff (்ܨ) 
scalarizing functions corresponding to (1) are defined by (2) and 
(3) respectively as: 
,ݔ௪௦ሺܨ  ݔܽܯ  ሻ߉ ൌ ∑ ሻݔ ݂ሺߣ

ୀଵ  (2) 
,ݔሺ்ܨ  ,כݎ ሻ߉ ൌ ݎ൫ߣଵஸஸ൛ݔܽܯ

כ െ  ݂ሺݔሻ൯ൟ (3) 
Given a set of ݉ knapsacks and a set of ݊ items, the 0/1 
Multiobjective Knapsack Problem (MOKSP) can be formulated as: 
ሻݔ݂ሺ  ݔܽܯ  ൌ ∑ ܿ


ୀଵ ,ݔ ݅ א ሼ1, … , ݉ሽ (4) 

.ݏ  ∑   :.ݐ ݓ

ୀଵ ݔ   ܹ , ݅ א ሼ1, … , ݉ሽ (5) 

ݔ ൌ ሺݔଵ, … , ሻ்ݔ א  ሼ0,1ሽ 
Where, ܿ  0 is the profit of the ݆௧ item in the ݅௧knapsack, 
ݓ  0 is the weight of the ݆௧ item in the ݅௧knapsack and ܹ is 
the capacity of the ݅௧knapsack. When ݔ ൌ 1, it means that the 
݆௧ item is selected and put in all knapsacks. 
The MOKSP is NP-hard and can model a variety of applications. 
It was first formulated and solved by Zitzler & Thiele [22]. Since 
then, it has become a standard benchmark that has been solved by 
many other researchers [3] [21]. 

3. GRASP AND DATA MINING 
3.1 GRASP Algorithm 
GRASP [7] is a multi-start metaheuristics that has a two phase 
iterative process. In the first phase, the construction is invoked to 
build a completed solution. Then, the local search is applied on 
this solution to guarantee to be locally optimal in the second 
phase. This process is repeated until stopping criterion is met. The 
best solution found is taken as a result. 

3.1.1 Construction 
Greedy randomized construction adds randomize to greedy 
algorithm to produce a divers set of good quality starting solutions 
from which to start local search. It takes initially a partial 
solution ܵ. Then, the greedy function ԭ is evaluated for each 
unselected component in ܵ. A restricted candidate list (RCL) is 

formed by the unselected components with ԭ א ሾԭ ,  ԭ  ߙ ൈ
ሺԭ௫ െ ԭሻሿ, where ߙ א ሾ0,1ሿ is a parameter to balance the 
greediness and randomness in ܵ. A component is selected 
randomly from the RCL to be added to ܵ. The whole process is 
repeated until ܵ is completed.  

3.1.2 Local Search 
Local search is applied to improve the starting solutions produced 
by construction. Two basic strategies are often considered to 
accept local search moves, first and best improvements. In the 
first improvement, the first neighbor with better quality is 
accepted as a new current solution. In contrast, the best 
improvement examines all neighbors and accepts the best one as a 
new current solution. More sophisticated local search methods 
with good global search ability, such as simulated annealing and 
tabu search, have also been suggested to improve the starting 
solutions in GRASP [2]. 

3.2 DM-GRASP 
In GRASP, iterations are performed independently from each 
other. Consequently, the knowledge acquired in the past iterations 
is not exploited in the subsequent iterations. The basic concept of 
incorporating data mining in GRASP is that patterns found in the 
high quality solutions obtained in earlier iterations can be used to 
improve the search process, leading to a more effective 
exploration of the search space, and consequently, a cooperative 
behavior is achieved instead of building each solution 
independently. The resulting heuristic is the DM-GRASP [18] that 
involves two phases [19]. The first one is to generate an elite set 
ࣞ through executing pure GRASP for ݊ iterations and selecting 
the best solutions found. Then, data mining is applied on ࣞ to 
extract the set of patterns ࣪. Next, the hybrid phase is performed 
in which a number of slightly different iterations are executed. In 
these iterations, the construction receives a pattern   א ࣪ as a 
partial solution from which a complete solution will be built. 

4. PATH-RELINKING 
Path-relinking was suggested to integrate intensification and 
diversification strategies in the context of TS and SS [6]. It 
generates new solutions by exploring trajectories that connect 
high quality solutions. Starting from the starting solution ሺݔ௦ሻ, 
path-relinking generates a path in the neighborhood space that 
leads toward the guiding solution ሺݔ௧ሻ. This can be accomplished 
through selecting moves that introduce attributes contained in  ݔ௧ 
and incorporating them in an intermediate solution initially 
originated in ݔ௦. It is observed that better solutions are found 
when the relinking procedure starts from the best of  ݔ௦ and ݔ௧. 
Because starting from the best gives the algorithm a better chance 
to investigate in more detail the neighborhood of the most 
promising solution [17]. Using path-relinking within GRASP as 
an intensification strategy applied to each locally optimal solution, 
was first proposed in [12]. It was followed by several extensions 
and applications [15] [16]. In HEMH, greedy randomized path-
relinking [4] will be used as an intensification strategy to improve 
the performance and enhance the efficiency. 

5. MOEA/D FRAMEWORK 
MOEA/D [21] is a recently developed MOEA in which the 
decomposition idea is applied instead of dominance relation. The 
MOEA/D framework can be explained as a cellular MOEA [9] 
with a neighborhood structure in the m-dimensional weight space. 
A single cell with a single individual is located at the same place 
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as each weight vector in the m-dimensional weight space. That is, 
each cell has its own weight vector, which is used in the 
scalarizing function for evaluating the individual in that cell. 
Neighbors of a cell are defined by the Euclidean distance between 
cells in the weight space. The efficient solutions obtained over the 
search process are maintained in an external archive. To generate 
an offspring for a cell, two parents are randomly selected from its 
neighbors to apply reproduction. The offspring is compared with 
the individual in the current cell using the scalarizing function. If 
the offspring is better, it replaces the current individual. The 
offspring is also compared with each neighbor. The scalarizing 
function with the weight vector of each neighbor is used in the 
comparison. All neighbors, which are inferior to the offspring, are 
replaced with the offspring. This framework will be used by 
HEMH to carry out the proposed hybridization with DM-GRASP 
and greedy randomized path-relinking to enhance the performance 
and improve the search capabilities. 

6. THE (HEMH) FOR 0/1 MOKSP 
6.1 Motivations 
This work can be motivated as follows: 
• Using data mining to extract good patterns that help to build 

new solutions will achieve the cooperation among iterations. 
• Applying reproduction on high quality solutions leads to 

produce high quality offspring.  
• Incorporating path-relinking will help in discovering solutions 

beyond elite points as a post optimization strategy and will 
increase the intensification in these regions. 

• Path-relinking gives the ability of investigating the non-convex 
regions and discovering the promising solutions lies on them. 

6.2 The Proposed HEMH 
Like MOEA/D [21], the HEMH needs a decomposition technique 
to convert the MOKSP in (4) into a set of single objective 
problems. The weighted sum approach described in (2) was used 
because it worked better than weighted Tchebycheff described in 
(3) on 0/1 MOKSP [8]. However, if we have a set of ܰ uniformly 
distributed weight vectors ሼ߉ଵ, … ,  ேሽ, correspondingly we߉
have ܰ single-objective subproblems. HEMH attempts to 
simultaneously optimize these ܰ subproblems. The set of 
neighbors of the ݅௧ subproblem includes all the subproblems with 
the ܶ closest weight vectors ሼ߉ଵ, … ,   in terms of߉ ்ሽ to߉
Euclidean distance. Each weight vector ߉ ൌ ሾߣଵ, … ,  ሿ can beߣ
generated according to (6). The number of different weight 
vectors that can be generated is defined by (7). 
 ∑ ߣ


ୀଵ ൌ 1, ߣ א ሼ0 ⁄ܪ , 1 ⁄ܪ , … , ܪ ⁄ܪ ሽ , ݅ א ሼ1, … , ݉ሽ (6) 

 ܰ ൌ ቀܪ  ݉ െ 1
݉ െ 1 ቁ , ܪ א Ժା (7) 

The HEMH framework is discussed with illustrations for its 
components and modules. Then, the whole procedure is explained. 

6.2.1 HEMH framework 
The HEMH framework contains two populations, main population 
and Archive. The main population consists of ܰ members in 
which a solution is maintained for each search direction 
(subproblem). Each subproblem has ܶ of neighbors. The Archive 
collects all efficient solutions explored over the search. It is 
periodically updated by new explored solutions. The search 
process consists of two basic phases, “initialization” and “Main 
loop”. Initialization is responsible for obtaining an initial set of 
high quality solutions dispersed into ܲܨ. Whereas, the main loop 

is responsible for discovering more new solutions in the most 
promising regions through applying greedy randomized path-
relinking or reproduction on the set of high quality solutions 
previously obtained. Figure 1 clarifies the whole process. 

 
Figure 1: HEMH flow diagram 

6.2.1.1 Initialization phase 
DM-GRASP is applied to generate an initial set of high quality 
solutions to fill the main population. Firstly, original GRASP is 
applied on each objective function separately to construct a set of 
elite solutions from which a set of good patterns is extracted using 
data mining. Then, for each subproblem, one of the extracted 
patterns is selected as a partial solution to construct the current 
solution. DM-GRASP consists of Construction, Local search and 
Pattern-Mining modules. The procedures of both Construction and 
Local search were explained in [20]. The Pattern-Mining module 
receives as inputs the set of minimum supports ߪ that represent the 
minimum ratios of repetition of an item to be included in a pattern 
and the set of elite solutions Archive. It simply extracts the set of 
patterns ࣪ that achieve the minimum supports ߪ from Archive. 

6.2.1.2 Main loop phase 
In this phase, greedy randomize path-relinking or reproduction is 
applied on the solutions previously obtained in the initialization 
phase to intensify the search process in the regions surrounding 
the Pareto front. This means, concentrating the search efforts on 
the promising regions to discover new high quality solutions. 
Some of different modules used in this phase is explained. 

6.2.1.2.1 Greedy Randomized Path Relinking 
Greedy randomized path-relinking receives the inputs listed in 
Algorithm 1. Firstly, the best of ݔ௦and ݔ௧ is chosen to start with. 
Then, the best fitness כݖ and the best solution כݔ are initialized. 
The candidate lists CL and CLcomp are constructed. Every 
unmatched ݆ between ݔ௦and ݔ௧ with ݔ

௦ ൌ 0 is inserted into CL in 
descending order according to the ratio in (8), whereas every 
unmatched ݆ between ݔ௦and ݔ௧with ݔ

௦ ൌ 1 is inserted into CLcomp 
in increasing order according to (8). 
 ∑ ߣ


ୀଵ ܿ ∑ ܹ


ୀଵ⁄  (8) 

The RCL is composed of the first ߙ ൈ|CL| elements of CL. The 
procedure builds the path that connects  ݔ௦ with ݔ௧gradually by 
creating intermediate points through execution of the Relinking 
loop. Initially, the intermediate solution ݔ is set to ݔ௦. Then, 
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∆ሺݔ,  .௧ is calculatedݔ and ݔ ௧ሻ the number of unmatched betweenݔ
The next move is carried out by selecting one of unmatched ℓכto 
be matched, if the intermediate ݔ is feasible, then, ℓכis randomly 
extracted from RCL, otherwise the first element of CLcomp is 
extracted to be ℓכ. The new intermediate ݔ is obtained by flipping 
the item (ݔℓכ) corresponding to the selected index ℓכin the current 
intermediate ݔ. If ݔ is infeasible, the Greedy-Repair is invoked to 
get the feasible solution ݕ. Then, the best fitness כݖand the best 
solution כݔare updated by ݕ. This process is repeated until there is 
only one unmatched item between the current intermediate ݔ and 
the guiding ݔ௧. Finally, Local search is invoked to improve כݔonly 
if כݔ ്  .is returned as an output כݔ  ,௦. Thenݔ

Algorithm 1: GRPathRelinking (ݔ௦,ݔ௧, ߉, ,ߙ  (Archive ,ߚ
Inputs: 

,௦ݔ  .௧: Starting & Guiding solutionsݔ
߉ ൌ ሾߣଵ, … ,  ,ሿ: Weighted vector of the current subproblemߣ
ߙ א ሾ0,1ሿ ؿ Թ: Controls greediness /randomness of move selection, 

Output: כݔ: the best solution found in the path from ݔ௦ to ݔ௧; 
Begin: 
01. If ܨ௪௦ሺݔ௧, ሻ߉  ,௦ݔ௪௦ሺܨ  ሻ then: //swapping to start with the best߉
ݔ .02 ՚ ௦ݔ    ;௦ݔ ՚ ௧ݔ   ;௧ݔ ՚  ;ݔ
03. End-If 
כݔ .04 ՚ כݖ  ;௦ݔ ՚ ,௦ݔ௪௦ሺܨ  .כݖ and כݔ ሻ;        //initialize߉
05. CL՚ CLcomp՚    ;  ;
06. While ݆  ݔ

௦ ് ݔ
௧ ר ݔ 

௦ ൌ 0 with ሼଵ,…,ሽאݔܽܯ 
∑ ఒ


సభ ೕ 

∑ ௐೕ

సభ

  do: 

07. CL՚ CL  ሼ݆ሽ; 
08. End-While 
09. While ݆  ݔ

௦ ് ݔ
௧ ר ݔ 

௦ ൌ 1 with ݅ܯ  ݊אሼଵ,…,ሽ
∑ ఒ


సభ ೕ 

∑ ௐೕ

సభ

  do: 

10. CLcomp ՚ CLcomp  ሼ݆ሽ; 
11. End-While 
12. RCL՚ The first ߙ ൈ |CL| elements of CL. //Define RCL 
՚ ݔ .13 ,ݔ௦;    ∆ሺݔ ௧ሻݔ ՚ ሼ ݆ א ሼ1, … , ݊ሽ  ݔ ് ݔ

௧ሽ; //Ham. distance 
14. While ሺ |∆ሺݔ, |௧ሻݔ  1 ሻ do:    //Relinking loop. 
15. If ݔ does not violate Equation (5) then: 
16. Randomly pick ℓכfrom RCL. 
17. CL՚CLך {ℓכሽ; 
18. Else: 
19. ℓכ ՚ The first element in CLcomp. 
20. CLcomp ՚CLcompך {ℓכሽ; 
21. End-If 
22. RCL՚The first ߙ ൈ |CL| elements of CL. //update RCL 
ݔ .23 ՚  Flip ሺݔ, ℓכሻ;   // flip ℓכ௧ item in ݔ. 
24. If  ݔ violates Equation (5) then:  ݕ ՚  GreedyRepair ሺݔ,  ;ሻ߉
25. If (ܨ௪௦ሺݕ, ሻ߉   :then (כݖ
,ݕ௪௦ሺܨ ←כݖ  ;ݕ ←כݔ .26  כݖ and כݔ ሻ; //update߉
27. End-If  
28. ∆ሺݔ, ௧ሻݔ ՚ ሼ ݆ א ሼ1, … , ݊ሽ  ݔ ് ݔ

௧ሽ; //update Ham. distance 
29. End-While 
30. If (כݔ ് כݔ  :௦) thenݔ ՚LocalSearch (כݔ, ,ߚ  .(Archive ,߉
31. return כݔ; 

6.2.1.2.2 Greedy Repair 
In Greedy-Repair, the infeasible solution ݔ is repaired to be 
feasible. The main idea is to remove the items which have the 
minimum values of the ratio in (8) from the infeasible solution 
until becomes feasible. This ratio is calculated for each item in ݔ 
based on a specified weight vector ߉ that taken as a parameter. 

6.2.1.2.3 Update-Solutions  
The Update-Solutions procedure presented in algorithm 2 takes 
the solution ݕ,  the number of solutions must be updated and Pop ݐ
the range from which solutions are selected to be updated. The 
procedure starts with selecting a solution ݔfrom Pop for 
updating. Then, ݔ is compared with ݕ according the weighted 

sum function (2) using the weight vector ߉, if ݕ is better than ݔ, 
then, ݔ is replaced by ݕ and deleted from Pop. This process is 
repeated until ݐ iterations or Pop is empty.  

Algorithm 2: Update-Solutions (y, ݐ, Pop) 
01. ܿ ՚ 0; 
02. Repeat: 
03. Randomly select an index ݆ from Pop 
04. If  ܨ௪௦ሺݕ, ሻ߉  ,ݔ௪௦ሺܨ  :ሻ then߉
ݔ .05 ՚ ;ݕ  ܿ ՚ ܿ  1; //update ݔby ݕ and increment c. 
06. Pop ՚Pop\{ ݆}; 
07. End-If 
08. Untilሺ ܿ ൌ ݐ or Pop ൌ  ሻ; 

6.2.2 The HEMH procedure 
In algorithm 3, the proposed HEMH procedure which receives the 
input parameters listed below is described.  

Algorithm 3: HEMH (Stopping criterion,ܰ, ܹ, ܶ, ,ݐ ,ߜ ,ߚ,ߙ ,ߪ  (ߝ
Inputs: 

ܰ: Population Size or number of subproblems considered. 
ܹ ൌ ሼ߉ଵ, … ,  .ேሽ: Set of N uniformly spread weight vectors߉

ܶ: Size of neighborhoods of each subproblem. 
ݐ  ܶ: Maximum number of updated solutions. 
ߜ א ሾ0,1ሿ: Probability of selecting parents from the neighborhoods 
ߙ א ሾ0,1ሿ: Parameter used at construction process. 
ߚ א ሾ0,1ሿ: Parameter used at the local search process. 
 Set of Minimum support for pattern-mining :ߪ
 .Minimum hamming distance allowed for applying path-relinking :ߝ

Output: ݁ݒ݄݅ܿݎܣ  .all efficient solutions found over generations 
Begin: // initialization Phase 
01. For  ݅ א ሼ1, … , ܰሽ do: //Define a set of T neighbors for each ߉ 
ݏݎܾ݄݃݅݁ܰ .02 ՚ ሼ݅1, … , ݅ܶሽ  ,ଵ߉ … ,  ߉ ்are the T closest to߉
03. End-For 
04. Let ሼ߉భ, … , ሽ߉ ك ܹ be the set of all extreme weight vectors. 
݁ݒ݄݅ܿݎܣ .05 ՚  ;
06. For ݅ א ሼ1, … , ݉ሽ do://Run GRASP for each objective separately  
݈ݏ .07 ՚  ;
݈ݏ .08 ՚Construction (ߙ ,݈ݏ, ,߉  ;ሻ݁ݒ݄݅ܿݎܣ
݈ݏ .09 ՚Local-Search (݈ݏ, ,ߚ ,߉  ;ሻ݁ݒ݄݅ܿݎܣ
10. End-For 
11. ࣪ ՚PattarnMiningሺߪ,  ሻ; //construct the set of patterns݁ݒ݄݅ܿݎܣ
12. For ݅ א ሼ1, … , ܰሽ do: //Initialize population using DM-GRASP 
13. Randomly pick   from ࣪ //choose a pattern 
ݔ .14 ՚Construction (, ,ߙ ,߉  .using pݔ  ሻ; //Construct݁ݒ݄݅ܿݎܣ
ݔ .15 ՚Local-Search (ݔ, ߚ, ,߉  .ݔ ሻ; //Improve݁ݒ݄݅ܿݎܣ
ܸܨ .16 ՚  ݔ  ሻ; // Evaluation ofݔሺܨ
17. End-For 
18. While Stopping criterion is not satisfied do: //Main Loop Phase 
19. For  ݅ א ሼ1,2, … , ܰሽ do: 
20. Randomly generate  ݎ א ሾ0,1ሿ; 
21. If ሺ ݎ ൏  ሻ then:  //Define Mating/updating rangߜ
ܲ .22 ՚  ;ݏݎܾ݄݃݅݁ܰ
23. Else:  ܲ ՚ ሼ1, … , ܰሽ; 
24. End-If 
25. Randomly pick ݆ and ݇ from Pop for recombination. 
26. If( ∆ሺ ݔ, ሻݔ  ൏  :then ( ߝ
ݕ .27 ՚ Reproduction (ݔ,  ); // Crossover & mutationݔ
ݕ .28 ՚ GreedyRepair (߉,ݕ); // Repair if infeasible 
29. Else: 
ݕ .30 ՚ GRPathRelinkingሺݔ, ,ݔ ,߉ ,ߙ ,ߚ  ;ሻ݁ݒ݄݅ܿݎܣ
31. End-If  
32. Update-Solutions (ݐ ,ݕ, Pop); // Update Pop 
݁ݒ݄݅ܿݎܣ .33 ՚ Update-Archive (ݕ,  ;ሻ݁ݒ݄݅ܿݎܣ
34. End-For 
35. End-while 
36. Return ݁ݒ݄݅ܿݎܣ; 
End 
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The procedure starts with identifying the set of neighborhoods for 
each subproblem  ݅  through calculating the Euclidian distance 
between  ߉ and each one of the set of all weight vectors 
ሼ߉ଵ, … ,  ேሽ and choosing the ܶ closest subproblems. The initial߉
population members are initialized using DM-GRASP. Firstly, 
GRASP is applied on each objective function separately collecting 
elite solutions in the Archive. Then, pattern mining is applied on 
the Archive to extract the set of patterns ࣪. For each population 
member, a pattern  א ࣪ is assigned as an input to the 
construction procedure to build a complete solution in which the 
Local search is applied on. The result is the ݅௧ member in the 
initial population. In the second phase, the search process is 
intensified in the promising regions beyond the solutions 
previously obtained through applying greedy randomized path-
relinking or even reproduction (crossover and mutation). For each 
subproblem  ݅, The Mating/Updating range (ܲ) is determined to 
be either its neighborhood (Local) with probability equals to ߜ, or 
the whole population (Global). To generate the new offspring  ݕ, 
two parents ݔ and ݔ are randomly selected from  ܲ. Then, 
hamming distance ∆ሺݔ,  ሻ is calculated. The greedy randomizeݔ
path-relinking is applied to generate ݕ only if ∆ሺݔ, ሻݔ   .ߝ
Otherwise, reproduction is considered. If ݕ is infeasible, the 
Greedy-Repair module is invoked. Now, the offspring ݕ must 
update both of the solution of the ݅௧ subproblem and ݐ solutions 
from Pop. The Update-Solutions module is invoked to perform 
this task. The Archive is updated by every generated offspring. 
The whole process is repeated until stopping criterion is met. 
Finally, the Archive is returned as an output. 

7. EXPERIMENTAL DESIGN 
The HEMH is verified to approve its efficiency and effectiveness. 
The HEMH was implemented by C++. All experiments have been 
performed on HP Z600 workstation with (2 CPUs) Intel® X5670 
2.93 GHz and 16.0 GB of RAM.  

7.1 Tested Algorithms & Instances 
To verify the performance of HEMH, some of the state-of-the art 
MOEAs are considered in this study such as NSGAII [3], SPEA2 
[24], GRASPM [20] and MOEA/D [21]. The test instances listed 
below in table 1 are commonly used in the literature [21]. These 
instances are considered to perform the experimental design.  

Table 1: Knapsack test instances 
Instances 

ܰሺܪሻ HMEH 
 ܰሺܪሻ ݏ݈ܽݒܧݔܽܯ Name Knaps(݉) Items(݊) 

KSP252  2 250 150(149) 75(74) 75000 
KSP502 2 500 200(199) 100(99) 100000 
KSP752  2 750 250(249) 125(124) 125000 
KSP253  3 250 300(23)  153(16)  150000
KSP503 3 500 300(23)  153(16)  150000
KSP753  3 750 300(23)  153(16)  150000
KSP254  4 250 364(11) 165(8) 182000
KSP504 4 500 364(11) 165(8) 182000
KSP754  4 750 364(11) 165(8) 182000

7.2 Parameter settings 
Here, the different parameters used for each MOEA is discussed. 
For MOEA/D, the parameter ܪ which controls the number of 
weigh vectors or the population size (ܰሻ, is determined with its 
corresponding (ܰ) for each instance in table 1 above according to 
the complexity. Thus, all of MOEA/D, NSGA-II and SPEA2 use 
the same population size (ܰሻ, whereas GRASPM uses (ܰሻ as the 
number of weight vectors. in HEMH, a small population size is 

used to encourage path-relinking instead of reproduction. the 
values of (ܪ) and their corresponding values of (ܰሻ used in 
HEMH for each instance is also listed in table 1. For NSGA-II, 
SPEA2 and MOEA/D, The initial population is generated 
randomly such that each member ݔ=ሺݔଵ, … , ሻ்ݔ א ሼ0,1ሽ், where 
 =1 with probability equals to 0.5. The maximum number ofݔ
evaluations (ݏ݈ܽݒܧݔܽܯ) is used as stopping criterion for each 
MOEA. In both HEMH and GRASPM in which the local search is 
used, each fitness comparison performed inside the local search 
procedure is considered as an evaluation for fair comparison. For 
each compared MOEA, all efficient solutions observed over 
generations were collected in Archive. In these experiments, the 
same reproduction operator which combines the single-point 
crossover and the standard mutation was considered. Crossover 
was preformed with probability equals to 1, whereas mutation was 
performed for each item independently with probability equals 
to 1 ݊⁄ . In both NSGAII and SPEA2, tournament selection is used 
with tournament size =2. The other control parameters are listed 
in table 2. Finally, the statistical analysis is applied on 30 
independent runs for each MOEA on each test instance. 

Table 2: Parameter used in MOEAs 

Parameters MOEAD GRASPM HEMH 
Neighborhood in Mating: ܶ 10 - 10 
Max. no. of updated solutions: 5 - - ݐ 
RCL definition ratio: ߙ -  0.1 0.1 
Reconstruction ratio: ߚ -  0.5 0.5 
Set of Minimum support: ߪ -  - {1} 
Parents selection : ߜ -  - 0.9 
Minimal hamming distance: ߝ -  - 10 

7.3 Assessment Metrics 
Let ܣ ؿ Թand ܤ ؿ Թ be two approximations to the Pareto 
front (ܲܨ), ܲכ ؿ Թ be a set of uniformly distributed points 
along ܲܨ (Reference Set) and  כݎ א Թ be a reference point. The 
following indicators can be expressed as follows: 
A) The Set Coverage (ࣝ-metric) [22]: 
This indicator is used to compare two approximation sets. The 
function ࣝ maps the ordered pair ሺܣ,  :ሻ to the interval ሾ0,1ሿ asܤ
 ࣝሺܣ, ሻܤ ൌ |ሼݑ|ݑ א ,ܤ ݒ|ݒ א  ܣ ݒ  غ |ሽݑ ⁄|ܤ|   (9) 
Where, ࣝሺܣ,  ܤ ሻ represents the percentage of the solutions inܤ
that are dominated by at least one solution from  ܣ. ࣝሺܤ,  ሻ is notܣ
necessarily equal to 1 െ  ࣝሺܣ, ,ܣሻ. In general, if ࣝሺܤ  ሻ is largeܤ
and ࣝሺܤ,  .in a sense ܤ is better than ܣ ሻ is small, thenܣ
B) The Hypervolume (ः-metric) [22]: 
The Hypervolume of a set ܣ is defined as: 
 ःሺܣ, ሻכݎ ൌ  ࣺሺڂ ሼݑ|ݕ غ ݕ غ אሽ௨כݎ ሻ  (10) 
Where, ࣺ is the Lebesgue measure of a set. This indicator 
describes the size of the objective space that is dominated by 
points of ܣ and dominates כݎ. Here, כݎ is chosen as the origin. 
C) Generational and Inverted Generational Distance: 
The Generational Distance (ܦܩ) & Inverted Generational 
Distance (ܦܩܫ) of a set ܣ are defined as: 
,ܣሺܦܩ  ሻכܲ ൌ  ଵ

||
∑ ሼmin௩אכ ݀ሺݑ, א ሻሽ௨ݒ  (11) 

,ܣሺܦܩܫ  ሻכܲ ൌ ଵ
|כ|

∑ ሼmin௩א ݀ሺݑ, כא ሻሽ௨ݒ  (12) 
Where, ݀ሺݑ,  .in Թ ݒ and ݑ ሻ is the Euclidean distance betweenݒ
The ܦܩሺܣ,  to the ܣ ሻ measures the average distance fromכܲ
nearest solution in ܲכ that reflects the closeness of ܣ to ܲכ. In 
contrast, the ܦܩܫሺܣ,  to כܲ ሻ measures the average distance fromכܲ
the nearest solution in ܣ that reflects the spread of ܣ to a certain 
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multiobjective knapsack problems was presented. The proposed 
HEMH was verified using a set of test instances commonly used 
in the literature. The HEMH was compared with four of the most 
popular MOEAs that considered as the state-of-the art. A set of 
quality assessment indicators was also considered to evaluate the 
performance for all the compared MOEAs. The experimental 
results indicate the superiority of the decomposition based 
MOEAs over the Pareto dominance based MOEAs. They also 
indicate the superiority of local search based MOEAs especially 
the HEMH. Since, it has an average performance highly 
competitive with respect to the compared MOEAs based on the 
assessment indicators used in the study. The main contribution of 
our algorithm is the combination among different metaheuristics 
techniques that intensify the search process in discovering the 
most promising regions in the search space and enhance the 
ability to explore good quality solutions. The second contribution 
is the ability to find a good approximation set of high quality 
solutions using a small set of uniformly distributed search 
directions due to the use of path-relinking and local search 
strategies. In the future work, the tuning parameters of the HEMH 
will be investigated as well as its convergence analysis. 
Additionally, the HEMH will be extended to handle other types of 
combinatorial optimization problems. 
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