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ABSTRACT
This work introduces a new crossover operator specially de-
signed to be used in genetic algorithms (GAs) that encode
candidate solutions as sets of fixed cardinality. The Trans-
mitting Random Assortment Recombination (TransRAR)
operator proceeds by taking elements from a multiset, which
is built by the union of the parent chromosomes, allowing
repeated elements. If an element that is present in both
parents is drawn, it is accepted with probability 1. Ele-
ments that belong to only one of the parents are accepted
with a probability p, smaller than 1. The performance of
this novel crossover operator is assessed in synthetic and
real-world problems. In these problems, GAs that employ
this type of crossover outperform those that use alternative
operators for sets, such as Random Assortment Recombi-
nation (RAR), Random Respectful Recombination (R3) or
Random Transmitting Recombination (RTR). Furthermore,
TransRAR can be implemented very efficiently and is faster
than RAR, its closest competitor in terms of overall perfor-
mance.

Categories and Subject Descriptors
F.2 [Analysis of Algorithms and Problem Complex-
ity]: Miscellaneous

General Terms
Algorithms

Keywords
Crossover operators, genetic algorithms, forma theory

1. INTRODUCTION
In most practical applications for genetic algorithms (GA),

the candidate solutions are encoded as strings of fixed length
over a given alphabet. A common choice is a binary alpha-
bet [3]. In binary encoding, a value ”1” in the i−th position
of the string (locus) can be used to represent the presence
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of a given property and the value ”0” its absence. Standard
evolutionary operators used in combination with this encod-
ing are the one-point, the two-point or the uniform crossover
operators. This type of encoding is unnatural when dealing
with optimization problems with cardinality constraints [2,
5, 19]. These constraints limit the maximum number of ele-
ments that can be included in the final solution. Cardinality-
constrained knapsack problems [6], optimal portfolio selec-
tion [11] or the tracking of financial indexes [21] are practical
examples of such problems. In these problems, using a bi-
nary representation and standard crossover operators can
lead to violations of the cardinality constraints. Consider
for instance a problem whose solution requires the selection
of 2 out of 5 elements (e.g. selecting which stocks to include
in an investment portfolio). Let the strings 11000 (select
the first and the second element) and 10010 (select the first
and the fourth element) be two chromosomes representing
two candidate solutions. If one-point crossover is used, and
the crossover point selected is 2, one of the resulting chil-
dren is 11010 (select the first, the second and the fourth
element), whose cardinality is different than the parents’.
The offspring that violate the cardinality constraint must
be either penalized by using a suitably tuned penalty func-
tion, or repaired by special procedures. Both approaches
tend to misguide the search process [14].

Alternatively, candidate solutions can be encoded as sets
of fixed cardinality. Using appropriately designed evolution-
ary operators that preserve the cardinality of the candidate
solutions, it is possible to avoid the generation of infeasi-
ble individuals in the course of the evolution. For instance,
one can use a mutation operator that consists in exchang-
ing an element in the set with an element outside the set.
This operator preserves the cardinality of the solution and
therefore produces only feasible individuals. As crossover
operator we can take the intersection of the parents’ sets
and add elements present in only one parent randomly until
the desired cardinality is reached. In [16] a general frame-
work for exploiting problem-specific information in the de-
sign of genetic operators and representations is presented.
This framework, known as forma theory, is a generaliza-
tion of schema theory. Based on an analysis of the proper-
ties that recombination operators should have, a number of
representation-independent crossover operators are defined.
Among these are the Random Assortment Recombination
(RAR), the Random Respectful Recombination (R3) and
the Random Transmitting Recombination (RTR) operators.
One can readily design special versions of these operators
that preserve the cardinality of the parents in the offspring.
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In this work, we introduce the Transmitting Random As-
sortment Recombination (TransRAR) operator. This opera-
tor implements recombination using a principled approach,
analogous to the one employed by Radcliffe in the design
of RAR. One of the main differences between TransRAR
and RAR is that, whereas RAR tries to balance respect and
assortment, TransRAR considers a stronger notion than re-
spect called transmission. Respect requires that the children
generated by the recombination process include all the ele-
ments that present in both parents (intersection set). Trans-
mission requires that every element in the child chromosome
comes from at least one of the parents (union set). In RAR
the amount of respect achieved can be tuned by modifying
a parameter w: the larger the value of w, the higher degree
of respect. By contrast, TransRAR attempts to strike a bal-
ance between transmission and assortment by assigning a
higher probability of being selected to those elements that
are present in both parents. Elements that are present in
only one parent are accepted only with probability p.

The manuscript is organized as follows: Section 2 provides
an overview of existing crossover operators for sets. Section
3 describes the TransRAR operator and analyzes the com-
plexity of its implementation. Section 4 analyzes the per-
formance of GAs that employ this operator in benchmark
synthetic and real-world problems. Section 5 summarizes
the results and conclusions of this work and outlines direc-
tions for future research.

2. CROSSOVER OPERATORS FOR SETS
In this section we review some crossover operators for sets,

whose properties and performance have been investigated
in the literature. Most of these operators were introduced
by [17] using ideas from forma theory. Forma theory is a
generalization of schema theory, that uses formae instead of
schemata as the basis for analysis. A forma is an equivalence
class (a disjoint partition of the search space) resulting from
the definition of equivalence relations between candidate so-
lutions for the problem at hand. For instance, let x and y
be two candidate solutions for a given problem. We define
the equivalence relation R1 as xR1y if and only if x and y
contain element 1. This divides the search space into two
disjoint partitions: those solutions which contain element
1, and those which do not. In general, a set of m equiva-
lence relations {R1, . . . , Rm} must be constructed in order
to properly define a genetic representation. For instance, if
our problem consists in finding an optimal subset of a set of
N elements, we need N equivalence relations {R1, . . . , RN}
where xRiy if and only if x and y contain element i. Thus,
it is necessary to use problem-specific knowledge in the def-
inition of these equivalence relations.

The motivation of forma theory is the observation that if
schemata can not group solutions with similar performance,
the predictions of the Schema Theorem [4] about the per-
formance of the solutions in the next generation will fail.
Therefore, the algorithm will not be able to perform bet-
ter than an enumerative search. We expect that by defin-
ing crossover operators that preserve formae rather than
schemata, the search can be guided effectively and obtain
improved results.

In forma theory, an equivalence relation plays the role of
a gene. The induced equivalence classes are therefore ana-
logue to the alleles of the gene. For instance, an equivalence
relation for eye color induces a partition of the search space
of all individuals where the disjoint partitions (alleles) are

blue, green and brown [17]. Recombination operators should
then manipulate these equivalence relations in a meaningful
way. In order to define what ”meaningful” is in this context,
some desirable properties are introduced:

• Respect refers to the characteristic that the children
produced by a recombination operator should always
include all alleles present in both parents. For instance,
if the recombination operator K is respectful, and two
individuals represented by sets {1, 2, 3} and {1, 4, 5}
are recombined, then all children generated by K will
contain element 1.

• Assortment requires that every combination of the al-
leles of the parents is possible in the offspring. For
instance, if K has this property, then from parents
{1, 2, 3} and {1, 4, 5} the child {2, 3, 5} can be pro-
duced by K (and also other combinations).

• Transmission is a stronger notion than respect. It re-
quires that every allele in the children should come
from at least one of its parents. Clearly, if K is a
respectful recombination operator, then K also trans-
mits genes, because alleles common to both parents
are transmitted to the children.

In some genetic representations, operators that satisfy
both respect and assortment cannot be built. We say in this
case that the formae are non-separable. This is the case for
sets of specified cardinality, where basic formae are defined
as the belonging of each possible element in the set. For
instance, consider the case where we recombine sets {1, 2, 3}
and {1, 4, 5} and each solution must exactly have 3 elements.
Respect requires element 1 be present in all children, but
assortment implies that the set {2, 3, 5} must be a possi-
ble outcome. Therefore, no operator can exist which both
respects and assorts these formae.

Let n be the required number of elements in the final so-
lution of a cardinality-constrained problem. Let N be the
number of all available elements (n < N). We now describe
some possible operators on sets of fixed cardinality n that
are designed to take into account the properties respect, as-
sortment or transmission [16].

• Random Respectful Recombination R3

The R3 operator is defined as follows: Take two sets A
and B and calculate their intersection A∩B. The child
is initialized as C = A ∩ B. If |C| = n the recombi-
nation step finishes. Otherwise, the child is completed
with elements chosen at random from the rest of el-
ements present in the parents. This operator clearly
respects all formae to which both parents belong.

• Random Transmitting Recombination RTR
This operator chooses randomly an element of the set
of all sets of cardinality n that can be constructed with
all elements present in the parent sets. That is, take
the union of the two parents A∪B and choose elements
from this set until the child is complete. RTR clearly
enforces gene transmission.

• Random Assortment Recombination RAR
This operator (defined in Algorithm 2.1) is designed for
problems with non-separable formae, in which respect
and assortment cannot be simultaneously achieved. The
integer parameter w regulates how much common in-
formation from the parents is to be exploited by the
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operator. In the pseudocode in Alg. 2.1, A is the in-
tersection set, which contains elements that appear in
both parents. Set B includes the elements not present
in any parent. Sets C and D are identical and contain
the elements present in only one parent. Set E is ini-
tially empty (E = ∅). An additional set G is then built
using w copies of the elements from A and B and one
copy from the elements in C and D. The elements in G
are labeled according to the set from which they orig-
inate. A child chromosome is generated by extracting
one element from G in each iteration. Let g be the ele-
ment which is extracted from G: if it originally comes
from A or C and g /∈ E, then it is included in the
genome of the child. If g ∈ B or g ∈ D, then it is
included in set E. The process is terminated when
n elements have been included in the child, or when
G = ∅. If the latter occurs, then the child is com-
pleted with elements selected at random from those
that have not been included in the child. Clearly, this
procedure assorts formae. The larger the value of w,
the more respectful the operator is. Asymptotically,
RAR approaches R3 as w → ∞.

Algorithm 2.1 Random Assortment Recombination algo-
rithm
1. Create auxiliary sets A,B,C,D,E:

– A = elements present in both parents.

– B = elements not present in any of the parents.

– C ≡ D elements present in only one parent.

– E = ∅.
2. Build set G with w copies of elements from A and B,

and 1 copy of the elements in C and D.

3. Initialize child chromosome φ = ∅.
4. While |φ| < n and G 	= ∅:

– Extract g ∈ G without replacement.

– If g ∈ A or g ∈ C, and g /∈ E, φ = φ ∪ {g}.
– If g ∈ B or g ∈ D, E = E ∪ {g}.

5. If |φ| < n, add elements not yet included chosen at
random until chromosome is complete.

GAs with set encoding have been extensively investigated
in the literature and applied in a variety of contexts: The
authors of [2] found that the performance of RAR strongly
depends on the ratio n/N (where n is the size of the subset
and is N the size of the element universe). They showed that
the diversity in the population is maximal for n/N = 0.5 and
very small for values close to 0 or 1. The consequence is pre-
mature convergence, specially in cases where n/N (1− n/N)
is small. To avoid this problem they proposed some improve-
ments in the design of the RAR operator. Specifically, the
diversity in the population is enhanced when it decreases
in the course of the evolutionary process. The recombina-
tion operators designed depend on additional parameters.
Determining the optimal values of these parameters can be
difficult and represents a handicap for the practical imple-
mentation of these operators.

Variants of the RAR and the R3 crossover operators [16]
are applied in [10] to the p-Median problem. In these modifi-
cations, local search is used to improve the fitness of the off-
spring obtained in the recombination operation. In [5], the

R3 operator was found to give better results than a greedy al-
gorithm and than a GA with a special string encoding in the
leaf-constrained minimum spanning tree problem. The goal
of this problem is to build a spanning tree on a undirected
weighted graph such that it contains more than l leaves and
whose weight is as small as possible. As the authors pointed
out, the use of a fixed-length subset encoding and opera-
tors that always produce feasible solutions improves the ef-
ficiency of the algorithm because it reduces the size of the
search space. In [19] the performance of GAs that use a bi-
nary representation with penalty or repair mechanisms and
of GAs that use a set representation and implement recom-
bination using the RAR operator are compared in a series
of benchmark problems with cardinality constraints. A hy-
brid approach using the RAR crossover operator obtained
the best overall results in the evaluation.

3. TRANSMITTING RAR
In this section we introduce the Transmitting RAR (Tran-

sRAR) crossover operator. The key idea in the design of
this operator is to guarantee gene transmission. By con-
trast, the principle used in the design of the RAR operator
is to achieve an appropriate balance between respect and
assortment. Transmission is preferable than strict respect
because it favors genetic diversity while guaranteeing that
the genetic material of the parents’ chromosomes will be
transmitted to their offspring.

The pseudocode in Algorithm 3.1 describes the implemen-
tation of the TransRAR crossover operator. The operator
assorts formae because every combination of alleles in the
parents can be obtained with a certain probability. It also
transmits genes: if they are selected, alleles that are present
in both parents are always accepted. Alleles that are present
in only one of the parents are accepted with probability p.
The value of p controls the balance between respect and
transmission. For lower values of p the operator favors re-
spect. In the limit p = 0 all elements present in only one
parent are rejected and the maximum level of respect is
achieved. Note that for this value, the probability that U is
empty before the child is completed is 1 if the parents are
not equal. For higher values of the parameter p, more ele-
ments present in only one parent are selected on average. If
the degree of respect is too high (p too low), the genetic al-
gorithm tends to convergence prematurely and get trapped
in local optima. The larger the magnitude of p, the higher
the variability in the offspring population produced by the
operator. As a consequence, the evolutionary process can
become less effective. An adequate balance between respect
and diversity is achieved for intermediate values of p. In this
work, the value p = 1/2 is used on the basis of exploratory
experiments. It provides good overall results in all the prob-
lems investigated.

3.1 Complexity analysis
The TransRAR operator can be implemented very effi-

ciently. In particular, the following upper-bound can be
given for the time-complexity of the algorithm: Let n be
the size of the parents’ chromosomes and N the size of the
universe from which elements can be selected. Let Φ1 and
Φ2 be the parent chromosomes of cardinality n, and let
N = Φ1 ∪ Φ2. Let the extension function for the parent
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Algorithm 3.1 The TransRAR crossover operator for sets.

INPUT: Φ1, Φ2 the parent chromosomes of cardinality n.
OUTPUT: Φ offspring of cardinality n.

1. Create multiset U as the multiset-union of the parent
chromosomes: U = Φ1 
 Φ2.

2. Assign each element u ∈ U the attribute EΦ1Φ2(u).

3. While child chromosome φ is incomplete (|φ| < n):

• Extract an element uk from U uniform randomly.
U = U \ {uk}

• If EΦ1Φ2(uk) = 1, then φ = φ∪ {uk} with proba-
bility 1.

• else, φ = φ ∪ {uk} with probability p.

• If U = ∅, select n − |φ| elements randomly to
complete chromosome.

chromosomes Φ1 and Φ2 be defined as

EΦ1Φ2 : N → {0, 1}

EΦ1Φ2(u) =

{
1 if u ∈ Φ1 ∩ Φ2

0 if u ∈ Φ1 ∪ Φ2 − (Φ1 ∩ Φ2)
(1)

Steps 1 and 3 require O(n) operations. Consider Step 2.
One possible method to calculate the function EΦ1Φ2 is to
sort the elements in U and then remove one element u for
which we calculate E(u). Note that element u is repeated
if and only if it is in the intersection set of the two par-
ent sets. Then we can apply binary search to look for the
presence of an additional copy of u. If an element is found,
then EΦ1Φ2(u) = 1. Otherwise EΦ1Φ2(u) = 0. Since sort-
ing requires O(n log n) steps and removing and searching in
the sorted multiset require O(log n) steps, the worst case
complexity f(n) of the algorithm is

f(n) = O(n) +O(n log n) = O(n log n) (2)

The time-complexity of the RAR operator is computed
for a fixed value of the parameter w > 0: Let n and N
be defined as before. Step 1 in 2.1 can be completed in
O(N) + O(n log n) operations, assuming that we have to
sort the parent chromosomes first. Suppose that building
the multiset G requires constant time O(1). Step 4 requires
in the worst case exactly |G| iterations. By construction,
|G| = O(wN). Determining from which set element g comes
requires constant time if each element is labeled when con-
structing G. Assuming that set E is kept sorted on every
step, then searching g in E requires O(logN) steps. There-
fore, the total worst-case complexity is

f(N,n,w) = O(1) +O(N) +O(n log n) +O(wN logN) =

= O(wN logN)

Note that the worst-case complexity of TransRAR is ex-
pressed in terms of the size of the subset n, whereas in the
case of RAR the complexity if a function of the size of the
total number of elements, N > n. In many cases of practi-
cal interest N >> n. Therefore, the worst-case complexity
of RAR is larger than TransRAR. This does not necessarily
imply that TransRAR is more efficient than RAR in aver-
age cases. Nonetheless, the empirical evidence presented in

the following section shows that TransRAR is much more
efficient than RAR in the problems investigated.

4. EMPIRICAL EVALUATION
In this section we present the results of experiments car-

ried out to assess the performance of the TransRAR operator
in several synthetic (knapsack problem, epistatic functions)
and real-world (portfolio selection in finance) problems of
practical interest.

4.1 The knapsack problem
Consider the problem of filling a knapsack with D items.

Associated with each element i is a profit pi and a weight wi.
The knapsack has a limit W on the total weight it can carry.
The objective is to find the subset of elements that maximize
the total profit without exceeding the maximum weight W .
More formally, we seek to find the optimal solution to the
following 0/1 integer linear problem (ILP):

max
D∑
i=1

pizi s.t.
D∑
i=1

wizi ≤ W zi ∈ {0, 1} (3)

where zi = 1 if element i is included in the knapsack, and
0 otherwise. In this formulation, there are no cardinality
constraints. Nonetheless, the optimal solution to the uncon-
strained problem can be obtained by solving D knapsack
problems with cardinality constraints

D∑
i=1

zi = k; k = 1, 2, . . . D (4)

The 0/1 knapsack problem has been approached using
both exact and approximate methods. Exact algorithms
based on branch-and-bound techniques and dynamic pro-
gramming [12] are reviewed in [15]. Approximate methods,
such as genetic algorithms [22, 7], estimation of distribu-
tion algorithms [8] and ant colony optimization [9] have also
been used to address this problem. We present results on
the knapsack problem using the testing protocol proposed in
[13] [22]. Let v, r ∈ R

+, v > 1. In terms of these parameters,
the following types of knapsack problems can be defined:

(1) Uncorrelated : The values wi and pi are obtained in
independent samples from a uniform distribution in
the interval [1, v].

(2) Weakly correlated : The weights wi are uniformly dis-
tributed in [1, v] and the profits pi in [wi − r, wi + r].

(3) Strongly correlated : The weights wi are uniformly
distributed in [1, v], and the profits are a deterministic
function of the weights pi = wi + r.

Correlated problems (both weakly and strongly correlated)
are often more difficult to solve than uncorrelated problems.
Following the protocol employed in [19], we use v = 10,
r = 5 and a capacity W = 2v, which leads to solutions in
which only a few items are selected. The size of the prob-
lems ranges from 100 to 1000 elements in the knapsack. The
results reported are averages over 25 independent random
realizations of each problem. The population size in the GA
is set to 100 individuals. The probabilities of crossover and
mutation are pc = 1, pm = 10−2, respectively.

The value of the parameter p in the TransRAR operator
(Alg. 3.1) is determined in exploratory experiments. Figure
1 presents a typical outcome of these experiments. This
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Figure 1: Mean profit obtained by TransRAR in the
knapsack problem with 500 items and no correlation
as a function of the probability of acceptance.

figure displays the best average profit obtained in a knapsack
problem with 500 elements and no correlation as a function
of p, the probability of accepting an element that is present
in only one of the parents once it has been drawn. As can
be seen from this plot, large values of p lead to a sharp
deterioration of performance. The reason is that too much
variability is introduced in the search and the algorithm is
not able to preserve formae that perform well. Values of
p close to 1/2 yield the best results. Fairly good results
are also obtained for lower values of p. In this particular
case, high degrees of respect (and therefore lower variability)
lead to good results. This is true in general, but too much
respect can result in premature convergence and therefore
one typically obtains suboptimal solutions. Experiments in
other problems give similar results. Therefore, no further
adjustments of this parameters are made and the value p =
1/2 is used in all cases. Exploratory experiments are carried
out to determine the optimal value of the parameter w in
RAR. In view of the results of these experiments, the best
performance is obtained with w = 1. This is different from
the value w = 2 proposed as a natural choice and used in
the original study by Radcliffe [18]. In our experiments,
this value produced suboptimal solutions because too much
common information from the parents is exploited by the
crossover operator. The consequence is that the algorithm
frequently converges prematurely and becomes trapped in
local optima.

The results of the experiments in knapsack problems are
summarized in Table 1. The performance of each method
on the different problems is measured in terms of average
profit obtained and average time (in seconds) required to
reach a solution. All experiments are carried out on an Intel
Core Duo machine with 2 GHz clock speed and 2 GB RAM.
In most cases the best results are obtained by TransRAR.
Nevertheless, the differences in quality between the solutions
obtained by GA-RAR and by GA-TransRAR are very small.
In terms of efficiency, the computational cost of TransRAR
is much lower than RAR, RTR and R3. For instance, Tran-
sRAR is 6.6 times faster that RAR in the weak correlation
problems with 1000 elements. The smallest speed-up ratio
between these two methods is 2.1 in the strong correlation
case with a universe of 100 elements.

4.2 Epistatic functions
Epistatic functions were introduced in [18] as a bench-

mark to evaluate and compare the performance of set-based
crossover operators. These functions are constructed as fol-
lows: Given a universe size N , the objective is to find the
subset s∗ = {1, 2, . . . , n} where n = N/2. In a non-epistatic
problem, the credit of a candidate solution s is the number
of elements it has in common with the optimal solution s∗.
Therefore, the fitness function is F (s) = |s ∩ s∗|.

In an epistatic (or deceptive) version of problem, the credit
for having k elements in common with the optimal solution is
randomly shuffled. This is done as follows: First, construct
consecutive bins of a fixed size L. In the first bin we put
the elements from 1 to L. In the second bin, the elements
from L+ 1 to 2L, and so on. Therefore, each bin i contains
the elements from iL+1 to (i+1)L, for i = 0, . . . , N/L− 1.
Candidate solutions receive full credit for a particular bin
only if they include all the elements in the bin. This means
that, for bin i, solution s obtains L points if it contains all
elements from iL+1 to (i+1)L. The credit for having fewer
elements is a randomly chosen value in the interval [0, L−1].
For instance, in a problem whose selection universe contains
N = 120 items, L = 5 , we construct 24 bins. The first bin
contains the elements from 1 to 5, the next from 6 to 10,
and so on. The credit for having all elements from 1 to 5 is
exactly 5, but the credit for having the elements {1, 2, 3, 4} is
randomly chosen in the interval [0, 4]. Note that a candidate
solution that includes items {1, 2, 3} can therefore receive
higher credit than another one including {1, 2, 3, 4}. Clearly,
the larger the bin size L, the more deceptive and the more
difficult the problem is. Therefore, the bin size is used as a
measure of the epistasis of the problem.

The results for N = 120 and different degrees of epistasis
(bin size) are presented in Table 2. Analyzing these results
one concludes that both RAR and TransRAR achieve the
optimal solution in the non-epistatic case. For lower degrees
of epistasis, TransRAR obtains the best results. Nonethe-
less, in the problem with the highest degree of epistasis (bin
size 15) the best results are obtained by RAR, followed by
R3. Interestingly, the quality of the solutions obtained by
RTR and R3 increase with the degree of epistasis. This
is because the problem becomes more random as the de-
gree of epistasis increases. Therefore all algorithms tend to
perform equally well or equally poorly when the problem
becomes random. Note that again, TransRAR is in all in-
stances more efficient than RAR. In this case, the speed-up
factors range from 1.7 to 1.8.

4.3 Portfolio selection with cardinality cons-
traints

The problem of portfolio selection [11] with cardinality
constraints can be summarized as follows: Let wi ∈ [0, 1]
represent the proportion of wealth invested in product i
in a given portfolio. The goal is to construct a portfolio
P = {w1, w2, . . . , wN} such that it minimizes a measure of
risk (in the Markowitz model, risk is measured in terms of
the variance of the portfolio returns) for a expected value
of the portfolio returns. The portfolio invests at most in
n ≤ N assets and satisfies certain constraints of practical
importance. The precise formulation of the resulting mixed-
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Table 1: Results for the 0-1 Knapsack problem with restrictive capacity
Corr. No.Items Algorithm

GA RTR GA R3 GA RAR GA TransRAR
Profit Time Profit Time Profit Time Profit Time

none 100 80.8419 34.8 80.7396 24.6 82.0870 46.0 81.9757 20.9
none 250 99.8103 53.5 96.6147 34.7 105.3458 106.3 105.4573 31.9
none 500 109.4330 66.1 104.6797 42.4 119.8828 199.9 120.1059 41.9
none 750 112.6248 76.9 107.2820 46.0 126.2109 286.3 126.0044 50.0
none 1000 113.2639 88.0 108.2204 51.6 128.9135 373.9 128.9246 56.8
weak 100 53.3890 34.4 52.9563 24.2 54.3782 45.6 54.3814 21.0
weak 250 63.6689 51.2 61.8034 32.6 66.2444 102.6 66.6882 30.8
weak 500 68.4328 66.8 65.2095 41.1 74.1670 200.4 74.7777 42.7
weak 750 70.2186 78.2 68.3203 47.4 77.2306 289.0 78.3826 50.0
weak 1000 70.2327 94.8 67.5378 50.7 80.3405 375.6 79.9027 57.1
strong 100 78.9795 37.1 78.7587 25.8 79.7744 48.4 79.7759 22.5
strong 250 92.3969 57.3 89.9881 36.5 94.1974 109.0 94.1989 33.3
strong 500 96.1989 70.8 94.7948 49.8 101.3986 204.0 101.3987 43.2
strong 750 98.7989 83.0 96.1836 44.6 104.7966 300.9 104.7946 51.6
strong 1000 98.3991 90.5 97.1871 54.4 106.5970 388.0 106.1977 59.1

Table 2: Results for the epistatic functions
Algorithm

Problem type GA RTR GA R3 GA RAR GA TransRAR
Fitness Time Fitness Time Fitness Time Fitness Time

none 53.44 25.7 59.04 16.6 60.00 16.7 60.00 9.8
Bin=5 40.12 26.9 47.16 17.9 48.72 17.6 49.00 10.4
Bin=10 44.40 27.1 46.48 17.9 46.44 18.5 47.00 10.2
Bin=12 47.04 27.2 47.88 18.2 47.88 18.8 47.96 10.3
Bin=15 49.12 27.2 48.96 18.4 49.36 18.9 48.92 10.3

integer quadratic program (MIQP) is

min
w,z

w[z]T ·Σ[z,z] ·w[z] (5)

s.t. w[z]T · r̄[z] = R∗ (6)

wT · 1 = 1, w ≥ 0 (7)

l[z] ≤ w[z] ≤ u[z], l[z] ≥ 0, u[z] ≥ 0 (8)

zT · 1 ≤ n (9)

The vector zt = {z1, . . . , zN} is composed of binary vari-
ables zi that indicate whether product i is included in the
portfolio (zi = 1) or not (zi = 0). We denote x[z] as the
reduced vector obtained by removing from x those compo-
nents for which zi = 0. Analogously, the matrix Σ[z,z] de-
notes the reduced matrix obtained by removing those rows
and columns for which the corresponding binary variable is
zero (zi = 0). This model requires as input r̄, the vector
of expected asset returns, and Σ, the covariance matrix for
the portfolio returns. Additionally, the value R∗ is speci-
fied by the investor. It is the level of expected return of the
portfolio, as specified by the linear constraint (6). Different
portfolios are obtained as solutions of Eqs. (5)-(9) by se-
lecting different values of R∗ in the interval [R∗

min, R
∗
max],

where R∗
min(R

∗
max) is the lowest (highest) expected return

of the assets that are considered for investment. This set of
Pareto-optimal portfolios form the efficient frontier. Each
point in this frontier corresponds to the portfolio that mini-
mizes the risk for the specified level of expected return. In a
dual view of the problem, it also corresponds to a portfolio
that maximizes the expected return for a given level of risk.

Equation 7 is a budget constraint. It is written in terms
of the vector of investment weights and a vector of ones
1. The constraint reflects the fact that the initial wealth is
invested fully in the portfolio (i.e. no transaction costs are
considered). This constraint also specifies that short-selling
is not allowed (wi ≥ 0) and that one cannot borrow money to
invest in risky assets (wi ≤ 1). Eq. (8) reflects the fact that
the investor can set lower and upper bounds on the weights
of each of the assets selected for investment (li ≤ wi ≤ ui).
Finally, Eq. (9) is the cardinality constraint, which limits
the number of assets included in the final portfolio. This
constraint can be introduced to avoid investing in too many
products, which may increase the difficulty of managing the
portfolio.

Experiments are carried out with the values li = 0.1,
ui = 1.0, i = 1, . . . , N and n = 10 as in previous studies [20]
[14]. For each investment problem (defined by a different
universe of assets for investment) we compute the optimal
risk of NF = 100 portfolios obtained by fixing a different
value of the expected return R∗. These vales are equally
spaced in the interval [R∗

min, R
∗
max]. The quality of the

solutions is determined by calculating the average relative
distance between the constrained efficient frontier (σc

i , risk
of the optimal portfolio with cardinality constraints) and
the unconstrained efficient frontier (σ∗

i , optimal risk with-
out cardinality constraints)

D =
1

NF

NF∑
i=1

σc
i − σ∗

i

σ∗
i

(10)

The problems compiled in the OR-Library [1] are used in the
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experiments. The goal is to construct optimal portfolios that
invest in the universe of assets included in the calculation of
different stock market indexes: Hang Seng (Hong-Kong, 31
assets), DAX (Germany, 85 assets), FTSE (UK, 89 assets),
Standard and Poor’s (U.S.A., 98 assets) and Nikkei (Japan,
225 assets). In the genetic algorithm populations of 100
individuals are used. Mutation and crossover probabilities
are set to pm = 10−2 and pc = 1.
The results of the experiments performed are summarized

in Table 3. The value of D displayed in the third column is
the best out of 5 executions of the algorithms for each in-
stance. The column labeled as success rate gives the propor-
tion of attempts in which the best known solution is reached.
The last two columns report the time employed (in seconds)
and the number of quadratic optimizations performed, re-
spectively. The table shows that RAR and TransRAR ob-
tain the best results. TransRAR is also more efficient than
RAR in all problem instances. The speed-up factors range
between 1.1 in the Hang Seng problem and 1.6 in the Nikkei
problem. Moreover, the success rates are always the largest
for TransRAR. Note that the number of quadratic optimiza-
tions is similar both in TransRAR and RAR, which indicates
that the reason for the efficiency of the algorithm is the im-
plementation of the crossover operator itself and not the fact
that fewer quadratic optimizations are performed.

5. CONCLUSIONS
In this work, we have introduced a novel crossover oper-

ator for problems whose candidate solutions are encoded as
sets of fixed cardinality. The TransRAR operator is designed
on the basis of ideas from forma theory. Besides preserving
the cardinality of the candidate solutions, the TransRAR
operator enforces transmission. In TransRAR crossover, el-
ements that are present in both parents are accepted when-
ever they are drawn. By contrast, elements that are present
in only one parent are accepted only with a probability p < 1
upon selection. The transmission property ensures that the
genetic material from the parents is included in the children.
At the same time it allows to control the variability produced
by the operator by selecting the value of p. Transmission is
a more restrictive property than respect, in the sense that
all operators that enforce respect also enforce transmission.
However, not all operators that enforce transmission are re-
spectful. The amount of variability produced by respectful
crossover operators is often insufficient to guarantee an ef-
fective exploration of the state space, which means that the
search often gets trapped in local optima.

The operations required to perform TransRAR recombi-
nation can be implemented very efficiently. The worst-case
performance of the algorithm is O(n log n), where n is car-
dinality of the set. By contrast, the time complexity of the
implementation of the RAR operator is O(wN logN), where
N is the total number of available elements and w measures
the degree of common information from the parents which
is exploited in the RAR operator. Experiments in a suite
of benchmark problems (knapsack, epistatic functions, port-
folio selection with cardinality constraints) show that GAs
with TransRAR outperform GAs with RAR and have lower
computational costs.

Directions of future research include the analysis of the
performance of the TransRAR crossover operator with the
help of forma theory. In particular, the role of the parameter
p (probability of acceptance of elements included only in one
of the parents) will be investigated within this framework.
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