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ABSTRACT 
The generalized traveling salesman problem (GTSP) is an NP-
hard problem that extends the classical traveling salesman 
problem by partitioning the nodes into clusters and looking for a 
minimum Hamiltonian tour visiting exactly one node from each 
cluster. In this paper, we combine the consultant-guided search 
technique with a local-global approach in order to solve 
efficiently the generalized traveling salesman problem. We use 
candidate lists in order to reduce the search space and we 
introduce efficient variants of 2-opt and 3-opt local search in order 
to improve the solutions. The resulting algorithm is applied to 
Euclidean GTSP instances derived from the TSPLIB library. The 
experimental results show that our algorithm is able to compete 
with the best existing algorithms in terms of solution quality and 
running time. 

Categories and Subject Descriptors 
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods, 
and Search – heuristic methods. 

General Terms 
Algorithms. 

Keywords 
Generalized traveling salesman problem, hybrid algorithms, 
consultant-guided search. 

1. INTRODUCTION 
The generalized traveling salesman problem (GTSP) is an NP-
hard problem that extends the classical traveling salesman 
problem by considering a related problem given a partition of the 
nodes of a graph into clusters. The problem consists in finding the 
shortest closed tour visiting exactly one node from each cluster. 
The existence of several applications of the GTSP and the 
difficulty of obtaining optimum solutions for the problem has led 
to the development of several heuristics and metaheuristics, see 
for example [4], [13], [14], [15]. 
Consultant-guided search (CGS) is a recent metaheuristic for 
combinatorial optimization problems, inspired by the way real 

people make decisions based on advice received from consultants. 
The CGS metaheuristic can be used to solve hard combinatorial 
optimization problems and it has been successfully applied to the 
classical Traveling Salesman Problem (TSP) [8] and to the 
Quadratic Assignment Problem [9]. 

The aim of this paper is to propose a hybrid algorithm that 
combines the consultant-guided search technique with a local-
global approach for solving the GTSP. Our algorithm constructs 
Hamiltonian tours in the global graph obtained by replacing all 
nodes of a cluster with a supernode. Then, each global solution is 
improved using an efficient variant of 2-opt or 3-opt local search 
that takes advantage of the structure imposed by the global graph 
(i.e., the graph obtained by replacing all nodes of each of the 
clusters with a supernode representing it). Finally, a cluster 
optimization procedure is applied in order to find the best 
generalized tour corresponding to the given sequence of clusters. 

We report the computational results obtained by applying our 
algorithm to symmetric Euclidean GTSP instances derived from 
the TSPLIB benchmark library. The experimental results show 
that our algorithm can compete with the best existing algorithms 
for the GTSP in terms of both solution quality and running time. 

2. THE LOCAL-GLOBAL APPROACH TO 
THE GENERALIZED TRAVELING 
SALESMAN PROBLEM 
Let ܩ ൌ ሺܸ,  ሻ be an ݊-node undirected complete graph whoseܧ
edges are associated with non-negative costs and let ଵܸ, … , ௠ܸ be a 
partitioning of ܸ into ݉ subsets called clusters (i.e. ܸ ൌ ଵܸ ∪ ଶܸ ∪
…	∪ ௠ܸ and ௟ܸ ∩ ௞ܸ ൌ ∅  for all ݈, ݇ ∈ ሼ1, . . . , ݉ሽ).  

Then the generalized traveling salesman problem asks for finding 
a minimum-cost tour ܪ spanning a subset of nodes such that ܪ 
contains exactly one node from each cluster ௜ܸ, ݅ ∈ ሼ1, . . . , ݉ሽ. We 
call such a cycle a generalized Hamiltonian tour. 

Based on the way the generalized combinatorial optimization 
problems are defined as extensions of the classical variants, a 
natural approach that takes advantage of the similarities between 
them is the local-global approach introduced by Pop [11] in the 
case of the generalized minimum spanning tree problem.   

In the case of the GTSP, the local-global approach aims at 
distinguishing between global connections (connections between 
clusters) and local connections (connections between nodes from 
different clusters). This approach was already pointed out and 
exploited by Hu et al. in [5] and by Bontoux et al. [1]. 
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Given a sequence in which the clusters are visited (i.e. a global 
Hamiltonian tour), there are several generalized Hamiltonian tours 
corresponding to it. The best corresponding (with respect to cost 
minimization) generalized Hamiltonian tour can be determined 
either by using a layered network as we will describe next or by 
using integer programming. 

We denote by ܩ’ the graph obtained from ܩ after replacing all 
nodes of a cluster ௜ܸ with a supernode representing ௜ܸ. We will 
call the graph ܩ’ the global graph. For convenience, we identify 
௜ܸ with the supernode representing it. Edges of the graph ܩ′ are 

defined between each pair of the graph vertices ௜ܸ , … , ௠ܸ. 

Given a sequence ௞ܸభ , … , ௞ܸ೘  in which the clusters are visited, we 
want to find the best feasible Hamiltonian tour ܪ∗ (with respect to 
cost minimization), visiting the clusters according to the given 
sequence. This can be done in polynomial time by solving | ௞ܸభ| 
shortest path problems, as we describe below. 

We construct a layered network, denoted by LN, having ݉ ൅ 1 
layers corresponding to the clusters ௞ܸభ , … , ௞ܸ೘  and in addition we 
duplicate the cluster ௞ܸభ . The layered network contains all the 
nodes of ܩ plus some extra nodes ݒ′ for each ݒ ∈ ௞ܸభ . There is an 
arc ሺ݅, ݆ሻ for each ݅ ∈ ௞ܸ೗  and ݆ ∈ ௞ܸ೗శభ (݈ ൌ 1, . . . , ݉ െ 1), having 
the cost ܿ௜௝. Moreover, there is an arc ሺ݅, ݆′ሻ for each ݅ ∈ ௞ܸ೘   and 
݆′ ∈ ௞ܸభ  having the cost  ܿ௜௝ᇲ . 

 

Figure 1. Example showing a Hamiltonian tour in the 
constructed layered network LN 

For any given ݒ ∈ ௞ܸభ , we consider paths from ݒ to ݒ ,′ݒ′ ∈ ௞ܸభ, 
that visits exactly one node from each cluster ௞ܸమ , … , ௞ܸ೘ , hence it 
gives a feasible Hamiltonian tour. 

Conversely, every Hamiltonian tour visiting the clusters according 
to the sequence ( ௞ܸభ , … , ௞ܸ೘) corresponds to a path in the layered 
network from a certain node ݒ ∈ ௞ܸభ  to ݒ′ ∈ ௞ܸభ . 

Therefore, it follows that the best (with respect to cost 
minimization) Hamiltonian tour ܪ∗ visiting the clusters in a given 
sequence can be found by determining all the shortest paths from 
each ݒ ∈ ௞ܸభ  to the corresponding ݒ′ ∈ ௞ܸభ  with the property that 
it visits exactly one node from each of the clusters ௞ܸమ , … , ௞ܸ೘ . 

The overall time complexity is then | ௞ܸభ|ܱሺ|ܧ| ൅ log ݊ሻ, i.e. 
ܱሺ݊|ܧ| ൅ n	log ݊ሻ, in the worst case, where by |ܧ| we denote the 
number of edges. We can reduce the time by choosing ௞ܸభ  as the 
cluster with minimum cardinality. 

Notice that the above procedure leads to an ܱሺሺ݉ െ 1ሻ! ሺ݊|ܧ| ൅
n	log ݊ሻሻ time exact algorithm for the GTSP, obtained by trying 
all the ሺ݉ െ 1ሻ! possible cluster sequences.  

Clearly, the algorithm presented is an exponential time algorithm, 
unless the number of clusters ݉ is fixed. 

3. THE CGS METAHEURISTIC 
In this section, we briefly describe the Consultant-Guided Search 
(CGS) metaheuristic. We refer the reader to [7] for a detailed 
presentation. 

CGS is a swarm intelligence technique for solving hard 
combinatorial optimization problems, which takes inspiration 
from the way real people make decisions based on advice received 
from consultants. 

CGS is a population-based method. An individual of the CGS 
population is a virtual person, which can simultaneously act both 
as a client and as a consultant. As a client, a virtual person 
constructs at each iteration a solution to the problem. As a 
consultant, a virtual person provides advice to clients, in 
accordance with its strategy. Usually, at each step of the solution 
construction, there are several variants a client can choose from. 
The variant recommended by the consultant has a higher 
probability to be chosen, but the client may opt for one of the 
other variants, which will be selected based on some heuristic. 

At the beginning of each iteration, a client chooses a consultant 
based on its personal preference and on the consultant's 
reputation. The reputation of a consultant increases with the 
number of successes achieved by its clients. A client achieves a 
success, if it constructs a solution better than all solutions found 
until that point by any client guided by the same consultant. Each 
time a client achieves a success, the consultant adjusts its strategy 
in order to reflect the sequence of decisions taken by the client. 

Because the reputation fades over time, a consultant needs that its 
clients constantly achieve successes, in order to keep its 
reputation. If the consultant's reputation sinks below a minimum 
value, it will take a sabbatical leave, during which it will stop 
offering advice to clients and it will instead start searching for a 
new strategy to use in the future. 

4. THE HYBRID ALGORITHM FOR THE 
GTSP 
We propose in this section an algorithm for the GTSP that 
combines the consultant-guided search technique with a local-
global approach and improves the solutions using a local search 
procedure. Most GTSP instances of practical importance are 
symmetric problems with Euclidean distances, where the clusters 
are composed of nodes that are spatially close one to the other. 
We design our algorithm to take advantage of the structure of 
these instances. 

4.1 The Algorithm 
At each iteration, a client constructs a global tour, that is, a 
Hamiltonian cycle in the global graph. The strategy of a 
consultant is also represented by a global tour, which the 
consultant advertises to its clients. The algorithm applies a local 
search procedure in order to improve the global tour representing 
either the global solution of a client or the strategy of a consultant 
in sabbatical mode. Then, using the cluster optimization procedure 
described in section 2, the algorithm finds the best generalized 
tour corresponding to the global tour returned by the local search 
procedure. 

In order to compare the strategies constructed during the 
sabbatical leave, a consultant uses the cost of the generalized tour 
corresponding to each strategy. Similarly, the success of a client is 
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evaluated based on the cost of the generalized solution. The 
pseudocode of our algorithm is shown in Figure 2. 

1 procedure CGS‐GTSP() 
2  create the set ࣪ of virtual persons 
3  foreach p ∈ ࣪ do 
4   setSabbaticalMode(p) 
5  end foreach 
6  while (termination condition not met) do 
7   foreach p ∈ ࣪ do 
8    if actionMode[p] = sabbatical then 
9     currStrategy[p] ← constructStrategy(p) 

10     applyLocalSearch(currStrategy[p]) 
11     genStrategy ← clusterOptimization(currStrategy[p])
12     if cost(genStrategy) < bestStrategyCost then 
13      bestStrategy[p] ← currStrategy[p] 
14      bestStrategyCost[p] ← cost(genStrategy) 
15     end if 
16    else 
17     c ← chooseConsultant(p) 
18     if c ≠ null then 
19      currSol[p] ← constructSolution(p, c) 
20      applyLocalSearch(currSol[p]) 
21      currGenSol[p] ← clusterOptimization(currSol[p])
22      if currGenSol[p] is better than all solutions found 
23         by a client of c since last sabbatical then
24       successCount[c] ← successCount[c] + 1 
25       strategy[c] ← currSol[p] 
26      end if 
27     end if 
28    end if 
29   end foreach 
30     updateReputations() 
31     updateActionModes() 
32  end while 
33 end procedure 

Figure 2. The CGS-GTSP algorithm 

A virtual person may be in one of the following modes: normal 
and sabbatical. During the initialization phase (lines 2-5), virtual 
people are created and placed in sabbatical mode. Based on its 
mode, a virtual person constructs at each iteration of the algorithm 
(lines 7-31) either a global solution to the problem (line 19) or a 
global consultant strategy (line 9). In subsection 4.2, we describe 
the operations involved by the construction of a global solution or 
strategy, as well as the method used by a client in order to choose 
a consultant for the current iteration (line 17). 

Global strategies and global solutions are improved by applying a 
local search procedure (lines 10 and 20). The clusterOptimization 
procedure described in section 2 is then used to find the best 
generalized strategy (line 11) corresponding to the current global 
strategy or to find the best generalized solution (line 21) 
corresponding to the current global solution. 

After constructing a global strategy, a virtual person in sabbatical 
mode checks if the corresponding generalized strategy is the best 
generalized strategy found since the beginning of the sabbatical 
(lines 12-15). Similarly, after constructing a global solution, a 
client checks the corresponding generalized solution in order to 
decide if it has achieved a success and, if this is the case, it 
updates the strategy of its consultant (lines 22-26). 

At the end of each iteration, the reputation and action mode of 
each virtual person are updated (lines 30-31).  

Figure 3 details how consultants’ reputations are updated based on 
the successes achieved by their clients.  

1 procedure updateReputations() 
2  foreach p ∈ ࣪ do 
3 if actionMode[p] = normal then 
4    rep[p] ← rep[p] * (1 - fadingRate) 
5 rep[p] ← rep[p] + successCount[p] 
6    if cost(currGenSol[p]) < cost(bestSoFarSol) then 
7 bestSoFarSol  ← currGenSol[p] 
8 rep[p] ← rep[p] + 10   // reputation bonus
9    end if

10    if rep[p] > 10 * initialReputation then 
11         rep[p] ← 10 * initialReputation 
12    end if
13 if p is the best consultant then 
14         if rep[p] < initialReputation then 
15           rep[p] ← initialReputation 
16     end if 
17    end if
18   end if 
19  end foreach 
20 end procedure 

Figure 3. Procedure to update reputations 

Reputations fade over time at a constant rate, given by the 
parameter fadingRate (line 4). The reputation of a consultant is 
incremented with each success achieved by one of its clients 
(line 5) and it receives an additional bonus of 10 for finding a 
best-so-far solution (lines 6-9). The reputation of a consultant 
cannot exceed a maximum value (lines 10-12) and the algorithm 
prevents the reputation of the best consultant, that is, the 
consultant that has found the best-so-far solution, from sinking 
below a given value (lines 13-17). The constant parameter 
initialReputation represents the reputation assigned to a consultant 
at the end of the sabbatical leave. 

Figure 4 details how the action mode of each virtual person is 
updated: consultants whose reputations have sunk below the 
minimum level are placed in sabbatical mode, while consultants 
whose sabbatical leave has finished are placed in normal mode. 

1 procedure updateActionModes() 
2  foreach p ∈ ࣪ do 
3   if actionMode[p] = normal then 
4 if rep[p] < 1 then
5     setSabbaticalMode(p) 
6    end if
7   else 
8    sabbaticalCountdown ← sabbaticalCountdown – 1 
9 if sabbaticalCountdown = 0 then 

10     setNormalMode(p) 
11    end if
12   end if
13 end procedure

Figure 4. Procedure to update action modes 

Figure 5 shows the actions taken to place a virtual person in 
sabbatical or in normal action mode. 
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1 procedure setSabbaticalMode(p) 
2  actionMode[p] ← sabbatical 
3  bestStrategy[p] ← null 
4  bestStrategyCost[p] ← ∞ 
5  sabbaticalCountdown ← 20 
6 end procedure 
  

7 procedure setNormalMode(p) 
8  actionMode[p] ← normal 
9  rep[p] ← initialReputation 

10  strategy[p] ← bestStrategy[p]
11 end procedure 

Figure 5. Procedures to set the sabbatical and normal mode 

4.2 Strategy and Solution Construction 
The heuristic used during the sabbatical leave in order to build a 
new strategy is based on virtual distances between the supernodes 
in the global graph. We compute the virtual distance between two 
supernodes as the distance between the centers of mass of the two 
corresponding clusters. The choice of this heuristic is justified by 
the class of problems for which our algorithm is designed: 
symmetric instances with Euclidean distances, where the nodes of 
a cluster are spatially close one to the other. 

By introducing virtual distances between clusters, we have the 
possibility to use candidate lists in order to restrict the number of 
choices available at each construction step. For each cluster ݅, we 
consider a candidate list that contains the closest ܿܽ݊݀ clusters, 
where ܿܽ݊݀ is a parameter. This way, the feasible neighborhood 
of a person ݇ when being at cluster ݅ represents the set of clusters 
in the candidate list of cluster ݅ that person ݇ has not visited yet. 
Several heuristic algorithms for the TSP use candidate lists during 
the solution construction phase (see [1] for examples of their use 
with Ant Colony Optimization algorithms), but candidate lists 
have not been widely used to construct solutions for the GTSP. 
Our algorithm uses candidate lists during both strategy 
construction and solution construction. 

The use of candidate lists may significantly improve the time 
required by an algorithm, but it could also lead to missing good 
solutions. Therefore, the choice of appropriate sizes and elements 
of the candidate lists is critical for the working of an algorithm. In 
the case of TSP, candidate lists with size 20 are frequently used, 
but other values between 10 and 40 are also usual [10]. For GTSP 
instances with clusters composed of nodes spatially close to each 
other, appropriate sizes for the candidate lists are considerably 
smaller. Our experiments show that values of 4 or 5 are adequate 
in this case. 

During the sabbatical leave, a consultant uses a random 
proportional rule to decide which cluster to visit next. For a 
consultant k, currently at cluster i, the probability to choose 
cluster j is given by formula (1): 

௜௝݌
௞ ൌ

1/݀௜௝
∑ ሺ1/݀௜௟ሻ௟ఢ ೔ࣨ

ೖ
	 (1)

where: 
 ௜ࣨ

௞ is the feasible neighborhood of person k when being at 
cluster i. 

 ݀௜௟ is the virtual distance between clusters i and l. 

As mentioned before, the feasible neighborhood ௜ࣨ
௞ contains the 

set of clusters in the candidate list of cluster ݅ that person ݇ has 
not visited yet. If all the clusters in the candidate list have already 
been visited, the consultant can choose one of the clusters not in 
the candidate list, using a random proportional rule similar to that 
given by formula (1). 

Using virtual distances between clusters as a heuristic during the 
sabbatical leave, leads to reasonably good initial strategies. In 
general, however, a global tour that is optimum with respect to the 
virtual distances between clusters does not produce the optimum 
generalized tour after applying the cluster optimization procedure. 
Therefore, during the solution construction phase, the algorithm 
does not rely on the distances between clusters, although it still 
uses candidate lists in order to determine the feasible 
neighborhood of a cluster. 

At each step, a client receives a recommendation regarding the 
next cluster to be visited. This recommendation is based on the 
global tour advertised by the consultant. Let ݅	 be the cluster 
visited by the client ݇ at a construction step of the current 
iteration. To decide which cluster to recommend for the next step, 
the consultant finds the position at which the cluster ݅ appears in 
its advertised global tour and identifies the cluster that precedes ݅ 
and the cluster that succeeds ݅ in this tour. If neither of these two 
clusters is already visited by the client, the consultant randomly 
recommends one of these two clusters. If only one of these two 
clusters is unvisited, this one is chosen to be recommended. 
Finally, if both clusters are already visited, the consultant is not 
able to make a recommendation for the next step. 

The client does not always follow the consultant’s 
recommendation. The rule used to choose the next cluster ݆ to 
move to is given by formula (2): 

݆ ൌ ൜
ݒ , ݂݅ ݒ ് ݈݈ݑ݊ ∧ ݍ ൑ ଴ݍ
ሺ݉݋݀݊ܽݎ ௜ࣨ

௞ሻ , ݁ݏ݅ݓݎ݄݁ݐ݋
	 (2)

where: 
 ݒ is the cluster recommended by the consultant for the next 

step. 
 ݍ is a random variable uniformly distributed in [0,1] and ݍ଴ 

(0 ൑ ଴ݍ ൑ 1) is a parameter.  
 ௜ࣨ

௞ is the feasible neighborhood of person ݇ when being at 
cluster	݅. 

 ݉݋݀݊ܽݎ is a function that randomly chooses one element 
from the set given as argument. 

Again, if all the clusters in the candidate list have already been 
visited, the feasible neighborhood ௜ࣨ

௞ is empty. In this case, a 
client that ignores the recommendation of its consultant can 
choose one of the clusters not in the candidate list, using a random 
proportional rule similar to that given by formula (1). 

The personal preference of a client for a given consultant is 
computed as the inverse of the cost of the generalized tour 
corresponding to the global tour advertised by the consultant. In 
conjunction with the reputation, the personal preference is used by 
clients in order to compute the probability to choose a given 
consultant ݇: 

௞݌ ൌ
ሺ݊݋݅ݐܽݐݑ݌݁ݎ௞ ∙ ௞ሻଶ݁ܿ݊݁ݎ݂݁݁ݎ݌

∑ ሺ݊݋݅ݐܽݐݑ݌݁ݎ௖ ∙ ௖ሻଶ௖ఢࣝ݁ܿ݊݁ݎ݂݁݁ݎ݌
	 (3) 

where ࣝ is the set of all available consultants. 
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4.3 An Algorithm Variant Using Confidence 
In this subsection, we propose a variant of our algorithm based on 
the approach introduced in [8], which correlates the 
recommendation of a consultant with a level of confidence. Each 
arc in the global tour advertised by a consultant has an associated 
strength. Strengths are updated each time the consultant adjusts its 
strategy. If an arc in the new advertised tour was also present in 
the old advertised tour, its strength will be incremented; 
otherwise, its strength is set to 0. The strength of an arc could be 
interpreted as the consultant’s confidence in recommending this 
arc to a client. A client is more likely to accept recommendations 
made with greater confidence. This idea is expressed in this 
algorithm variant by allowing the value of the parameter q0 from 
formula (2) to vary in a given range, at each construction step: 

଴ݍ ൌ ൝
௠௜௡ݍ ൅ ݏ ∙

௠௔௫ݍ െ ௠௜௡ݍ

௠௔௫ݏ
, ݏ	݂݅ ൏ ௠௔௫ݏ

௠௔௫ݍ	 , ݁ݏ݅ݓݎ݄݁ݐ݋
	 (4)

where ݏ is the strength of the recommended arc and ݍ௠௜௡, ݍ௠௔௫ 
and ݏ௠௔௫ are constant parameters. The use of confidence 
compensates somewhat for the absence of a heuristic during the 
solution construction phase. 

4.4 Local Search 
The global tours built during the strategy construction and 
solution construction phase are improved using a local search 
procedure generically described in Figure 6. 

1 procedure applyLocalSearch(ீܪ) 
 (ீܪ)clusterOptimization ← ܪ	  2
3  foreach ீܪ

′ ∈ tourNeighborhood(ீܪ) do 
4   if quickCheck(ீܪ

′ ) then 
ீܪ)partialClusterOptimization ← ′ܪ    5

′  (ܪ ,
6    if cost(ܪ′) < cost(ܪ) then 
ீܪ ←	ீܪ     7

′  
 ′ܪ ← ܪ     8
9    end if 

10   end if 
11  end foreach 
12 end procedure 

Figure 6. The local search procedure 

ீܪ  and ீܪ
′  denote global Hamiltonian tours, that is, tours in the 

graph of clusters, while ܪ and ܪ′ denote generalized Hamiltonian 
tours. Our algorithm can be combined with any local search 
procedure conforming to the above algorithmic structure. The 
working of the clusterOptimization function (line 2) is explained 
in section 2. The cost function (line 6) computes the cost of a 
generalized Hamiltonian tour. The other functions referred in 
Figure 6 are only generically specified and they must be 
implemented by each concrete instantiation of the local search 
procedure. 

The tourNeighborhood function (line 3) should return a set of 
global tours representing the neighborhood of the global tour ீܪ  
provided as argument. The quickCheck function (line 4) is 
intended to speed up the local search by quickly rejecting a 
candidate global tour from the partial cluster optimization, if this 
tour is not likely to lead to an improvement.  

The partialClusterOptimization function (line 5) starts with the 
generalized tour obtained by traversing the nodes of ܪ in 
accordance with the ordering of clusters in the global tour ீܪ

′ . 
Then, it reallocates some vertices in the resulting generalized tour, 
trying to improve its cost. Typically, this function considers only a 
limited number of vertices for reallocation and it usually has a 
lower complexity than the clusterOptimization function. 

The generalized tour constructed by the function 
partialClusterOptimization is accepted only if its cost is better 
than the cost of the current generalized tour (lines 6-9). 

We provide two instantiations of the generic local search 
procedure shown in Figure 6: one based on a 2-opt local search 
and one based on a 3-opt local search. We describe here only the 
2-opt based variant. Except from the fact that it considers 
exchanges between 3 arcs, the 3-opt based local search is very 
similar to the 2-opt based variant. 

In the 2-opt based local search, the tourNeighborhood function 
returns a  set of global tours obtained by replacing a pair of arcs  
(Cα, Cβ) and (Cγ, Cδ) in the original global tour with the pair of 
arcs (Cα, Cγ) and (Cβ, Cδ). In order to reduce the number of 
exchanges taken into consideration, the set returned by our 
tourNeighborhood function includes only tours for which γ is in 
the candidate list of α. In other word, a pair of arcs is considered 
for exchange only if the center of mass of the cluster γ is close to 
the center of mass of the cluster α. 

The partialClusterOptimization function used in this case is 
similar to the RP1 procedure introduced in [3]. Let (Cα, Cβ) and 
(Cγ, Cδ) be the two arcs from the original global tour ீܪ  that have 
been replaced with (Cα, Cγ) and (Cβ, Cδ) in the neighbor global 
tour ீܪ

′ , as shown in Figure 7: 

 

Figure 7. The 2-opt partial cluster optimization 

The vertices in clusters Cα, Cβ, Cγ and Cδ can be reallocated, in 
order to minimize the cost of the generalized tour. For this 
purpose, we have to determine the two node pairs (u’, w’) and 
(v’, z’) such that: 

݀௜௨ᇲ ൅ ݀௨ᇲ௪ᇲ ൅ ݀௪ᇲ௛ ൌ ݉݅݊ሼ݀௜௔ ൅ ݀௔௕ ൅ ݀௕௛	| ܽ ∈ ,ఈܥ ܾ ∈ ఊሽܥ
(6)

௝݀௩ᇲ ൅ ݀௩ᇲ௭ᇲ ൅ ݀௭ᇲ௞ ൌ min൛ ௝݀௔ ൅ ݀௔௕ ൅ ݀௕௞	ห 	ܽ ∈ ,ఉܥ ܾ ∈  ఋሽܥ

This computation requires |ܥఈ|หܥఊห ൅ หܥఉห|ܥఋ| comparisons.  

The quickCheck function permits the application of the partial 
cluster optimization only if the following inequality holds: 
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݀௠௜௡൫ܥఘ, ఈ൯ܥ ൅ ݀௠௜௡൫ܥఈ, ఊ൯ܥ ൅ ݀௠௜௡൫ܥఊ, ఙ൯ܥ ൅ 

݀௠௜௡൫ܥగ, ఉ൯ܥ ൅ ݀௠௜௡൫ܥఉ, ఋ൯ܥ ൅ ݀௠௜௡ሺܥఋ, ఛሻܥ ൏ 
݀௜௨ ൅ ݀௨௩ ൅ ݀௩௝ ൅ ݀௛௪ ൅ ݀௪௭ ൅ ݀௭௞

(7) 

where ݀௠௜௡൫ܥఈ,  ఉ൯ is the minimum distance between each pairܥ
of vertices from clusters ܥఈ and ܥఉ. These minimum distances are 
computed only once, at algorithm startup. 

5. EXPERIMENTAL SETUP 
We have implemented our algorithm as part of a software package 
written in Java, which is available online at 
http://swarmtsp.sourceforge.net/. At this address we provide all 
information necessary to reproduce our experiments. 

The parameters of the algorithm have been tuned using the 
paramILS configuration framework [6]. ParamILS executes an 
iterated local search in the parameter configuration space and it is 
appropriate for algorithms with many parameters, where a full 
factorial design becomes intractable. We have generated a set of 
100 Euclidean TSP instances with the number ݊ of cities 
uniformly distributed in the interval [200, 500] and with 
coordinates uniformly distributed in a square of dimension 10000 
x 10000. These instances have been then converted to GTSP by 
applying the CLUSTERING procedure introduced in [3]. This 
procedure sets the number of clusters ݏ ൌ  ݏ identifies the ,ۀ5/݊ڿ
farthest nodes from each other and assigns each remaining node to 
its nearest center. We have used the resulting GTSP instances as 
training data for paramILS. 

Before starting the tuning procedure, we have run our algorithm 
10 times on each instance in the training set, using a default 
configuration. Each run has been terminated after ݊/10 seconds 
and we have stored the best result obtained for each GTSP 
instance. During the tuning procedure, these best known results 
are used as termination condition for our algorithm. Each time 
paramILS evaluates a parameter configuration with respect to a 
given instance, we determine the mean time (averaged over 10 
trials) needed by our algorithm in order to obtain a result at least 
as good as the best known result for this instance, using the given 
parameter configuration. 

The best parameter configuration found after 10 iterations of 
paramILS is given in Table 1: 

Table 1. Parameter configuration for the standard algorithm 

Parameter Value Description 
݉ 8 number of virtual persons. 
 .଴ 0.8 see formula (2)ݍ
initialReputation 6 reputation after sabbatical; 

see Figure 3 and Figure 5. 
reputationFadingRate 0.003 reputation fading rate;  

see Figure 3. 
candidateListSize 5 number of clusters in the 

candidate list. 
 

For the algorithm variant using confidence, we have used the 
same procedure as for the standard algorithm, but we have tuned 
only the values of the parameters ݍ௠௜௡, ݍ௠௔௫ and ݏ௠௔௫. For the 
parameters ݉, initialReputation, reputationFadingRate and 
candidateListSize we have used the values from Table 1. The best 

parameter configuration found for the algorithm variant with 
confidence after 10 iterations of paramILS is given in Table 2: 

Table 2. Parameter configuration for the algorithm variant 
with confidence 

Parameter Value Description 
௠௜௡ݍ 0.7 parameters used to compute 

the value of ݍ଴; 
see formulas (2) and (4). 

௠௔௫ݍ 0.98 
௠௔௫ݏ 3 

 

6. COMPUTATIONAL RESULTS 
The performance of the proposed algorithm has been tested on 18 
GTSP problems generated from symmetric Euclidean TSP 
instances. These TSP instances, containing between 198 and 442 
nodes, are drawn from the TSPLIB [12] benchmark library. The 
corresponding GTSP problems are obtained by applying the 
CLUSTERING procedure introduced in [3]. For 16 of the 
considered GTSP instances, the optimum objective values have 
been determined by Fischetti et al. [3]. For the remaining 2 
instances (45tsp225 and 56a280), the best known results from the 
literature are conjectured to be optimal. 

Currently, the memetic algorithm of Gutin and Karapetyan [4] 
clearly outperforms all published GTSP heuristics. Therefore, we 
use this algorithm as a yardstick to evaluate the performance of 
the different variants of our algorithm. We use the following 
acronyms to identify the algorithms used in our experiments:  

 GK: the memetic algorithm of Gutin and Karapetyan [4]. 
 CGS-2: the standard variant of our algorithm combined with 

2-opt local search. 
 CGS-3: the standard variant of our algorithm combined with 

3-opt local search. 
 CGS-C-2: the variant of our algorithm using confidence 

combined with 2-opt local search. 
 CGS-C-3: the variant of our algorithm using confidence 

combined with 3-opt local search. 

For each GTSP instance, we run each algorithm 25 times and we 
report the average time needed to obtain the optimal solution. For 
the GK algorithm, we use the C++ implementation offered by its 
authors. The running times for GK differ from the values reported 
in [4], because we run our experiments on a 32-bit platform using 
an Intel Core2 Duo 2.2 GHz processor, while the results presented 
in [4] have been obtained on a 64-bit platform and using a faster 
processor (AMD Athlon 64 X2 3.0 GHz). 

The computational results are shown in Table 3. The name of each 
problem is prefixed by the number of clusters and it is suffixed by 
the number of nodes. Average times that are better than those 
obtained by the GK algorithm are in boldface. For each problem 
and for each CGS algorithm variant, we also report the p-values of 
the one-sided Wilcoxon rank sum tests for the null hypothesis 
(H0) that for the given problem there is no difference between the 
running times of the considered algorithm variant and the running 
times of the GK algorithm, and for the alternative hypothesis (H1) 
that the considered algorithm outperforms the GK algorithm for 
the given problem. Applying the Bonferroni correction for 
multiple comparisons, we obtain the adjusted α-level: 0.05 / 18 = 
0.00278. The p-values in boldface indicate the cases where the 
null hypothesis is rejected at this significance level. 
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Table 3. Times (in seconds) needed to find the optimal solutions, averaged over 25 trials. 

Problem 
instance 

Optimal 
cost 

GK CGS-C-3 CGS-C-2 CGS-3 CGS-2 
time time p-value time p-value time p-value time p-value 

40d198 10557 0.46 0.36 0.0004 0.33 0.0012  0.47 0.0034  0.45 0.0050
40kroA200 13406 0.38 0.33 0.0000 0.25 0.0000  0.37 0.5711  0.30 0.0001
40kroB200 13111 0.48 0.60 0.9460 0.37 0.0008  0.59 0.9689  0.60 0.6156

41gr202 23301 0.71 0.64 0.0141 0.91 0.4674  1.35 1.0000  1.10 0.9101
45ts225 68340 0.61 3.32 1.0000 4.06 0.9957  1.92 0.9999  2.67 1.0000

45tsp225 1612 0.51 4.83 1.0000 3.25 0.9994  4.07 1.0000  2.28 0.9967
46pr226 64007 0.28 0.13 0.0000 0.07 0.0000  0.13 0.0000  0.09 0.0000
46gr229 71972 0.81 0.36 0.0000 0.33 0.0000  0.39 0.0000  0.37 0.0000
53gil262 1013 0.83 1.22 0.1071 2.63 0.9999  1.63 1.0000  3.49 1.0000
53pr264 29549 0.67 0.57 0.0070 0.49 0.0005  0.94 0.9482  1.08 0.9406
56a280 1079 0.94 1.79 0.8215 3.71 0.9999  2.02 0.9998  4.46 1.0000

60pr299 22615 1.10 3.54 0.9992 2.91 0.9992  3.23 1.0000  4.74 0.9999
64lin318 20765 1.16 0.85 0.0000 2.68 0.9929  1.28 0.8946  3.81 1.0000
80rd400 6361 2.57 10.30 0.9996 13.27 1.0000  87.96 1.0000  270.04 1.0000
84fl417 9651 1.91 1.10 0.0000 1.59 0.0001  1.51 0.0012  2.27 0.0512
87gr431 101946 6.01 8.16 0.8361 12.86 0.9916  477.38 1.0000  866.53 1.0000
88pr439 60099 4.07 1.56 0.0000 1.32 0.0000  3.68 0.0104  10.71 0.9999

89pcb442 21657 4.24 11.11 0.9980 13.53 1.0000 395.93 1.0000 1430.13 1.0000
 

It can be observed that CGS-C-3 outperformed GK for 9 of the 18 
instances and in 7 cases these results are significantly better. 
CGS-C-2 outperformed GK for 8 of the 18 instances and in all 
these 8 cases the results are significantly better. The variants 
without confidence perform poorer and for a few instances they 
need considerably more time to find the optimal solution. 

For several pairs of algorithms, we use the one-sided Wilcoxon 
signed rank test to compute the p-values for the null hypothesis 
(H0) that there is no difference between the running times of the 
first and the running times of the second algorithm, and the 
alternative hypothesis (H1) that the running times of the first 
algorithm are better than the running times of the second 
algorithm. The p-values are given in Table 4, where the 
significant values (p < 0.05) are in boldface. 

Table 4. Performance comparison using the one-sided 
Wilcoxon signed rank test 

First algorithm Second algorithm p-value 
GK CGS-C-3 0.1061 
GK CGS-C-2 0.0368 
GK CGS-3 0.0069 
GK CGS-2 0.0005 
CGS-C-3 CGS-C-2 0.0708 
CGS-C-3 CGS-3 0.0152 
CGS-C-2 CGS-2 0.0028 

 

It can be observed that GK outperforms our algorithms, but in the 
case of CGS-C-3, the differences are not statistically significant. 
Similarly, CGS-C-3 outperforms CGS-C-2, but not statistically 
significant. The fact that 3-opt local search does not significantly 
improve the results obtained with 2-opt local search could be a 
consequence of the greater complexity of 3-opt. There are, 
however, significant differences between the running times of 
CGS variants with confidence and those without confidence. Due 
to the very poor results obtained in some cases by the algorithm 
variants without confidence, these differences are not only 

statistically, but also practically significant, thus indicating the 
importance of the confidence component. 

Figure 8 shows how the candidate list size affects the time needed 
by CGS-C-3 to find the optimal solution of the problem instance 
64lin318. The results are averaged over 25 trials. 

 

Figure 8. The influence of the candidate list size on the time 
needed to find the optimal solution for problem 64lin318 

It can be observed that the size of the candidate list has a huge 
influence on the time needed by the algorithm to find the optimal 
solution. Therefore, the use of candidate lists is a key component 
contributing to the success of our algorithm. 

The best results are obtained for candidate lists of size 4 or 5, but 
we should note that the algorithm is able to find the optimum even 
for candidate lists with only 2 elements. However, in this case the 
time needed increases considerably. This is due to the fact that the 
probability to find the next cluster of the optimal tour in the 
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candidate list of the current cluster is significantly smaller when 
using a candidate list with only 2 elements. For the 64lin318 
instance, only 44 of the 64 clusters are present in the candidate list 
of their precedent cluster when using candidate lists with 2 
elements. In contrast, 59 of the 64 clusters are present when using 
candidate lists with 5 elements. The algorithm is able to find the 
optimal solution even for very small sized candidate lists, because 
during the construction phase a client may visit clusters not 
contained in the current candidate list, if all clusters in this 
candidate list are already visited or when the consultant 
recommends it.  

For candidate lists with a large number of elements, the algorithm 
performance in terms of running time worsens, due to the increase 
in the number of exchanges considered during the local search. 
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8. CONCLUSIONS AND FUTURE WORK 
We have described an efficient algorithm that combines the 
consultant-guided search heuristic with a local-global approach in 
order to solve the GTSP. The local-global approach distinguishes 
between global connections (connections between clusters) and 
local connections (connections between nodes from different 
clusters). Our algorithm constructs Hamiltonian tours in the global 
graph obtained by replacing all nodes of a cluster with a 
supernode representing it. 

The algorithm takes advantage of the fact that most GTSP 
instances of practical importance are symmetric problems with 
Euclidean distances, where the clusters are composed of nodes 
that are spatially close one to the other. For this class of problems, 
a useful measure is the virtual distance between two supernodes, 
computed as the distance between the centers of mass of the two 
corresponding clusters. We use virtual distances as a heuristic 
during the strategy construction phase. Additionally, based on the 
virtual distances between clusters, the algorithm creates candidate 
lists used for strategy and solution construction, as well as for 
local search. The use of candidate lists significantly reduces the 
search space and contributes to the efficiency of our algorithm. 

A variant of our algorithm, which uses the concept of confidence 
in relation to the recommendations made by consultants, improves 
the algorithm performance, especially for large instances. 

Computational results show that there are no statistically 
significant differences between our algorithm variant with 
confidence and the memetic algorithm of Gutin and Karapetyan 
(GK), which is currently the best published heuristic for the 
GTSP. The GK algorithm uses a sophisticated local improvement 
strategy that combines many local search heuristics. One goal of 
our future research is to adopt a similar approach for the local 
improvement part of our algorithm, but still using candidate lists 
for each local search heuristic considered. 
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