
A Hybrid Heuristic Approach for Solving the Generalized
Traveling Salesman Problem

Petrică C. Pop
Dept. of Mathematics and Computer Science

North University of Baia Mare
Str. Victoriei, 430122, Baia Mare, Romania

petrica.pop@ubm.ro

Serban Iordache
Scoop Software GmbH

 Am Kielshof 29
51105, Cologne, Germany

siordache@acm.org

ABSTRACT
The generalized traveling salesman problem (GTSP) is an NP-
hard problem that extends the classical traveling salesman
problem by partitioning the nodes into clusters and looking for a
minimum Hamiltonian tour visiting exactly one node from each
cluster. In this paper, we combine the consultant-guided search
technique with a local-global approach in order to solve
efficiently the generalized traveling salesman problem. We use
candidate lists in order to reduce the search space and we
introduce efficient variants of 2-opt and 3-opt local search in order
to improve the solutions. The resulting algorithm is applied to
Euclidean GTSP instances derived from the TSPLIB library. The
experimental results show that our algorithm is able to compete
with the best existing algorithms in terms of solution quality and
running time.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods,
and Search – heuristic methods.

General Terms
Algorithms.

Keywords
Generalized traveling salesman problem, hybrid algorithms,
consultant-guided search.

1. INTRODUCTION
The generalized traveling salesman problem (GTSP) is an NP-
hard problem that extends the classical traveling salesman
problem by considering a related problem given a partition of the
nodes of a graph into clusters. The problem consists in finding the
shortest closed tour visiting exactly one node from each cluster.
The existence of several applications of the GTSP and the
difficulty of obtaining optimum solutions for the problem has led
to the development of several heuristics and metaheuristics, see
for example [4], [13], [14], [15].
Consultant-guided search (CGS) is a recent metaheuristic for
combinatorial optimization problems, inspired by the way real

people make decisions based on advice received from consultants.
The CGS metaheuristic can be used to solve hard combinatorial
optimization problems and it has been successfully applied to the
classical Traveling Salesman Problem (TSP) [8] and to the
Quadratic Assignment Problem [9].

The aim of this paper is to propose a hybrid algorithm that
combines the consultant-guided search technique with a local-
global approach for solving the GTSP. Our algorithm constructs
Hamiltonian tours in the global graph obtained by replacing all
nodes of a cluster with a supernode. Then, each global solution is
improved using an efficient variant of 2-opt or 3-opt local search
that takes advantage of the structure imposed by the global graph
(i.e., the graph obtained by replacing all nodes of each of the
clusters with a supernode representing it). Finally, a cluster
optimization procedure is applied in order to find the best
generalized tour corresponding to the given sequence of clusters.

We report the computational results obtained by applying our
algorithm to symmetric Euclidean GTSP instances derived from
the TSPLIB benchmark library. The experimental results show
that our algorithm can compete with the best existing algorithms
for the GTSP in terms of both solution quality and running time.

2. THE LOCAL-GLOBAL APPROACH TO
THE GENERALIZED TRAVELING
SALESMAN PROBLEM
Let ܩ ൌ ሺܸ, ሻ be an ݊-node undirected complete graph whoseܧ
edges are associated with non-negative costs and let ଵܸ, … , ௠ܸ be a
partitioning of ܸ into ݉ subsets called clusters (i.e. ܸ ൌ ଵܸ ∪ ଶܸ ∪
…	∪ ௠ܸ and ௟ܸ ∩ ௞ܸ ൌ ∅ for all ݈, ݇ ∈ ሼ1, . . . , ݉ሽ).

Then the generalized traveling salesman problem asks for finding
a minimum-cost tour ܪ spanning a subset of nodes such that ܪ
contains exactly one node from each cluster ௜ܸ, ݅ ∈ ሼ1, . . . , ݉ሽ. We
call such a cycle a generalized Hamiltonian tour.

Based on the way the generalized combinatorial optimization
problems are defined as extensions of the classical variants, a
natural approach that takes advantage of the similarities between
them is the local-global approach introduced by Pop [11] in the
case of the generalized minimum spanning tree problem.

In the case of the GTSP, the local-global approach aims at
distinguishing between global connections (connections between
clusters) and local connections (connections between nodes from
different clusters). This approach was already pointed out and
exploited by Hu et al. in [5] and by Bontoux et al. [1].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GECCO’11, July 12-16, 2011, Dublin, Ireland.
Copyright 2011 ACM 978-1-4503-0557-0/11/07…$10.00.

481

Given a sequence in which the clusters are visited (i.e. a global
Hamiltonian tour), there are several generalized Hamiltonian tours
corresponding to it. The best corresponding (with respect to cost
minimization) generalized Hamiltonian tour can be determined
either by using a layered network as we will describe next or by
using integer programming.

We denote by ܩ’ the graph obtained from ܩ after replacing all
nodes of a cluster ௜ܸ with a supernode representing ௜ܸ. We will
call the graph ܩ’ the global graph. For convenience, we identify
௜ܸ with the supernode representing it. Edges of the graph ܩ′ are

defined between each pair of the graph vertices ௜ܸ , … , ௠ܸ.

Given a sequence ௞ܸభ , … , ௞ܸ೘ in which the clusters are visited, we
want to find the best feasible Hamiltonian tour ܪ∗ (with respect to
cost minimization), visiting the clusters according to the given
sequence. This can be done in polynomial time by solving | ௞ܸభ|
shortest path problems, as we describe below.

We construct a layered network, denoted by LN, having ݉ ൅ 1
layers corresponding to the clusters ௞ܸభ , … , ௞ܸ೘ and in addition we
duplicate the cluster ௞ܸభ . The layered network contains all the
nodes of ܩ plus some extra nodes ݒ′ for each ݒ ∈ ௞ܸభ . There is an
arc ሺ݅, ݆ሻ for each ݅ ∈ ௞ܸ೗ and ݆ ∈ ௞ܸ೗శభ (݈ ൌ 1, . . . , ݉ െ 1), having
the cost ܿ௜௝. Moreover, there is an arc ሺ݅, ݆′ሻ for each ݅ ∈ ௞ܸ೘ and
݆′ ∈ ௞ܸభ having the cost ܿ௜௝ᇲ .

Figure 1. Example showing a Hamiltonian tour in the
constructed layered network LN

For any given ݒ ∈ ௞ܸభ , we consider paths from ݒ to ݒ ,′ݒ′ ∈ ௞ܸభ,
that visits exactly one node from each cluster ௞ܸమ , … , ௞ܸ೘ , hence it
gives a feasible Hamiltonian tour.

Conversely, every Hamiltonian tour visiting the clusters according
to the sequence (௞ܸభ , … , ௞ܸ೘) corresponds to a path in the layered
network from a certain node ݒ ∈ ௞ܸభ to ݒ′ ∈ ௞ܸభ .

Therefore, it follows that the best (with respect to cost
minimization) Hamiltonian tour ܪ∗ visiting the clusters in a given
sequence can be found by determining all the shortest paths from
each ݒ ∈ ௞ܸభ to the corresponding ݒ′ ∈ ௞ܸభ with the property that
it visits exactly one node from each of the clusters ௞ܸమ , … , ௞ܸ೘ .

The overall time complexity is then | ௞ܸభ|ܱሺ|ܧ| ൅ log ݊ሻ, i.e.
ܱሺ݊|ܧ| ൅ n	log ݊ሻ, in the worst case, where by |ܧ| we denote the
number of edges. We can reduce the time by choosing ௞ܸభ as the
cluster with minimum cardinality.

Notice that the above procedure leads to an ܱሺሺ݉ െ 1ሻ! ሺ݊|ܧ| ൅
n	log ݊ሻሻ time exact algorithm for the GTSP, obtained by trying
all the ሺ݉ െ 1ሻ! possible cluster sequences.

Clearly, the algorithm presented is an exponential time algorithm,
unless the number of clusters ݉ is fixed.

3. THE CGS METAHEURISTIC
In this section, we briefly describe the Consultant-Guided Search
(CGS) metaheuristic. We refer the reader to [7] for a detailed
presentation.

CGS is a swarm intelligence technique for solving hard
combinatorial optimization problems, which takes inspiration
from the way real people make decisions based on advice received
from consultants.

CGS is a population-based method. An individual of the CGS
population is a virtual person, which can simultaneously act both
as a client and as a consultant. As a client, a virtual person
constructs at each iteration a solution to the problem. As a
consultant, a virtual person provides advice to clients, in
accordance with its strategy. Usually, at each step of the solution
construction, there are several variants a client can choose from.
The variant recommended by the consultant has a higher
probability to be chosen, but the client may opt for one of the
other variants, which will be selected based on some heuristic.

At the beginning of each iteration, a client chooses a consultant
based on its personal preference and on the consultant's
reputation. The reputation of a consultant increases with the
number of successes achieved by its clients. A client achieves a
success, if it constructs a solution better than all solutions found
until that point by any client guided by the same consultant. Each
time a client achieves a success, the consultant adjusts its strategy
in order to reflect the sequence of decisions taken by the client.

Because the reputation fades over time, a consultant needs that its
clients constantly achieve successes, in order to keep its
reputation. If the consultant's reputation sinks below a minimum
value, it will take a sabbatical leave, during which it will stop
offering advice to clients and it will instead start searching for a
new strategy to use in the future.

4. THE HYBRID ALGORITHM FOR THE
GTSP
We propose in this section an algorithm for the GTSP that
combines the consultant-guided search technique with a local-
global approach and improves the solutions using a local search
procedure. Most GTSP instances of practical importance are
symmetric problems with Euclidean distances, where the clusters
are composed of nodes that are spatially close one to the other.
We design our algorithm to take advantage of the structure of
these instances.

4.1 The Algorithm
At each iteration, a client constructs a global tour, that is, a
Hamiltonian cycle in the global graph. The strategy of a
consultant is also represented by a global tour, which the
consultant advertises to its clients. The algorithm applies a local
search procedure in order to improve the global tour representing
either the global solution of a client or the strategy of a consultant
in sabbatical mode. Then, using the cluster optimization procedure
described in section 2, the algorithm finds the best generalized
tour corresponding to the global tour returned by the local search
procedure.

In order to compare the strategies constructed during the
sabbatical leave, a consultant uses the cost of the generalized tour
corresponding to each strategy. Similarly, the success of a client is

482

evaluated based on the cost of the generalized solution. The
pseudocode of our algorithm is shown in Figure 2.

1 procedure CGS‐GTSP()
2 create the set ࣪ of virtual persons
3 foreach p ∈ ࣪ do
4 setSabbaticalMode(p)
5 end foreach
6 while (termination condition not met) do
7 foreach p ∈ ࣪ do
8 if actionMode[p] = sabbatical then
9 currStrategy[p] ← constructStrategy(p)

10 applyLocalSearch(currStrategy[p])
11 genStrategy ← clusterOptimization(currStrategy[p])
12 if cost(genStrategy) < bestStrategyCost then
13 bestStrategy[p] ← currStrategy[p]
14 bestStrategyCost[p] ← cost(genStrategy)
15 end if
16 else
17 c ← chooseConsultant(p)
18 if c ≠ null then
19 currSol[p] ← constructSolution(p, c)
20 applyLocalSearch(currSol[p])
21 currGenSol[p] ← clusterOptimization(currSol[p])
22 if currGenSol[p] is better than all solutions found
23 by a client of c since last sabbatical then
24 successCount[c] ← successCount[c] + 1
25 strategy[c] ← currSol[p]
26 end if
27 end if
28 end if
29 end foreach
30 updateReputations()
31 updateActionModes()
32 end while
33 end procedure

Figure 2. The CGS-GTSP algorithm

A virtual person may be in one of the following modes: normal
and sabbatical. During the initialization phase (lines 2-5), virtual
people are created and placed in sabbatical mode. Based on its
mode, a virtual person constructs at each iteration of the algorithm
(lines 7-31) either a global solution to the problem (line 19) or a
global consultant strategy (line 9). In subsection 4.2, we describe
the operations involved by the construction of a global solution or
strategy, as well as the method used by a client in order to choose
a consultant for the current iteration (line 17).

Global strategies and global solutions are improved by applying a
local search procedure (lines 10 and 20). The clusterOptimization
procedure described in section 2 is then used to find the best
generalized strategy (line 11) corresponding to the current global
strategy or to find the best generalized solution (line 21)
corresponding to the current global solution.

After constructing a global strategy, a virtual person in sabbatical
mode checks if the corresponding generalized strategy is the best
generalized strategy found since the beginning of the sabbatical
(lines 12-15). Similarly, after constructing a global solution, a
client checks the corresponding generalized solution in order to
decide if it has achieved a success and, if this is the case, it
updates the strategy of its consultant (lines 22-26).

At the end of each iteration, the reputation and action mode of
each virtual person are updated (lines 30-31).

Figure 3 details how consultants’ reputations are updated based on
the successes achieved by their clients.

1 procedure updateReputations()
2 foreach p ∈ ࣪ do
3 if actionMode[p] = normal then
4 rep[p] ← rep[p] * (1 - fadingRate)
5 rep[p] ← rep[p] + successCount[p]
6 if cost(currGenSol[p]) < cost(bestSoFarSol) then
7 bestSoFarSol ← currGenSol[p]
8 rep[p] ← rep[p] + 10 // reputation bonus
9 end if

10 if rep[p] > 10 * initialReputation then
11 rep[p] ← 10 * initialReputation
12 end if
13 if p is the best consultant then
14 if rep[p] < initialReputation then
15 rep[p] ← initialReputation
16 end if
17 end if
18 end if
19 end foreach
20 end procedure

Figure 3. Procedure to update reputations

Reputations fade over time at a constant rate, given by the
parameter fadingRate (line 4). The reputation of a consultant is
incremented with each success achieved by one of its clients
(line 5) and it receives an additional bonus of 10 for finding a
best-so-far solution (lines 6-9). The reputation of a consultant
cannot exceed a maximum value (lines 10-12) and the algorithm
prevents the reputation of the best consultant, that is, the
consultant that has found the best-so-far solution, from sinking
below a given value (lines 13-17). The constant parameter
initialReputation represents the reputation assigned to a consultant
at the end of the sabbatical leave.

Figure 4 details how the action mode of each virtual person is
updated: consultants whose reputations have sunk below the
minimum level are placed in sabbatical mode, while consultants
whose sabbatical leave has finished are placed in normal mode.

1 procedure updateActionModes()
2 foreach p ∈ ࣪ do
3 if actionMode[p] = normal then
4 if rep[p] < 1 then
5 setSabbaticalMode(p)
6 end if
7 else
8 sabbaticalCountdown ← sabbaticalCountdown – 1
9 if sabbaticalCountdown = 0 then

10 setNormalMode(p)
11 end if
12 end if
13 end procedure

Figure 4. Procedure to update action modes

Figure 5 shows the actions taken to place a virtual person in
sabbatical or in normal action mode.

483

1 procedure setSabbaticalMode(p)
2 actionMode[p] ← sabbatical
3 bestStrategy[p] ← null
4 bestStrategyCost[p] ← ∞
5 sabbaticalCountdown ← 20
6 end procedure

7 procedure setNormalMode(p)
8 actionMode[p] ← normal
9 rep[p] ← initialReputation

10 strategy[p] ← bestStrategy[p]
11 end procedure

Figure 5. Procedures to set the sabbatical and normal mode

4.2 Strategy and Solution Construction
The heuristic used during the sabbatical leave in order to build a
new strategy is based on virtual distances between the supernodes
in the global graph. We compute the virtual distance between two
supernodes as the distance between the centers of mass of the two
corresponding clusters. The choice of this heuristic is justified by
the class of problems for which our algorithm is designed:
symmetric instances with Euclidean distances, where the nodes of
a cluster are spatially close one to the other.

By introducing virtual distances between clusters, we have the
possibility to use candidate lists in order to restrict the number of
choices available at each construction step. For each cluster ݅, we
consider a candidate list that contains the closest ܿܽ݊݀ clusters,
where ܿܽ݊݀ is a parameter. This way, the feasible neighborhood
of a person ݇ when being at cluster ݅ represents the set of clusters
in the candidate list of cluster ݅ that person ݇ has not visited yet.
Several heuristic algorithms for the TSP use candidate lists during
the solution construction phase (see [1] for examples of their use
with Ant Colony Optimization algorithms), but candidate lists
have not been widely used to construct solutions for the GTSP.
Our algorithm uses candidate lists during both strategy
construction and solution construction.

The use of candidate lists may significantly improve the time
required by an algorithm, but it could also lead to missing good
solutions. Therefore, the choice of appropriate sizes and elements
of the candidate lists is critical for the working of an algorithm. In
the case of TSP, candidate lists with size 20 are frequently used,
but other values between 10 and 40 are also usual [10]. For GTSP
instances with clusters composed of nodes spatially close to each
other, appropriate sizes for the candidate lists are considerably
smaller. Our experiments show that values of 4 or 5 are adequate
in this case.

During the sabbatical leave, a consultant uses a random
proportional rule to decide which cluster to visit next. For a
consultant k, currently at cluster i, the probability to choose
cluster j is given by formula (1):

௜௝݌
௞ ൌ

1/݀௜௝
∑ ሺ1/݀௜௟ሻ௟ఢ ೔ࣨ

ೖ
	 (1)

where:
 ௜ࣨ

௞ is the feasible neighborhood of person k when being at
cluster i.

 ݀௜௟ is the virtual distance between clusters i and l.

As mentioned before, the feasible neighborhood ௜ࣨ
௞ contains the

set of clusters in the candidate list of cluster ݅ that person ݇ has
not visited yet. If all the clusters in the candidate list have already
been visited, the consultant can choose one of the clusters not in
the candidate list, using a random proportional rule similar to that
given by formula (1).

Using virtual distances between clusters as a heuristic during the
sabbatical leave, leads to reasonably good initial strategies. In
general, however, a global tour that is optimum with respect to the
virtual distances between clusters does not produce the optimum
generalized tour after applying the cluster optimization procedure.
Therefore, during the solution construction phase, the algorithm
does not rely on the distances between clusters, although it still
uses candidate lists in order to determine the feasible
neighborhood of a cluster.

At each step, a client receives a recommendation regarding the
next cluster to be visited. This recommendation is based on the
global tour advertised by the consultant. Let ݅	 be the cluster
visited by the client ݇ at a construction step of the current
iteration. To decide which cluster to recommend for the next step,
the consultant finds the position at which the cluster ݅ appears in
its advertised global tour and identifies the cluster that precedes ݅
and the cluster that succeeds ݅ in this tour. If neither of these two
clusters is already visited by the client, the consultant randomly
recommends one of these two clusters. If only one of these two
clusters is unvisited, this one is chosen to be recommended.
Finally, if both clusters are already visited, the consultant is not
able to make a recommendation for the next step.

The client does not always follow the consultant’s
recommendation. The rule used to choose the next cluster ݆ to
move to is given by formula (2):

݆ ൌ ൜
ݒ , ݂݅ ݒ ് ݈݈ݑ݊ ∧ ݍ ൑ ଴ݍ
ሺ݉݋݀݊ܽݎ ௜ࣨ

௞ሻ , ݁ݏ݅ݓݎ݄݁ݐ݋
	 (2)

where:
 ݒ is the cluster recommended by the consultant for the next

step.
 ݍ is a random variable uniformly distributed in [0,1] and ݍ଴

(0 ൑ ଴ݍ ൑ 1) is a parameter.
 ௜ࣨ

௞ is the feasible neighborhood of person ݇ when being at
cluster	݅.

 ݉݋݀݊ܽݎ is a function that randomly chooses one element
from the set given as argument.

Again, if all the clusters in the candidate list have already been
visited, the feasible neighborhood ௜ࣨ

௞ is empty. In this case, a
client that ignores the recommendation of its consultant can
choose one of the clusters not in the candidate list, using a random
proportional rule similar to that given by formula (1).

The personal preference of a client for a given consultant is
computed as the inverse of the cost of the generalized tour
corresponding to the global tour advertised by the consultant. In
conjunction with the reputation, the personal preference is used by
clients in order to compute the probability to choose a given
consultant ݇:

௞݌ ൌ
ሺ݊݋݅ݐܽݐݑ݌݁ݎ௞ ∙ ௞ሻଶ݁ܿ݊݁ݎ݂݁݁ݎ݌

∑ ሺ݊݋݅ݐܽݐݑ݌݁ݎ௖ ∙ ௖ሻଶ௖ఢࣝ݁ܿ݊݁ݎ݂݁݁ݎ݌
	 (3)

where ࣝ is the set of all available consultants.

484

4.3 An Algorithm Variant Using Confidence
In this subsection, we propose a variant of our algorithm based on
the approach introduced in [8], which correlates the
recommendation of a consultant with a level of confidence. Each
arc in the global tour advertised by a consultant has an associated
strength. Strengths are updated each time the consultant adjusts its
strategy. If an arc in the new advertised tour was also present in
the old advertised tour, its strength will be incremented;
otherwise, its strength is set to 0. The strength of an arc could be
interpreted as the consultant’s confidence in recommending this
arc to a client. A client is more likely to accept recommendations
made with greater confidence. This idea is expressed in this
algorithm variant by allowing the value of the parameter q0 from
formula (2) to vary in a given range, at each construction step:

଴ݍ ൌ ൝
௠௜௡ݍ ൅ ݏ ∙

௠௔௫ݍ െ ௠௜௡ݍ

௠௔௫ݏ
, ݏ	݂݅ ൏ ௠௔௫ݏ

௠௔௫ݍ	 , ݁ݏ݅ݓݎ݄݁ݐ݋
	 (4)

where ݏ is the strength of the recommended arc and ݍ௠௜௡, ݍ௠௔௫
and ݏ௠௔௫ are constant parameters. The use of confidence
compensates somewhat for the absence of a heuristic during the
solution construction phase.

4.4 Local Search
The global tours built during the strategy construction and
solution construction phase are improved using a local search
procedure generically described in Figure 6.

1 procedure applyLocalSearch(ீܪ)
 (ீܪ)clusterOptimization ← ܪ	 2
3 foreach ீܪ

′ ∈ tourNeighborhood(ீܪ) do
4 if quickCheck(ீܪ

′) then
ீܪ)partialClusterOptimization ← ′ܪ 5

′ (ܪ ,
6 if cost(ܪ′) < cost(ܪ) then
ீܪ ←	ீܪ 7

′
 ′ܪ ← ܪ 8
9 end if

10 end if
11 end foreach
12 end procedure

Figure 6. The local search procedure

ீܪ and ீܪ
′ denote global Hamiltonian tours, that is, tours in the

graph of clusters, while ܪ and ܪ′ denote generalized Hamiltonian
tours. Our algorithm can be combined with any local search
procedure conforming to the above algorithmic structure. The
working of the clusterOptimization function (line 2) is explained
in section 2. The cost function (line 6) computes the cost of a
generalized Hamiltonian tour. The other functions referred in
Figure 6 are only generically specified and they must be
implemented by each concrete instantiation of the local search
procedure.

The tourNeighborhood function (line 3) should return a set of
global tours representing the neighborhood of the global tour ீܪ
provided as argument. The quickCheck function (line 4) is
intended to speed up the local search by quickly rejecting a
candidate global tour from the partial cluster optimization, if this
tour is not likely to lead to an improvement.

The partialClusterOptimization function (line 5) starts with the
generalized tour obtained by traversing the nodes of ܪ in
accordance with the ordering of clusters in the global tour ீܪ

′ .
Then, it reallocates some vertices in the resulting generalized tour,
trying to improve its cost. Typically, this function considers only a
limited number of vertices for reallocation and it usually has a
lower complexity than the clusterOptimization function.

The generalized tour constructed by the function
partialClusterOptimization is accepted only if its cost is better
than the cost of the current generalized tour (lines 6-9).

We provide two instantiations of the generic local search
procedure shown in Figure 6: one based on a 2-opt local search
and one based on a 3-opt local search. We describe here only the
2-opt based variant. Except from the fact that it considers
exchanges between 3 arcs, the 3-opt based local search is very
similar to the 2-opt based variant.

In the 2-opt based local search, the tourNeighborhood function
returns a set of global tours obtained by replacing a pair of arcs
(Cα, Cβ) and (Cγ, Cδ) in the original global tour with the pair of
arcs (Cα, Cγ) and (Cβ, Cδ). In order to reduce the number of
exchanges taken into consideration, the set returned by our
tourNeighborhood function includes only tours for which γ is in
the candidate list of α. In other word, a pair of arcs is considered
for exchange only if the center of mass of the cluster γ is close to
the center of mass of the cluster α.

The partialClusterOptimization function used in this case is
similar to the RP1 procedure introduced in [3]. Let (Cα, Cβ) and
(Cγ, Cδ) be the two arcs from the original global tour ீܪ that have
been replaced with (Cα, Cγ) and (Cβ, Cδ) in the neighbor global
tour ீܪ

′ , as shown in Figure 7:

Figure 7. The 2-opt partial cluster optimization

The vertices in clusters Cα, Cβ, Cγ and Cδ can be reallocated, in
order to minimize the cost of the generalized tour. For this
purpose, we have to determine the two node pairs (u’, w’) and
(v’, z’) such that:

݀௜௨ᇲ ൅ ݀௨ᇲ௪ᇲ ൅ ݀௪ᇲ௛ ൌ ݉݅݊ሼ݀௜௔ ൅ ݀௔௕ ൅ ݀௕௛	| ܽ ∈ ,ఈܥ ܾ ∈ ఊሽܥ
(6)

௝݀௩ᇲ ൅ ݀௩ᇲ௭ᇲ ൅ ݀௭ᇲ௞ ൌ min൛ ௝݀௔ ൅ ݀௔௕ ൅ ݀௕௞	ห 	ܽ ∈ ,ఉܥ ܾ ∈ ఋሽܥ

This computation requires |ܥఈ|หܥఊห ൅ หܥఉห|ܥఋ| comparisons.

The quickCheck function permits the application of the partial
cluster optimization only if the following inequality holds:

485

݀௠௜௡൫ܥఘ, ఈ൯ܥ ൅ ݀௠௜௡൫ܥఈ, ఊ൯ܥ ൅ ݀௠௜௡൫ܥఊ, ఙ൯ܥ ൅

݀௠௜௡൫ܥగ, ఉ൯ܥ ൅ ݀௠௜௡൫ܥఉ, ఋ൯ܥ ൅ ݀௠௜௡ሺܥఋ, ఛሻܥ ൏
݀௜௨ ൅ ݀௨௩ ൅ ݀௩௝ ൅ ݀௛௪ ൅ ݀௪௭ ൅ ݀௭௞

(7)

where ݀௠௜௡൫ܥఈ, ఉ൯ is the minimum distance between each pairܥ
of vertices from clusters ܥఈ and ܥఉ. These minimum distances are
computed only once, at algorithm startup.

5. EXPERIMENTAL SETUP
We have implemented our algorithm as part of a software package
written in Java, which is available online at
http://swarmtsp.sourceforge.net/. At this address we provide all
information necessary to reproduce our experiments.

The parameters of the algorithm have been tuned using the
paramILS configuration framework [6]. ParamILS executes an
iterated local search in the parameter configuration space and it is
appropriate for algorithms with many parameters, where a full
factorial design becomes intractable. We have generated a set of
100 Euclidean TSP instances with the number ݊ of cities
uniformly distributed in the interval [200, 500] and with
coordinates uniformly distributed in a square of dimension 10000
x 10000. These instances have been then converted to GTSP by
applying the CLUSTERING procedure introduced in [3]. This
procedure sets the number of clusters ݏ ൌ ݏ identifies the ,ۀ5/݊ڿ
farthest nodes from each other and assigns each remaining node to
its nearest center. We have used the resulting GTSP instances as
training data for paramILS.

Before starting the tuning procedure, we have run our algorithm
10 times on each instance in the training set, using a default
configuration. Each run has been terminated after ݊/10 seconds
and we have stored the best result obtained for each GTSP
instance. During the tuning procedure, these best known results
are used as termination condition for our algorithm. Each time
paramILS evaluates a parameter configuration with respect to a
given instance, we determine the mean time (averaged over 10
trials) needed by our algorithm in order to obtain a result at least
as good as the best known result for this instance, using the given
parameter configuration.

The best parameter configuration found after 10 iterations of
paramILS is given in Table 1:

Table 1. Parameter configuration for the standard algorithm

Parameter Value Description
݉ 8 number of virtual persons.
 .଴ 0.8 see formula (2)ݍ
initialReputation 6 reputation after sabbatical;

see Figure 3 and Figure 5.
reputationFadingRate 0.003 reputation fading rate;

see Figure 3.
candidateListSize 5 number of clusters in the

candidate list.

For the algorithm variant using confidence, we have used the
same procedure as for the standard algorithm, but we have tuned
only the values of the parameters ݍ௠௜௡, ݍ௠௔௫ and ݏ௠௔௫. For the
parameters ݉, initialReputation, reputationFadingRate and
candidateListSize we have used the values from Table 1. The best

parameter configuration found for the algorithm variant with
confidence after 10 iterations of paramILS is given in Table 2:

Table 2. Parameter configuration for the algorithm variant
with confidence

Parameter Value Description
௠௜௡ݍ 0.7 parameters used to compute

the value of ݍ଴;
see formulas (2) and (4).

௠௔௫ݍ 0.98
௠௔௫ݏ 3

6. COMPUTATIONAL RESULTS
The performance of the proposed algorithm has been tested on 18
GTSP problems generated from symmetric Euclidean TSP
instances. These TSP instances, containing between 198 and 442
nodes, are drawn from the TSPLIB [12] benchmark library. The
corresponding GTSP problems are obtained by applying the
CLUSTERING procedure introduced in [3]. For 16 of the
considered GTSP instances, the optimum objective values have
been determined by Fischetti et al. [3]. For the remaining 2
instances (45tsp225 and 56a280), the best known results from the
literature are conjectured to be optimal.

Currently, the memetic algorithm of Gutin and Karapetyan [4]
clearly outperforms all published GTSP heuristics. Therefore, we
use this algorithm as a yardstick to evaluate the performance of
the different variants of our algorithm. We use the following
acronyms to identify the algorithms used in our experiments:

 GK: the memetic algorithm of Gutin and Karapetyan [4].
 CGS-2: the standard variant of our algorithm combined with

2-opt local search.
 CGS-3: the standard variant of our algorithm combined with

3-opt local search.
 CGS-C-2: the variant of our algorithm using confidence

combined with 2-opt local search.
 CGS-C-3: the variant of our algorithm using confidence

combined with 3-opt local search.

For each GTSP instance, we run each algorithm 25 times and we
report the average time needed to obtain the optimal solution. For
the GK algorithm, we use the C++ implementation offered by its
authors. The running times for GK differ from the values reported
in [4], because we run our experiments on a 32-bit platform using
an Intel Core2 Duo 2.2 GHz processor, while the results presented
in [4] have been obtained on a 64-bit platform and using a faster
processor (AMD Athlon 64 X2 3.0 GHz).

The computational results are shown in Table 3. The name of each
problem is prefixed by the number of clusters and it is suffixed by
the number of nodes. Average times that are better than those
obtained by the GK algorithm are in boldface. For each problem
and for each CGS algorithm variant, we also report the p-values of
the one-sided Wilcoxon rank sum tests for the null hypothesis
(H0) that for the given problem there is no difference between the
running times of the considered algorithm variant and the running
times of the GK algorithm, and for the alternative hypothesis (H1)
that the considered algorithm outperforms the GK algorithm for
the given problem. Applying the Bonferroni correction for
multiple comparisons, we obtain the adjusted α-level: 0.05 / 18 =
0.00278. The p-values in boldface indicate the cases where the
null hypothesis is rejected at this significance level.

486

Table 3. Times (in seconds) needed to find the optimal solutions, averaged over 25 trials.

Problem
instance

Optimal
cost

GK CGS-C-3 CGS-C-2 CGS-3 CGS-2
time time p-value time p-value time p-value time p-value

40d198 10557 0.46 0.36 0.0004 0.33 0.0012 0.47 0.0034 0.45 0.0050
40kroA200 13406 0.38 0.33 0.0000 0.25 0.0000 0.37 0.5711 0.30 0.0001
40kroB200 13111 0.48 0.60 0.9460 0.37 0.0008 0.59 0.9689 0.60 0.6156

41gr202 23301 0.71 0.64 0.0141 0.91 0.4674 1.35 1.0000 1.10 0.9101
45ts225 68340 0.61 3.32 1.0000 4.06 0.9957 1.92 0.9999 2.67 1.0000

45tsp225 1612 0.51 4.83 1.0000 3.25 0.9994 4.07 1.0000 2.28 0.9967
46pr226 64007 0.28 0.13 0.0000 0.07 0.0000 0.13 0.0000 0.09 0.0000
46gr229 71972 0.81 0.36 0.0000 0.33 0.0000 0.39 0.0000 0.37 0.0000
53gil262 1013 0.83 1.22 0.1071 2.63 0.9999 1.63 1.0000 3.49 1.0000
53pr264 29549 0.67 0.57 0.0070 0.49 0.0005 0.94 0.9482 1.08 0.9406
56a280 1079 0.94 1.79 0.8215 3.71 0.9999 2.02 0.9998 4.46 1.0000

60pr299 22615 1.10 3.54 0.9992 2.91 0.9992 3.23 1.0000 4.74 0.9999
64lin318 20765 1.16 0.85 0.0000 2.68 0.9929 1.28 0.8946 3.81 1.0000
80rd400 6361 2.57 10.30 0.9996 13.27 1.0000 87.96 1.0000 270.04 1.0000
84fl417 9651 1.91 1.10 0.0000 1.59 0.0001 1.51 0.0012 2.27 0.0512
87gr431 101946 6.01 8.16 0.8361 12.86 0.9916 477.38 1.0000 866.53 1.0000
88pr439 60099 4.07 1.56 0.0000 1.32 0.0000 3.68 0.0104 10.71 0.9999

89pcb442 21657 4.24 11.11 0.9980 13.53 1.0000 395.93 1.0000 1430.13 1.0000

It can be observed that CGS-C-3 outperformed GK for 9 of the 18
instances and in 7 cases these results are significantly better.
CGS-C-2 outperformed GK for 8 of the 18 instances and in all
these 8 cases the results are significantly better. The variants
without confidence perform poorer and for a few instances they
need considerably more time to find the optimal solution.

For several pairs of algorithms, we use the one-sided Wilcoxon
signed rank test to compute the p-values for the null hypothesis
(H0) that there is no difference between the running times of the
first and the running times of the second algorithm, and the
alternative hypothesis (H1) that the running times of the first
algorithm are better than the running times of the second
algorithm. The p-values are given in Table 4, where the
significant values (p < 0.05) are in boldface.

Table 4. Performance comparison using the one-sided
Wilcoxon signed rank test

First algorithm Second algorithm p-value
GK CGS-C-3 0.1061
GK CGS-C-2 0.0368
GK CGS-3 0.0069
GK CGS-2 0.0005
CGS-C-3 CGS-C-2 0.0708
CGS-C-3 CGS-3 0.0152
CGS-C-2 CGS-2 0.0028

It can be observed that GK outperforms our algorithms, but in the
case of CGS-C-3, the differences are not statistically significant.
Similarly, CGS-C-3 outperforms CGS-C-2, but not statistically
significant. The fact that 3-opt local search does not significantly
improve the results obtained with 2-opt local search could be a
consequence of the greater complexity of 3-opt. There are,
however, significant differences between the running times of
CGS variants with confidence and those without confidence. Due
to the very poor results obtained in some cases by the algorithm
variants without confidence, these differences are not only

statistically, but also practically significant, thus indicating the
importance of the confidence component.

Figure 8 shows how the candidate list size affects the time needed
by CGS-C-3 to find the optimal solution of the problem instance
64lin318. The results are averaged over 25 trials.

Figure 8. The influence of the candidate list size on the time
needed to find the optimal solution for problem 64lin318

It can be observed that the size of the candidate list has a huge
influence on the time needed by the algorithm to find the optimal
solution. Therefore, the use of candidate lists is a key component
contributing to the success of our algorithm.

The best results are obtained for candidate lists of size 4 or 5, but
we should note that the algorithm is able to find the optimum even
for candidate lists with only 2 elements. However, in this case the
time needed increases considerably. This is due to the fact that the
probability to find the next cluster of the optimal tour in the

487

candidate list of the current cluster is significantly smaller when
using a candidate list with only 2 elements. For the 64lin318
instance, only 44 of the 64 clusters are present in the candidate list
of their precedent cluster when using candidate lists with 2
elements. In contrast, 59 of the 64 clusters are present when using
candidate lists with 5 elements. The algorithm is able to find the
optimal solution even for very small sized candidate lists, because
during the construction phase a client may visit clusters not
contained in the current candidate list, if all clusters in this
candidate list are already visited or when the consultant
recommends it.

For candidate lists with a large number of elements, the algorithm
performance in terms of running time worsens, due to the increase
in the number of exchanges considered during the local search.

7. Acknowledgements
This work was cofinanced from the European Social Fund
through Sectoral Operational Programme Human Resources
Development 2007-2013, project number POSDRU/89/1.5/S/56287
"Postdoctoral research programs at the forefront of excellence in
Information Society technologies and developing products and
innovative processes", partner University of Oradea.

8. CONCLUSIONS AND FUTURE WORK
We have described an efficient algorithm that combines the
consultant-guided search heuristic with a local-global approach in
order to solve the GTSP. The local-global approach distinguishes
between global connections (connections between clusters) and
local connections (connections between nodes from different
clusters). Our algorithm constructs Hamiltonian tours in the global
graph obtained by replacing all nodes of a cluster with a
supernode representing it.

The algorithm takes advantage of the fact that most GTSP
instances of practical importance are symmetric problems with
Euclidean distances, where the clusters are composed of nodes
that are spatially close one to the other. For this class of problems,
a useful measure is the virtual distance between two supernodes,
computed as the distance between the centers of mass of the two
corresponding clusters. We use virtual distances as a heuristic
during the strategy construction phase. Additionally, based on the
virtual distances between clusters, the algorithm creates candidate
lists used for strategy and solution construction, as well as for
local search. The use of candidate lists significantly reduces the
search space and contributes to the efficiency of our algorithm.

A variant of our algorithm, which uses the concept of confidence
in relation to the recommendations made by consultants, improves
the algorithm performance, especially for large instances.

Computational results show that there are no statistically
significant differences between our algorithm variant with
confidence and the memetic algorithm of Gutin and Karapetyan
(GK), which is currently the best published heuristic for the
GTSP. The GK algorithm uses a sophisticated local improvement
strategy that combines many local search heuristics. One goal of
our future research is to adopt a similar approach for the local
improvement part of our algorithm, but still using candidate lists
for each local search heuristic considered.

9. REFERENCES
[1] Bontoux, B., Artigues, C. and Feillet, D. A Memetic

Algorithm with a large neighborhood crossover operator for
the Generalized Traveling Salesman Problem. Computers &
Operations Research, 37 (11), 2010, 1844-1852.

[2] Dorigo, M. and Stützle, T.: Ant Colony Optimization. MIT
Press, Cambridge, 2004.

[3] Fischetti, M. A Branch-and-Cut Algorithm for the Symmetric
Generalized Travelling Salesman Problem. Operations
Research , 45 (3), 1997, 378-394.

[4] Gutin, G. and Karapetyan, D. A memetic algorithm for the
generalized traveling salesman problem. Natural Computing,
vol. 9, 2010, 47-60.

[5] Hu, B. and Raidl, G. Effective neighborhood structures for
the generalized traveling salesman problem. In: Proc. of
Evolutionary Computation in Combinatorial Optimisation -
EvoCOP 2008, LNCS, Vol. 4972, Naples, Italy, 2008, 36-47.

[6] Hutter, F., Hoos, H.H., Leyton-Brown, K. and Stützle, T.
ParamILS: An Automatic Algorithm Configuration
Framework. Journal of Artificial Intelligence Research
(JAIR), vol. 36, October 2009, 267-306.

[7] Iordache, S. Consultant-Guided Search - A New
Metaheuristic for Combinatorial Optimization Problems. In:
GECCO 2010: Proceedings of the 12th Genetic and
Evolutionary Computation Conference. ACM Press, 2010.

[8] Iordache, S. Consultant-Guided Search Algorithms with
Local Search for the Traveling Salesman Problem. In: PPSN
XI - International Conference Parallel Problem Solving from
Nature. LNCS 6239, Krakow, Poland, Springer, 2010, 81-90.

[9] Iordache, S. Consultant-Guided Search Algorithms for the
Quadratic Assignment. In: Hybrid Metaheuristics - 7th
International Workshop, HM 2010. LNCS 6373, Vienna,
Austria. Springer, 2010, 148-159.

[10] Johnson, D.S. and McGeoch, L. Experimental Analysis of
Heuristics for STSP. In: Gutin, G., Punnen, A. (eds) The
Traveling Salesman Problem and its Variations. Kluwer,
Dordrecht, 2002.

[11] Pop, P.C. The generalized minimum spanning tree problem.
Twente University Press, The Netherlands, 2002.

[12] Reinelt, G. TSPLIB - A Traveling Salesman Problem Library,
ORSA Journal on Computing, vol. 3, no. 4, 1991, 376-384.

[13] Silberholz, J. and Golden, B. The Generalized Traveling
Salesman Problem: a new Genetic Algorithm approach.
Extending the Horizons: Advances in Computing,
Optimization, and Decision Technologies, 2007, 165-181.

[14] Snyder, L.V. and Daskin, M.S. A random-key genetic
algorithm for the generalized traveling salesman problem.
European Journal of Operational Research 174, 2006, 38-53.

[15] Tasgetiren, M.F., Suganthan, P.N. and Pan, Q.-K. A discrete
particle swarm optimization algorithm for the generalized
traveling salesman problem. GECCO ’07: Proceedings of the
9th annual conference on Genetic and evolutionary
computation, 2007, 158-167.

488

