
Genetic Approaches for Graph Partitioning: A Survey

Jin Kim
School of Computer Science and Engineering

Seoul National University
Seoul 151-744, Korea

kimjin@soar.snu.ac.kr

Inwook Hwang
Mechatronics and Manufacturing Technology

Center
Samsung Electronics

Gyeonggi-do 443-742, Korea
iwook.hwang@samsung.com

Yong-Hyuk Kim
Department of Computer Science and

Engineering
Kwangwoon University
Seoul 139-701, Korea
yhdfly@kw.ac.kr

Byung-Ro Moon
School of Computer Science and Engineering

Seoul National University
Seoul 151-744, Korea
moon@snu.ac.kr

ABSTRACT
The graph partitioning problem occurs in numerous appli-
cations such as circuit placement, matrix factorization, load
balancing, and community detection. For this problem, ge-
netic algorithm is a representative approach with competi-
tive performance with many related papers being published.
Although there are a number of surveys on graph partition-
ing, none of them deals with genetic algorithms in much
detail. In this survey, a number of problem-specific issues in
applying genetic algorithms to the graph partitioning prob-
lem are discussed; the issues include encoding, crossover,
normalization, and balancing.

Categories and Subject Descriptors
G.1.6 [Numerical Analysis]: Optimization—Global op-
timization; G.2.2 [Discrete Mathematics]: Graph The-
ory—Graph algorithms

General Terms
Algorithms

Keywords
genetic algorithm, graph partitioning, graph bisection, com-
binatorial optimization, survey

1. INTRODUCTION
Given an undirected graph G = (V,E), where V is the set

of vertices and E is the set of edges, a balanced k-way graph
partitioning is defined as k disjoint subsets V1, V2, . . . , Vk of
V such that ||Vi| − |Vj || ≤ 1 ∀i, j and

∑
i |Vi| = |V |, where

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’11, July 12–16, 2011, Dublin, Ireland.
Copyright 2011 ACM 978-1-4503-0557-0/11/07 ...$10.00.

|S| means the cardinality of a set S. Each subset is called a
partition. The cut size of a partitioning is defined to be the
number of edges whose adjacent vertices are located in dif-
ferent partitions, and the edges are called cut edges. The k-
way graph partitioning problem (k-way GPP) is the problem
that finds the k-way graph partitioning with the minimum
cut size. When k = 2, the problem is called graph bisection
or bipartitioning. The above definition is easily generalized
to weighted vertices and/or edges. Since most studies fo-
cused on unweighted graphs, graphs hereafter are assumed
to be unweighted unless otherwise stated.

GPP arises in various practical applications such as VLSI
circuit placement [25], sparse matrix factorization [11], par-
allel computing [50], and community detection in social net-
works [66]. There have been studies on the problem using
coordinate-based methods [6], spectral ones [24], and multi-
level ones [41, 70]. The problem is NP-hard for general
graphs [32], as well as planar graphs and regular graphs [10].

It is also known that there is no approximation algorithm
with a constant ratio factor for general graphs [10]. Leighton
and Rao [53] proposed an approximation algorithm allowing
for some imbalance in the range of 1/3 to 2/3 that guarantees
O(log |V |) times the optimum. Since it is hardly expected
to be able to produce quality solutions with approximation
algorithms of theoretical bounds, studies have mostly con-
centrated on finding quality solutions without performance
guarantee in a reasonable amount of time. Representative
methods are metaheuristics such as simulated annealing [37],
tabu search [68], ant colony optimization [16], and genetic
algorithms(GAs) [15].

Among the metaheuristics, GAs have been the most suc-
cessful and many related papers have been published on the
subject. To our best knowledge, however, there are no sur-
vey focusing on GAs for GPP. Although a few surveys fo-
cused on GPP, they dealt with GA too briefly [1, 27, 30] or
even did not mention it at all [65].

In this paper, some of the issues of GAs for GPP such as
representation, normalization, balancing, and local optimi-
zation are discussed. By overviewing the previous work of
GAs for GPP, researchers may be able to reduce the amount
of trial and errors and acquire intuition on the reasonable
combination of genetic elements. This intuition will also be
useful for other combinatorial optimization problems.

473

The remainder of this paper is organized as follows: In
Section 2 the effectiveness of GAs for GPP by investigat-
ing the problem space of GPP is discussed. Section 3 de-
scribes the core features of GA, e.g., encoding, crossover,
and normalization. Section 4 is devoted to how to satisfy
the balancing constraint of GPP. Local search algorithms
are examined in Section 5 along with other techniques in
Section 6. Finally, this paper is closed with a summary and
directions for future work.

2. PROBLEM SPACES
Local search algorithms are popular for GPP. A typical

local search algorithm finds solutions by searching the neigh-
borhood of a solution; it repeatedly selects the best neighbor
until no remaining neighbors are better than the current so-
lution. The neighborhood denotes the set of solutions that
are located within a specific distance from a solution in the
fitness landscape. More formally, neighborhood N(s, d) of
a solution s is defined as {x | distance(s, x) ≤ d}, where d
is the specific distance called the radius. Local search algo-
rithms obtain reasonable solutions in an appropriately short
amount of time; however, they often get stuck in low-quality
local optima.

To overcome this drawback, local search algorithms are
combined with GAs which are good at searching the prob-
lem space globally. The combination is called hybrid GA
or memetic GA. Since GAs are not so good at fine-tuning
around local optima, local search algorithms can help im-
prove GA’s performance. To the best of our knowledge,
Laszewski and Mühlenbein [52] suggested the first hybrid
GA for GPP.

Investigating the local optimum space of GPP, Inayoshi
and Manderick [36] noticed that good local solutions tend
to be close one another. They thought that this was related
to the effectiveness of crossover and did some experiments to
examine the structure of the problem space. They showed
that the distances between the local optima and their neigh-
bors are smaller compared to those of the ordinary solutions.
They insisted that it was evidence of showing the smooth-
ness of the problem space.

Boese et al. [7] further investigated the local optimum
space of GPP by computing the distances between many lo-
cal optima and the global optimum. The result showed that
the quality of the local optima overall decreases as the dis-
tance from the global optimum increases. They conjectured
that the local optimum space is globally convex around the
global optimum. If the crossover operator is regarded as
a convex search, the observation implies that a hybrid GA
is a good search method because it takes advantage of the
convexity of the problem space.

Kim and Moon [45] supported these results with a series
of experiments on the local optimum space of GPP. They
reported that solutions near the center of the local optimum
space usually had small cut sizes. It suggests that the central
region is quite attractive. Whether explicit or not, crossover
operators tend to drive solutions toward the central area
of the problem space. This makes crossover an attractive
search operator for the problem.

Merz and Freisleben [58] observed that if graphs are dif-
ferent from each other, the corresponding problem spaces
are also different. They designed experiments with two lo-
cal heuristics and observed from geometric graphs that the

b

h

6

c

1

5

f

a

e

g

4

3

d

2

Figure 1: An example of bisection. The vertices are
labeled by numbers and the edges are by alphabets.
The cut edges are a and f ; the cut size is 2.

problem space became smoother as the average degree in-
creased; this observation goes against common intuition.

3. REPRESENTATION AND OPERATORS

3.1 Encoding
In GAs for the k-way GPP, a chromosome corresponds

to a partitioning of the vertices. Among the schemes rep-
resenting a chromosome, the group-numbers encoding, also
called the vertex-to-cluster encoding, is the most natural and
prevalent one. It assigns each gene a specified number 0 to
k − 1 depending on which partition the gene belongs to. It
is widely used because it is simple and intuitive, however,
it has redundancy. There are k! encodings for an identical
partition, e.g., a bipartition in Figure 1 may be encoded as
011100 or 100011. It is known that redundancy undermines
the performance of GA [8, 69]. To cope with this situation,
normalization is used, which is covered in Section 3.3.

In addition, there is another encoding that can be consid-
ered as a kind of group-numbers encoding. In the encoding
by Steenbeek et al. [75], a gene corresponds to a cluster, not
a vertex. The clusters are identified in the early stage of the
GA.

There are a considerable amount of work [21, 34] using
order-based encoding which was originally used in combina-
torial problems for optimization of permutations including
the traveling salesman problem (TSP). In this encoding, a
chromosome is represented by a permutation of |V | inte-
gers representing the vertices of graph. To reconstruct or
evaluate a partitioning of vertices represented by this en-
coding, a decoding process is required. The process assigns
each vertex to the partition that maximizes the sum of the
edge weights between the vertices in the same partition; the
resulting partitioning becomes the phenotype of the chro-
mosome. Although this encoding does not suffer from re-
dundancy, it cannot represent all feasible solutions and its
decoding process takes a long time.

Armbruster et al. [3] and Boulif [9] independently pro-
posed the edge encoding, which maps a chromosome to an
edge set, not a vertex set. In the representation, each gene
of a chromosome is assigned to 1 if its corresponding edge
is on the cut and 0 otherwise. For example, the partition-
ing of the graph on Figure 1 is represented as 10000100 in
alphabetical order. This representation is well adapted to
their formulations. However, it requires a rather long chro-
mosome of length |E| to represent the partitions, while the
group-numbers encoding requires only |V |. Moreover, one-

474

point crossover, which Armbruster et al. used, creates in-
feasible offsprings more frequently in the representation.

Gene reordering is an encoding scheme using the linkage
information of GPP. In the GA for GPP, Bui and Moon [13]
first proposed the gene reordering method. The method
rearranges gene positions in a BFS (breadth-first search)
visiting order. They insisted that gene reordering helps
to preserve the building blocks in multi-point crossover be-
cause gene reordering tends to shorten the defining lengths
of good schemata. They also proposed DFS-based (depth-
first search) gene reordering and compared it with BFS gene
reordering [12]. Through further study on BFS gene reorder-
ing, they developed a hybrid GA [15] that became one of the
most cited articles in the field of GPP. Martin’s spectral hy-
brid GA also adopted this method [57]. Hwang et al. [35]
improved BFS gene reordering by starting the BFS from
multiple points.

Representing a solution into a one-dimensional string in-
evitably causes the loss of information contained in the orig-
inal graph with a multi-dimensional nature. This led to
multi-dimensional encodings. Cohoon and Paris [22] first
used a two-dimensional chromosome for a VLSI placement
problem. For GPP, Bui and Moon [14] introduced multi-
dimensional encoding and developed crossovers for it. The
details are explained in the next subsection.

3.2 Crossover
Crossover is closely related to encoding. Crossovers that

can be applied to ordinary one-dimensional group-numbers
encoding for GPP include one-point, multi-point, and uni-
form crossovers. The standard one-point crossover is simple
but effective enough for some GAs to use it as their main op-
eration [2, 3, 77]. Among multi-point crossovers, five-point
is the most popular [12, 13, 14, 15, 35, 40, 44, 46, 56, 57].
Such a high perturbation is allowable particularly in hybrid
GAs because of the strong search power of the local optimi-
zation heuristics.

Uniform crossover is prevalently used [36, 38, 48, 55, 58,
75] because it can produce the most various kinds of com-
binations. Maini et al. [55] invented two variants of this,
Knowledge-based Non-Uniform Crossover (KNUX) and Dy-
namic KNUX (DKNUX). KNUX uses the adjacency infor-
mation of the vertices and makes variant masks for the
crossover, while DKNUX changes the masks adaptively. In-
ayoshi and Manderick [36] proposed a variant that inherits
the common gene shared by both parents and fills the oth-
ers randomly. Merz and Freisleben [58]’s greedy crossover
works similar to this except that it fills the others with the
min-max greedy heuristic of Battiti and Bertossi [5].

Crossovers for one-dimensional encoding can also be ap-
plied to multi-dimensional encoding; however, they ignore
higher dimensional relationship between genes. Bui and
Moon [14] proposed Z3 crossover which is a generalized
multi-point crossover suitable for multi-dimensional encod-
ing. Comparing it with one-dimensional crossover, they ob-
tained better results for GPP benchmark graphs. Since it
lacks diversity, Kahng and Moon [39] proposed geographic
crossover which uses various cutting strategies to create di-
verse forms of schemata. It outperformed Z3.

Since these operators are not attractive to order-based
encodings, permutation crossover operators are designed for
the encodings. Höhn and Reeves [34] first applied PMX
(partially matched crossover) to the GPP inspired by [38].

Cincotti et al. [21] takes into consideration the leaders, which
are the starting points for a greedy heuristic, because the
other vertices have little to do with the result. The crossover
of the leaders is a variant of the uniform crossover. Moraglio
et al. [59, 60] extended cycle crossover to preserve feasibility.
Its details are given in Section 4.

Soper et al. [74]’s crossover is unique, in that the structure
of a graph is not mapped directly to a chromosome, but is
used as a base to weight the edges for a multi-level algorithm.
Vertices and edges near the cut are weighted higher and the
others are weighted lower. In a multi-level algorithm, the
higher weighted edges tend to be selected as cut edges. More
details are given in 5.2.

Lin and Cheng’s crossover [54] is based on autogamy, not
allogamy, which is commonly used in other GAs. Two off-
springs are generated from each selected parent by a pizza-
cutting operation, which divides the border area1 into two
partitions and then the combination of this border area
cut and the original cut create two new cuts, i.e., two off-
springs. They reported that it effectively worked on parti-
tioning internet-like graphs.

3.3 Normalization
There are three types of relationships between genotype

and phenotype, i.e., encoding and the real solution: one-to-
one, one-to-many, and many-to-one. There is no problem
in one-to-one encoding. One-to-many encoding, which was
suggested in the context of some order-based encodings [21,
34] does not require normalization. Many-to-one encoding
causes somewhat serious problems to the crossover’s consis-
tency for searches. In this encoding, more than one genotype
represents the same partition. The good features of parent
solutions may be lost as a result of crossover by being con-
fused with diverse genotypes.

The commonly used group-numbers encoding has redun-
dancy, which raises some problems. If genotypes correspond-
ing to the same phenotype are similar (synonymously redun-
dant), even redundant encoding does not create a serious
problem [69]. Unfortunately for GPP, the prevalent group-
numbers encoding is nonsynonymously redundant and geno-
types are fairly different so that it undermines the perfor-
mance of GAs. Choi et al. [18] showed that both fitness-
distance correlation and epistasis variance representing the
problem space become zero, which implies that redundant
encoding obstructs the search of GA.

Normalization is a method that overcomes this situation.
Commonly used normalization locks the genotype of one
parent chromosome and transforms the other parent of the
closest chromosome to the locked parent. Figure 2 shows an
example. In the example, the offspring obtained by normal-
ization better preserves the characteristics of the parents.
In [15], crossover produces two offsprings by complementing
a parent chromosome and selecting the better parent. This
method shares the same motivation as normalization.

The first normalization of GPP appeared in Laszewski [51].
Although they did not call it normalization, their adaptive
crossover operator plays the role of normalization. The op-
erator chooses a partition of one parent and copies it to the
other. During the process, the number of chosen partition is
replaced with that of the most overlapped partition. Kang
and Moon [40] extended this method to multi-way partition-
ing by considering the whole partition. They used the term

1
the vertices near the cut

475

2 3 4 5 6 7 81

0 1

0 1 1

0

0 1 1 0 01 0 1

1

0 0

11

1 1 1 1

0 1 000

0

1 0 0 0 0 0

1 0 1 1 0

parent2

parent1

normalized parent2

offspring w/o norm

offspring with norm

cut

Figure 2: An example of normalization for group-
numbers encoding.

normalization for the first time. Their method is a kind of
greedy heuristic. Choi and Moon [19, 20] did experiments
on the problem space of GPP and reported that the problem
space varies according to the crossover operators. They also
showed that normalization improves GA’s performance.

Normalization is modeled by the optimal assignment prob-
lem finding a numbering of partitions that minimizes the
distance between two chromosomes. The greedy algorithm
used in previous methods works well but does not guarantee
that optimal numbering is obtained in the sense of genotypic
consistency. Moraglio et al. [59] proposed a method to find
the optimal numbering using the Hungarian method [49].

All known normalization methods are based on the Ham-
ming distance. As an extension of the Hamming distance,
Moraglio et al. [59] devised labeling-independent distance de-
fined as the minimum Hamming distance between all pairs
of one solution. However, this is also based on the Ham-
ming distance. No method for normalization based on other
metrics has been studied.

4. BALANCING
In the GPP, balancing constraint denotes that the differ-

ence of cardinalities between the largest partition and the
smallest one should be at most one. It is a critical constraint
that makes the problem difficult to solve. If the constraint
is ignored, the GPP can be seen as the same problem as
MIN-k-CUT. Especially, if k is two, it can be solved in poly-
nomial time by max-flow algorithms [31]. When allowed an
imbalance of one-third, an O(log |V |)-approximation algo-
rithm can be obtained [53]. On the other hand, if the con-
straint must be satisfied, no OPT +O(|V |2)-approximation
algorithm exists unless P=NP [10].

In GAs for GPP, crossover often does not produce feasi-
ble partitions. There are two ways of resolving this. One is
allowing unbalanced chromosomes and adding an imbalance
penalty to the fitness function. The imbalance penalty is
commonly defined as the multiplication of a constant α and
the squared or absolute sum of the differences between the
sizes of each partition. The constant α is used to control the
degree of penalty; if α is higher, the imbalance penalty in-
creases faster. Imbalance penalty has been adopted by many
studies [23, 28, 55, 75].2 If a balanced solution is not ob-

2
A study of simulated annealing [37] influenced these. The study also

found that reasonable values of α may be small enough.

tained by the end of a GA process, the final solution should
be adjusted by moving the vertices of the large partitions to
the small ones.

The other is to repair an unbalanced partition to a bal-
anced one immediately after crossover or mutation. Modi-
fication of the fitness function is not necessary and feasible
solutions are always available all through the GA process.
Moving the vertices of a larger partition to a smaller one is
the most common repair method. Hwang et al. [35] showed
that contiguous repair improves the performance by synergy
with gene reordering. It implies that repairing algorithms
influence the performance of the GAs for GPP.

Allowing penalty has a merit that it is easily applied to
GAs that use primitive operations only. Its demerit is its
performance. Pirkul and Rolland [64] compared the method
of repair to the method that allows the imbalance and re-
flects the penalty in the fitness function. They reported that
the performance of repair method was better; however, the
details of the experimentation were not presented.

When repair frequently occurs, a risk arises that the off-
spring may be fairly different from their parents. Höhn and
Reeves [34] explained this by the concept of strict trans-
mission [67], which is a property that all alleles of the child
chromosome come from one of the corresponding parent val-
ues. They observed that crossover does not work well when
strict transmission rarely occurs and thus, the repair rate
grows. However, this is not necessarily true for hybrid GAs
which allow for a rather high rate of mutation.

Another approach is to modify a crossover to prevent un-
balanced solutions from being produced. The previously
mentioned greedy crossover of Merz and Freisleben [58] is
an example. Since the min-max greedy heuristic included
in the crossover repairs unbalanced partitioning, no other
balancing method is necessary. Moraglio et al. [59, 60] ex-
tended cycle crossover for permutation-with-repetitions en-
coding and applied it to multi-way partitioning. It always
produces feasible solutions.

5. LOCAL OPTIMIZATION
Since a GA is weak at fine-tuning around local optima, it

is extremely hard to get a competitive result without local
optimization for larger than toy-size NP-hard problems. In
this section, representative local optimization algorithms are
described and explaining how they are combined with GAs.

5.1 KL Heuristic and Its Variants
Among local optimization algorithms for graph partition-

ing, Kernighan-Lin (KL) algorithm [43] is often considered
the first competitive heuristic for GPP.

The KL algorithm starts with a balanced partitioning of
vertices. It proceeds in a series of passes. During each pass,
the algorithm improves the initial solution by swapping pairs
of vertices to create a new solution. This process is repeated
for the new solution until no more improvements can be
obtained.

Let (A,B) be an initial bipartition of vertices V . Define
the gain gv of a vertex v to be the cut size reduction by
moving v to the opposite set. The gain g(a, b) as a result
of swapping vertices a ∈ A and b ∈ B is ga + gb − 2δ(a, b),
where δ(a, b) is 1 if (a, b) ∈ E and 0 otherwise.

The pair (a, b) that maximizes g(a, b) is selected. Once a
and b are selected, they are assumed to be exchanged and
not considered for further exchange. A sequence of pairs

476

(a1, b1), (a2, b2), . . . , (a|V |/2−1, b|V |/2−1) are selected in this

way. The algorithm chooses l that maximizes
∑l

i=1 g(ai, bi)
and exchanges {a1, a2, . . . , al} and {b1, b2, . . . , bl}. This is a
pass of KL. KL repeats the above pass until there is no more
improvement.

The KL algorithm has been frequently used because it
finds quite competitive solutions in a reasonable amount of
time. A number of variants have been proposed [26, 46, 47].
Among them, Fiduccia-Mattheyses (FM) algorithm [29] is
widely used. The main difference between KL and FM lies
in the unit of vertex-moving during a pass. While KL ex-
changes a pair of vertices, FM moves one vertex at a time.
This makes FM faster than KL with little loss of partitioning
quality. Bui and Moon devised a fast variation of KL [15];
its time complexity is mostly O(|E|) while that of the tra-
ditional KL algorithm is mostly O(|V |3).

There are three main schemes using the above algorithms
for multi-way partitioning which were originally developed
for bipartitioning: recursive method, pairwise one, and di-
rect one [44]. The recursive method repeats bipartitioning
until the given graph is partitioned into k subgraphs. The
pairwise method repeatedly chooses two partitions randomly
and runs the KL algorithm [43] to them. The direct method
uses a multi-way generalization of the FM algorithm [29].
Sanchis [72] showed that the direct method performed bet-
ter than the recursive one.

5.2 Multi-level Heuristics
The multi-level heuristic is one of the most popular meth-

ods that are combined with GAs. It works as follows:

1. Coarsening: find and collapse appropriate vertices to
make a coarser graph.

2. Partition: if the graph is small enough, partition it.

3. Uncoarsening: restore the collapsed vertices.

Since the balance of the graph may be violated during un-
coarsening, a balance-adjustment is required. Appropriate
heuristics such as KL may help improve the performance.

In the coarsening phase, maximal matching is primar-
ily used. Küçükpetek et al. [48] proposed a method that
finds a maximal matching by a GA. They compared the
method with a famous multi-level package, METIS [42], and
reported better results in a number of benchmark graphs,
though it took a longer time.

Soper et al. [74] took advantage of multi-level heuristic as
a local optimization method for GAs. The heuristic works
like crossover. Recombination and mutation operators are
used for computing weight biases of vertices and edges, and
the results give hints for multi-level heuristics. That is, good
characteristics of previously promising solutions are reflected
in multi-level heuristics. They reported better results than
graph partitioning packages such as Chaco [33] and METIS,
but their method took a much longer time. They insisted
that the method is useful when the quality of partitioning is
important.

5.3 Local Search Algorithm in Hybrid GAs
In hybrid GAs for GPP, there have been some studies us-

ing fast but weak local optimization algorithms. In [51, 61],
2-opt was applied only to the border vertices which are con-
nected by the cross edges between the partitions. Bui and
Moon [15] obtained better results by allowing only one pass

of KL instead of full passes, together with restricting the
size of the sets to be swapped. They believed that the im-
proved results were due to avoiding premature convergence
by a slightly weaker local optimization technique.

On the other hand, there have been a number of studies re-
porting notable performance improvement by enhanced local
optimization algorithms. For bisection, Kim and Moon [46]
suggested a new KL-based local search algorithm, which in-
troduces a new type of gain, called lock gain, of a vertex in
a manner that takes into account only the edges connected
to the vertices that have already been moved. Combining
it with a GA, they obtained an impressive result for most
benchmark graphs. Hybrid GAs with local optimization al-
gorithms specialized for multi-way partitioning showed good
results [40, 44].

Steenbeek et al. [75] proposed a cluster enhancement heu-
ristic (CEH) and a CEH-combined hybrid GA. Their hybrid
GA partitions vertices using a node-swap heuristic and iden-
tifies clusters. It only then moves clusters to another parti-
tion in the GA process. They reported successful results.

6. OTHER APPROACHES

6.1 Spectral Methods
Martin [56, 57] introduced singular value decomposition

(SVD), which is a spectral technique that can obtain re-
lationships between genes, to enhance GAs. In his hybrid
GA, the initial population was created using eigenvectors of
the incidence matrix of a graph. Then in each generation,
it applies a process named genetic engineering, which con-
structs a graph using the gene relationships that are found
by rank-2 SVD on several promising solutions. The SVD
hybrid GA has found minimum bisections for some bench-
mark graphs. A weak point of SVD is its running time; it
runs in O(|E|2|V |+ |E||V |2 + |V |3) for an |E| × |V | matrix.
Martin expected that his method might be useful when the
fitness function is expensive to compute.

6.2 Branch-and-cut
Armbruster et al. [2, 3] formulated integer programming

for GPP, and solved it using branch-and-cut and linear pro-
gramming (LP), a very effective method for integer program-
ming. The lower and upper bound of branch-and-cut frame-
work are obtained respectively by the LP primal method
and by a GA whose initial population is provided by LP
rounding with various random pivots. They used common
operators except for four kinds of mutations: an ordinary
swap; moving one vertex into the opposite cluster; a vari-
ation of constructing initial population; and a local search.
The gap of branch-and-cut was small for about 300 vertices
of graphs, but increased for larger graphs. It is notable that
the role of GA is secondary in the whole framework of the
method.

6.3 Non-traditional GAs
Non-traditional GAs are not comprised of traditional op-

erators such as selection, recombination, and mutation. Saab
and Rao [71] devised a stochastic evolution method which
uses a complicated mutation instead of crossover. Barake et
al. [4] proposed a new metaheuristic named PROBE, which
can be viewed as a GA without selection. When applied to
the GPP [17], it outperformed other metaheuristics.

477

Table 1: List of GA papers for graph partitioning

author(s) brief description year section reference
Laszewski and Mühlenbein the first hybrid GA for graph partitioning 1991 2, 6.4 [52]
Laszewski the first normalization 1991 3.3, 5 [51]
Talbi and Bessière parallel GA 1991 6.4 [77]
Bui and Moon BFS gene reordering 1993 3.1, 3.2, 3.3, 5 [12, 13, 15]
Inayoshi and Manderick investigating problem space 1994 2 [36]
Maini et al. variants of uniform crossover 1994 3.2 [55]
Höhn and Reeves order based encoding 1996 3.1, 3.2, 4 [34]
Steenbeek et al. cluster based encoding and local search 1998 3.1, 5 [75]
Schwarz and Oc̆enás̆ek BMDA and BOA 1999 6.3 [73]
Kang and Moon normalization and multi-way partitioning 2000 3.3, 5 [40]
Merz and Freisleben investigating problem space 2000 2 [58]
Kim and Moon multi-way partitioning 2001 5 [44]
Cincotti et al. order based encoding 2002 3.1, 3.2 [21]
Mühlenbein and Mahnig EDA 2002 6.3 [62]
Choi and Moon normalization 2003 3.3 [19, 20]
Kim and Moon lock gain based local search heuristic 2004 5 [46]
Kim and Moon investigating problem space 2004 2 [45]
Soper et al. multi-level hybrid 2004 3.2, 5.2 [74]
Küçükpetek et al. multi-level hybrid 2005 5.2 [48]
Armbruster et al. LP-based branch-and-cut hybrid 2005–6 3.1, 6.2 [2, 3]
Martin spectral method 2005–6 6.1 [56, 57]
Boulif and Atif edge encoding 2006 3.1 [9]
Hwang et al. multi-attractor BFS gene reordering 2006 3.1, 4 [35]
Chardaire et al. PROBE metaheuristic 2007 6.3 [4, 17]
Moraglio et al. geometric crossover and multi-way partitioning 2007, 2011 3.2 [59, 60]
Lin and Cheng pizza-cutting crossover and initialization 2008 3.2 [54]
Farshbaf and Feizi-Derakhshi multi-objective optimization 2009 4 [28]
Boulif survey on representation 2010 3.1 [8]

Recently, estimation of distribution algorithm (EDA), a
generalization of GAs using a probabilistic model, became
popular. Pelikan et al. [63] applied Bayesian optimization
algorithm (BOA), a variant of EDA, on two simple struc-
tured graphs and obtained good partitioning. However, the
instance graphs were too small to show that EDA can deal
with general instances well. Schwarz and Oc̆enás̆ek [73]
reported that a bivariate marginal distribution algorithm
(BMDA) was superior to a simple GA with respect to per-
formance and time cost, but inferior to a SGAH, a simple GA
hybridized with a local search heuristic. They also observed
that the BOA consistently performed good and fast for large
graphs, however, it could not completely beat the SGAH.
Mühlenbein and Mahnig [62] did experiments on graphs with
hundreds of vertices using a univariate marginal distribution
algorithm (UMDA) and a learning factorized distribution al-
gorithm (LFDA) that was combined with one pass of KL,
and obtained better results than the previous work.

6.4 Parallel GAs
Since GAs mimic natural evolution which is an inherently

parallel process, it is not surprising that papers in the early
90’s had much interest in parallel GA (PGA). There are two
main issues for PGA: topology and population. In most pa-
pers, the grid topology is used, and communication occurs
between close processors that are nearer than the specific
distance, usually two or three. Laszewski and Mühlenbein’s
PGA [52] is a representative case in which one solution cor-
responds to one processor and communication occurs be-

tween the adjacent processors in the ring topology. Also in
Talbi [77]’s torus topology, one processor corresponds to one
solution.

Collins and Jefferson [23] compared local mating and pan-
mictic mating and reported that local mating was superior
to traditional GAs as well as panmictic mating. Unlike the
other researchers who have major interest in the GPP itself,
they considered the GPP as just a test problem.

7. SUMMARY
The graph partitioning problem is a representative com-

binatorial optimization problem belonging to the class of
NP-hard. As shown in Table 1, a great amount of research
has been done on the problem. The facility of represen-
tation and the difficulty of finding optimal solutions have
made many researchers challenge the problem. In addition,
many designers choose the graph partitioning problem as the
target problem to verify the superiority of their methods.

In this paper, we summarized the various approaches for
the problem and, in particular, went over the issues of GAs
related to the problem. These issues include the main top-
ics of GAs such as representation, crossover, normalization,
constraint handling, local optimization, and hybridization.
We hope that this survey helps to lead research in a new
direction for further developing effective and efficient meth-
ods.

Recently, as large problems such as the problem of parti-
tioning complex network [76] including social networks have

478

drawn a great deal of attention from researchers, the re-
quirement for algorithms that manage huge graphs is in-
creasing. Since huge graphs require enormous memory, tra-
ditional GAs cannot manage it effectively. Designing novel
genetic operators tailored for huge graphs will be a good
direction for further study.

8. ACKNOWLEDGMENTS
The ICT at Seoul National University provides research

facilities for this study. This work was supported by the
Engineering Research Center of Excellence Program (2011-
0000966), Basic Science Research Program (2011-0004215),
and Mid-career Researcher Program (2010-0014218) of Ko-
rea Ministry of Education, Science and Technology (MEST)
/ National Research Foundation of Korea (NRF).

9. REFERENCES
[1] C. J. Alpert and A. B. Kahng. Recent directions in netlist

partitioning: A survey. Integration, the VLSI Journal,
19(1-2):1–81, 1995.

[2] M. Armbruster, M. Fugenschuh, C. Helmberg, N. Jetchev,
and A. Martin. LP-based genetic algorithm for the
minimum graph bisection problem. In Operations Research
Proceedings, pages 315–320, 2005.

[3] M. Armbruster, M. Fugenschuh, C. Helmberg, N. Jetchev,
and A. Martin. Hybrid genetic algorithm within
branch-and-cut for the minimum graph bisection problem.
In Evolutionary Computation in Combinatorial
Optimization, pages 1–12, 2006.

[4] M. Barake, P. Chardaire, and G. P. McKeown. The
PROBE metaheuristic and its application to the
multiconstraint knapsack problem. In Metaheuristics:
computer decision-making, pages 19–36. Kluwer Academic
Publishers, 2004.

[5] R. Battiti and A. Bertossi. Greedy, prohibition, and
reactive heuristics for graph partitioning. IEEE
Transactions on Computers, 48(4):361–385, 1999.

[6] M. J. Berger and S. H. Bokhari. A partitioning strategy for
nonuniform problems on multiprocessors. IEEE
Transactions on Computers, 36(5):570–580, 1987.

[7] K. D. Boese, A. B. Kahng, and S. Muddu. A new adaptive
multi-start technique for combinatorial global
optimizations. Operations Research Letters, 15:101–113,
1994.

[8] M. Boulif. Genetic algorithm encoding representations for
graph partitioning problems. In International Conference
on Machine and Web Intelligence, pages 288 –291, 2010.

[9] M. Boulif and K. Atif. A new branch-&-bound-enhanced
genetic algorithm for the manufacturing cell formation
problem. Computers & Operations Research, 33(8):2219 –
2245, 2006.

[10] T. N. Bui and C. Jones. Finding good approximate vertex
and edge partitions is NP-hard. Information Processing
Letters, 42:153–159, 1992.

[11] T. N. Bui and C. Jones. A heuristic for reducing fill-in in
sparse matrix factorization. In Sixth SIAM Conference on
Parallel Processing for Scientific Computing, pages
445–452, 1993.

[12] T. N. Bui and B.-R. Moon. Hyperplane synthesis for
genetic algorithms. In Fifth International Conference on
Genetic Algorithms, pages 102–109, 1993.

[13] T. N. Bui and B.-R. Moon. A genetic algorithm for a
special class of the quadratic assignment problem. The
Quadratic Assignment and Related Problems, DIMACS
Series in Discrete Mathematics and Theoretical Computer
Science, 16:99–116, 1994.

[14] T. N. Bui and B.-R. Moon. On multi-dimensional
encoding/crossover. In Sixth International Conference on
Genetic Algorithms, pages 49–56, 1995.

[15] T. N. Bui and B.-R. Moon. Genetic algorithm and graph
partitioning. IEEE Transactions on Computers,
45(7):841–855, 1996.

[16] T. N. Bui and L. C. Strite. An ant system algorithm for
graph bisection. In Genetic and Evolutionary Computation
Conference, pages 43–51, 2002.

[17] P. Chardaire, M. Barake, and G. P. McKeown. A
PROBE-based heuristic for graph partitioning. IEEE
Transactions on Computers, 56(12):1707–1720, 2007.

[18] S.-S. Choi, Y.-K. Kwon, and B.-R. Moon. Properties of
symmetric fitness functions. IEEE Transactions on
Evolutionary Computation, 11(6):743–757, 2007.

[19] S.-S. Choi and B.-R. Moon. Normalization in genetic
algorithms. In Genetic and Evolutionary Computation
Conference, pages 862–873, 2003.

[20] S.-S. Choi and B.-R. Moon. Normalization for genetic
algorithms with nonsynonymously redundant encodings.
IEEE Transactions on Evolutionary Computation,
12(5):604–616, 2008.

[21] A. Cincotti, V. Cutello, and M. Pavone. Graph partitioning
using genetic algorithms with ODPX. In IEEE Congress on
Evolutionary Computation, pages 402–406, 2002.

[22] J. P. Cohoon and W. Paris. Genetic placement. IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 6(6):956–964, 1987.

[23] R. Collins and D. Jefferson. Selection in massively parallel
genetic algorithms. In Fourth International Conference on
Genetic Algorithms, pages 249–256, 1991.

[24] W. Donath and A. Hoffman. Lower bounds for the
partitioning of graphs. IBM Journal of Research and
Development, 17:420–425, 1973.

[25] A. Dunlop and B. Kernighan. A procedure for placement of
standard-cell VLSI circuits. IEEE Transactions on
Computer-Aided Design, CAD-4(1):92–98, 1985.

[26] S. Dutt and W. Deng. A probability-based approach to
VLSI circuit partitioning. In Design Automation
Conference, pages 100–105, 1996.

[27] J. Elsner. Graph partitioning - a survey. Technische
Universität Chemnitz, 1997.

[28] M. Farshbaf and M.-R. Feizi-Derakhshi. Multi-objective
optimization of graph partitioning using genetic algorithms.
In Proceedings of the Third International Conference on
Advanced Engineering Computing and Applications in
Sciences, pages 1–6, 2009.

[29] C. Fiduccia and R. Mattheyses. A linear time heuristics for
improving network partitions. In 19th ACM/IEEE Design
Automation Conference, pages 175–181, 1982.

[30] P. O. Fjällström. Algorithms for graph partitioning: A
survey. Linköping Electronic Atricles in Computer and
Information Science, 3(10), 1998.

[31] L. R. Ford and D. R. Fulkerson. Flows in Networks.
Princeton University Press, 1962.

[32] M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some
simplified NP-complete problems. In Sixth Annual ACM
Symposium on Theory of Computing, pages 47–63, 1974.

[33] B. Hendrickson and R. W. Leland. The Chaco user’s guide,
version 2.0. Technical Report SAND95-2344, Sandia
National Laboratories, Albuquerque, 1995. Open-source
software distributed at
http://www.cs.sandia.gov/~bahendr/chaco.html.

[34] C. Höhn and C. Reeves. Graph partitioning using genetic
algorithms. In Second International Conference on
Massively Parallel Computing Systems, pages 27–43, 1996.

[35] I. Hwang, Y.-H. Kim, and B.-R. Moon. Multi-attractor gene
reordering for graph bisection. In Genetic and Evolutionary
Computation Conference, pages 1209–1216, 2006.

[36] H. Inayoshi and B. Manderick. The weighted graph
bi-partitioning problem: A look at GA performance. In The
Third Conference on Parallel Problem Solving from
Nature, pages 617–625, 1994.

[37] D. S. Johnson, C. Aragon, L. McGeoch, and C. Schevon.

479

Optimization by simulated annealing: An experimental
evaluation; Part 1, graph partitioning. Operations
Research, 37:865–892, 1989.

[38] D. R. Jones and M. A. Beltramo. Solving partitioning
problems with genetic algorithms. In Fourth International
Conference on Genetic Algorithms, pages 442–449, 1991.

[39] A. B. Kahng and B.-R. Moon. Toward more powerful
recombinations. In Sixth International Conference on
Genetic Algorithms, pages 96–103, 1995.

[40] S.-J. Kang and B.-R. Moon. A hybrid genetic algorithm for
multiway graph partitioning. In Genetic and Evolutionary
Computation Conference, pages 159–166, 2000.

[41] G. Karypis and V. Kumar. A fast and high quality
multilevel scheme for partitioning irregular graphs. SIAM
Journal on Scientific Computing, 20(1):359–392, 1998.

[42] G. Karypis and V. Kumar. Multilevel k-way partitioning
scheme for irregular graphs. Journal of Parallel and
Distributed Computing, 48(1):96–129, 1998.

[43] B. Kernighan and S. Lin. An efficient heuristic procedure
for partitioning graphs. Bell Systems Technical Journal,
49:291–307, 1970.

[44] J.-P. Kim and B.-R. Moon. A hybrid genetic search for
multi-way graph partitioning based on direct partitioning.
In Genetic and Evolutionary Computation Conference,
pages 408–415, 2001.

[45] Y.-H. Kim and B.-R. Moon. Investigation of the fitness
landscapes in graph bipartitioning: An empirical study.
Journal of Heuristics, 10(2):111–133, 2004.

[46] Y.-H. Kim and B.-R. Moon. Lock gain based graph
partitioning. Journal of Heuristics, 10(1):37–57, 2004.

[47] B. Krishnamurthy. An improved min-cut algorithm for
partitioning VLSI networks. IEEE Transactions on
Computers, C-33:438–446, 1984.

[48] S. Küçükpetek, F. Polat, and O Oğuztüzün. Multilevel
graph partitioning: an evolutionary approach. Journal of
the Operational Research Society, 56(5):549–562, 2005.

[49] H. W. Kuhn. The Hungarian method for the assignment
problem. Naval Research Logistics Quarterly, 2:83–97, 1955.

[50] V. Kumar, A. Grama, A. Gupta, and G. Karypis.
Introduction to Parallel Computing. The
Benjamin/Cummings Publishing Company, Inc., 1994.

[51] G. Laszewski. Intelligent structural operators for the k-way
graph partitioning problem. In Fourth International
Conference on Genetic Algorithms, pages 45–52, 1991.

[52] G. Laszewski and H. Mühlenbein. Partitioning a graph with
a parallel genetic algorithm. In First Workshop on Parallel
Problem Solving from Nature, pages 165–169, 1991.

[53] F. T. Leighton and S. Rao. An approximate max-flow
min-cut theorem for uniform multicommodity flow
problems with applications to approximation algorithms. In
29th Symposium on Foundations of Computer Science,
pages 422–431, 1988.

[54] S. Lin and X. Cheng. BC-GA: A graph partitioning
algorithm for parallel simulation of internet applications. In
16th Euromicro Conference on Parallel, Distributed and
Network-Based Processing, pages 358–365, 2008.

[55] H. S. Maini, K. G. Mehrotra, C. K. Mohan, and S. Ranka.
Genetic algorithms for graph partitioning and incremental
graph partitioning. In International Conference on
Supercomputing, pages 449–457, 1994.

[56] J. G. Martin. Subproblem optimization by gene correlation
with singular value decomposition. In Genetic and
Evolutionary Computation Conference, pages 1507–1514,
2005.

[57] J. G. Martin. Spectral techniques for graph bisection in
genetic algorithms. In Genetic and Evolutionary
Computation Conference, pages 1249–1256, 2006.

[58] P. Merz and B. Freisleben. Fitness landscapes, memetic

algorithms, and greedy operators for graph bipartitioning.
Evolutionary Computation, 8(1):61–91, 2000.

[59] A. Moraglio, Y.-H. Kim, Y. Yoon, and B.-R. Moon.

Geometric crossovers for multiway graph partitioning.
Evolutionary Computation, 15(4):445–474, 2007.

[60] A. Moraglio, Y.-H. Kim, Y. Yoon, and B.-R. Moon.
Geometric crossovers for multiway graph partitioning.
Theory and Principled Methods for the Design of
Metaheuristics, 2011. (to appear).

[61] H. Mühlenbein. Parallel genetic algorithm in combinatorial
optimization. In O. Balci, R. Sharda, and S. Zenios, editors,
Computer Science and Operations Research, pages
441–456. Pergamon Press, 1992.

[62] H. Mühlenbein and T. Mahnig. Evolutionary optimization
and the estimation of search distributions with applications
to graph bipartitioning. International Journal of
Approximate Reasoning, 31(3):157–192, 2002.

[63] M. Pelikan, D. E. Goldberg, and K. Sastry. Bayesian
optimization algorithm, decision graphs, and Occam’s
razor. IlliGAL Report No. 2000020, Illinois Genetic
Algorithms Laboratory, University of Illinois at
Urbana-Champaign, 2000.

[64] H. Pirkul and E. Rolland. New heuristic solution
procedures for the uniform graph partitioning problem:
extensions and evaluation. Computers and Operations
Research, 21(8):895–907, 1994.

[65] A. Pothen. Graph partitioning algorithms with applications
to scientific computing. In D. E. Keyes, A. H. Sameh, and
V. Venkatakrishnan, editors, Parallel Numerical
Algorithms, pages 323–368. Kluwer Academic Press, 1997.

[66] J. M. Pujol, V. Erramilli, and P. Rodriguez. Divide and
conquer: Partitioning online social networks. CoRR,
abs/0905.4918, 2009.

[67] N. J. Radcliffe. Forma analysis and random respectful
recombination. In International Conference on Genetic
Algorithms, pages 222–229, 1991.

[68] E. Rolland, H. Pirkul, and F. Glover. Tabu search for graph
partitioning. Annals of Operations Research,
63(2):209–232, 1996.

[69] F. Rothlauf and D. E. Goldberg. Redundant
representations in evolutionary computation. Evolutionary
Computation, 11(4):381–415, 2003.

[70] Y. G. Saab. An effective multilevel algorithm for bisecting
graphs and hypergraphs. IEEE Transactions on
Computers, 53(6):641–652, 2004.

[71] Y. G. Saab and V. Rao. Stochastic evolution: a fast
effective heuristic for some genetic layout problems. In 27th
ACM/IEEE Design Automation Conference, pages 26–31,
1990.

[72] L. A. Sanchis. Multiple-way network partitioing. IEEE
Transactions on Computers, 38(1):62–81, 1989.

[73] J. Schwarz and J. Oc̆enás̆ek. Experimental study:
hypergraph partitioning based on the simple and advanced
genetic algorithm BMDA and BOA. In 5th International
Conference of Soft Computing, pages 124–130, 1999.

[74] A. J. Soper, C. Walshaw, and M. Cross. A combined
evolutionary search and multilevel optimisation approach
to graph-partitioning. Journal of Global Optimization,
29(2):225–241, 2004.

[75] A. G. Steenbeek, E. Marchiori, and A. E. Eiben. Finding
balanced graph bi-partitions using a hybrid genetic
algorithm. In IEEE International Conference on
Evolutionary Computation, pages 90–95, 1998.

[76] S. H. Strogatz. Exploring complex networks. Nature,
410:268–276, 2001.

[77] E.-G. Talbi and P. Bessière. A parallel genetic algorithm for
the graph partitioning problem. In Fifth International
Conference on Supercomputing, pages 312–320, 1991.

480

