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ABSTRACT
A Constraint Satisfaction Problem (CSP) is a powerful frame-
work for representing and solving constraint problems. When
solving a CSP using a backtrack search method, one impor-
tant factor that reduces the size of the search space dras-
tically is the order in which variables and values are exam-
ined. Many heuristics for static and dynamic variable order-
ing have been proposed and the most popular and powerful
are those that gather information about the failures during
the constraint propagation phase, in the form of constraint
weights. These later heuristics are called conflict driven
heuristics. In this paper, we propose two of these heuristics
respectively based on Hill Climbing (HC) and Ant Colony
Optimization (ACO) for weighing constraints. In addition,
we propose two new value ordering techniques, respectively
based on HC and ACO, that rank the values based on their
ability to satisfy the constraints attached to their corre-
sponding variables. Several experiments were conducted on
various types of problems including random, quasi random
and patterned problems. The results show that the pro-
posed variable ordering heuristics, are successful especially
in the case of hard random problems. Also, when using the
proposed value and variable ordering together, we can im-
prove the performance particularly in the case of random
problems.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Heuristic methods

General Terms
Algorithms

Keywords
Constraint Satisfaction Problems (CSPs), Ant Colony Op-
timization (ACO), Hill Climbing (HC), Variable Ordering.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’11, July 12–16, 2011, Dublin, Ireland.
Copyright 2011 ACM 978-1-4503-0557-0/11/07 ...$10.00.

1. INTRODUCTION
Constraint Satisfaction Problems (CSPs) [5] constitute a

large number of combinatorial problems with many impor-
tant ”real-word” applications including scheduling, planning
and timetabling. A CSP is essentially about selecting val-
ues for a set of variables so that all the relations between
variables (constraints) hold. Consistent CSPs have one or
more solutions that satisfy all the relations while inconsis-
tent ones do not have any feasible solution. In the latter
case, the solver should be able to prove the inconsistency of
the problem.

There has been a lot of research on developing general
CSP solvers and many solvers have been designed for specific
problems. Generally, CSPs are either solved in a system-
atic way as in a backtracking-based method with constraint
propagation or with non-systematic methods such as local
search. Systematic methods are complete which means they
are able to solve the consistent problems and prove the in-
consistency in case the problem does not have any solution.
Non-systematic methods on the other hand are incomplete
and are not able to decide if the problem is consistent or not.

Neither of the complete or incomplete methods are suf-
ficient for all kinds of problems. Backtracking can be in-
efficient in large size problems whereas local search is more
scalable but does not guarantee finding a consistent solution.
Many real world problems are structured. Backtracking en-
hanced with constraint propagation seems to be the better
choice for these kinds of problems as local search usually
cannot exploit these structures. Many attempts have been
done to combine the advantages of these two methods for
achieving a faster and more proficient method. Some meth-
ods generate partial solutions using local search then use
backtracking to extend it to a complete one [23]. Another
type of hybrid method uses constraint propagation within lo-
cal search schema [11, 18]. Some approaches have used local
search as a mean to guide the backtrack algorithm in terms
of variable and value ordering. The following describes two
of these approaches. The first approach uses a local search
for finding the best branching variable for a complete back-
tracking algorithm [4]. This proposed method uses local
search algorithm to derive weights for clauses in Boolean
satisfiability problem (SAT), giving higher weights to the
clauses that are harder to satisfy. The clause weights are
then used to guide the variable ordering heuristic search for
the backtracking algorithm. Each variable is given a weight
which is the sum of the weights of the clauses it occurs in.
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The backtracking algorithm is then guided by the shortest
clause heuristic augmented by a ”tie breaker” based on the
weights of variables. The test results show an improvement
in run time and the size of the tree search. The second tech-
nique that uses local search for deciding variable ordering is
introduced in [17]. This approach uses the information gath-
ered during local search probes to guide a refinement search.
In this method there are two solvers interacting with each
other, one is a refinement solver and the other is a local
search solver.

Refinement search is the master process and it uses the
local-search solver for heuristic guidance. Solvers have differ-
ent internal representations of the job-shop scheduling prob-
lem and interact with each other regarding decision vari-
ables, which in this case are tasks starting times. Every
time that the refinement solver makes a refinement decision,
it informs the local search solver to add comparable con-
straints which allows both solvers to keep working on the
same problem. Local search provides recommendations to
the refinement search about the variables to choose for re-
finement. These variables will basically be those related to
highest amounts of inconsistency. The results show that the
use of domain-specific knowledge proves to be a much more
effective basis for search control than information about con-
straint interactions that is gained by local search probes.

In this paper we introduce two hybrid methods that com-
bine systematic and heuristic techniques. The first heuris-
tic is an iterative algorithm based on Hill Climbing local
search (HC). The second one is a constructive approach
based on Ant Colony Optimization (ACO) [7]. The two
methods that we propose tackle the problem first using HC
or ACO to gather information about the search space during
the search. Then, the information gained through the search
is used to give advices to the systematic search. This infor-
mation is passed as variable and value ordering. Variable
ordering specifically has a tremendous effect on the size of a
search tree. Therefore, it is very important for a backtrack
based search. The idea is that a heuristic algorithm might be
able to gather better information from larger parts of search
space, which would enable it to identify harder constraints.
In order to evaluate the performance of our methods, we
conducted a comparative experimental study with the most
powerfull techniques for variable ordering. The results of the
experiments demonstrate that our proposed algorithms us-
ing HC and ACO for variable ordering are successful in the
case of hard random problems. However, for problems with
more structure such as graph coloring or quasi random prob-
lems, they are not comparable to the other conflict driven
heuristics. Also, the use of the new proposed value orderings
can boost the performance for some random and structured
problems.

The rest of the paper is organized as following: In sec-
tion 2, we give an overview on basic concepts of CSPs and
the related existing solving algorithms. In section 3, we re-
view the existing variable ordering heuristics and propose
two new variable ordering heuristics. Section 4 is dedicated
to the value ordering heuristics that we have developed. In
section 5, we report the experimental study we conducted
to evaluate the proposed algorithms. Finally, section 6 lists
concluding remarks and future research.

2. BACKGROUND

2.1 Constraint Satisfaction Problems
A constraint Satisfaction Problem consists of a set of vari-

ables of non-empty finite domains and a set of constraints or
limitations [5]. Each constraint is valid for a subset of vari-
ables and specifies what combinations of values are allowed
for that subset. Constraints can be defined by enumerat-
ing the set of allowed tuples or by using an algebraic or
symbolic expression. An assignment of values to the vari-
ables involved in a CSP from their domains is a consistent
assignment if they do not violate constraints. A complete
assignment is obtained by assigning values to all the vari-
ables and it is a solution if it satisfies all the constraints of
the problem. CSPs can be characterized by the following
parameters. The arity of a constraint which is the number
of variables in the scope of the constraint, the degree of a
variable representing the number of constraints in which the
variable participates and the domain size of a variable corre-
sponding to the number of values in its domain. A constraint
is called binary when there are just two variables involved
in it and is unary if it puts limitation on just one variable.
A CSP is called a binary CSP if all constraints in it are
unary or binary. All CSPs can be transformed into binary
CSPs. Therefore binary CSPs are of particular importance
in constraint satisfaction studies.

2.2 Systematic Methods for Solving CSPs
In systematic search methods, the search starts with the

set of all variables unassigned. At each step, one variable
will be assigned a value from its domain and the partial
solution gets checked for consistency. There is also a goal
test to see if the assignment is a complete one (which, in
this case, is a solution) or not. Backtracking is essentially
a depth first search that assigns a value to one variable at
a time and backtracks when there is no legal value left in
the domain of the variable. Standard Backtracking is not
efficient due to thrashing; that is the search repeatedly fail-
ing due to the same reason which could be identified earlier
in the search. In order to overcome this difficulty in prac-
tice, local consistency techniques have been proposed [5].
More precisely, these techniques enforce the consistency on
a subset of CSP variables before and during the backtrack
search. One of the most known forms of local consistency is
called Arc Consistency [15]. Arc Consistency (AC) applies
the consistency on subsets of two variables. More formally,
for each pair of variables (x1, x2) sharing a constraint, AC
removes from the domain of x1 any value that is inconsis-
tent with all the values of x2 domain. When used before
the search, the goal of AC is to reduce the size of the search
space before Backtracking takes place. When used during
the search, AC helps to detect later failure earlier following
a lookahead technique such as Maintaining Arc Consistency
(MAC). Each time we assign a value to a variable, MAC
enforces AC on this latter variable and all future active vari-
ables (variables not assigned yet). We use this method as
our basic solving method in this paper.

2.3 Heuristic Methods for Solving CSPs
In most heuristic methods such as local search and evolu-

tionary algortihms, the search starts with one or more com-
plete assignments and then changes are made to make the
assignments satisfy more and more constraints until reach-
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ing the solution. The problem with these algorithms is that
because of the randomness they use, they cannot be used to
prove the inconsistency of a CSP since they do not enumer-
ate all the solutions and cannot be traced back to previous
states. In cases where the problem does not have a solu-
tion, these algorithms would run forever without success. In
practice, a time limit should be set after which the algorithm
returns no solution. To use these algorithms, we need to de-
fine a representation of the potential solution and a fitness
function to measure the quality of a solution. In CSPs, the
representation is an array of variables and the value in each
index of the array represents the value of the corresponding
variable. The fitness function measures the number of un-
satisfied constraints or if constraints have weights, the sum
of the weights of the unsatisfied constraints.

2.4 Variable and Value Ordering Techniques
The ordering of the variables in a backtrack search has

a tremendous effect on the size of the search space. Typi-
cally, a heuristic is used to choose what variable to assign
next at each step of the search. These heuristics should be
designed based on some criterion. The well-known first-fail
principle is a criterion that has been suggested for evalu-
ating different heuristics. This principle supposes that the
best search order is the one that minimizes the length or the
depth of each branch. Variable ordering heuristics can be
refined into two categories: Static Variable Ordering (SVO)
and Dynamic Variable Ordering (DVO). SVO heuristics use
the initial structure of the constraint network and main-
tain the same variable ordering during the search to decide
the next variable to assign a value to. Smallest Domain
First (SDF), is a SVO in which variables are sorted based
on their domain size so that variables with smaller domain
are checked first. The reasoning behind this is that given
all the other factors are equal, the variable with the least
number of values would have less sub trees rooted at those
values. Another method for SVO is maximum degree(deg)
[6] which chooses the variable that has the maximum degree
in the constraint graph. DVO use the information about
current state of the search at each point of the search to
decide the next variable to assign value to. A very well
known heuristic of this type, known as dom [10], selects the
next variable that has the least remaining values in its do-
main and thus constrains the remainder of the search space
the most. The dynamic version of deg, called ddeg, chooses
the variables that are involved in the least amount of con-
straints with unassigned variables. dom/ddeg [20] is derived
from combining these two heuristics and it selects a variable
that has the minimum ratio of the current domain to the
current dynamic degree. Impact based heuristics [19] focus
on the search tree size as a criterion for variable ordering.
They measure the importance of each variable in reducing
the size of the search space by considering the changes its
value assignments can make to the size of the search tree.
Conflict driven variable ordering is a technique proposed by
Boussemart et al. in [3]. This technique uses MAC as the
basic solving method, which maintains the complete arc con-
sistency throughout the search. In this technique, each con-
straint has a weight value that is incremented every time
the constraint causes a domain wipe out during the con-
straint propagation phases. Each variable has a weighted
degree that is the sum of the weights of the constraints that
the variable is involved in. At each variable selection point,

the variable that has the largest weighted degree is chosen.
This technique is called wdeg. The combination of wdeg
and dom is dom/wdeg, which prefers a variable that has the
least ratio of current domain size to the current weighted de-
gree. The obvious drawback to the wdeg technique is that
for the first few choices which are also the most important
ones, the search does not have enough information to choose
the best variables, and that can tremendously affect the size
of the search space. For solving this problem, Grimes et
al proposed Weighted Information gathering (WNDI) and
RANDom Information gathering (RNDI) in [9]. These two
techniques use the dom/wdeg heuristic. However, they do a
number of search restarts to gather information from differ-
ent parts of the search space before starting the main search
process. Having this information makes it possible to make
better choices for first variables. In RNDI, a variable is se-
lected randomly at each variable selection point during the
search for the first R - 1 runs. Weights are incremented in the
usual way (i.e. when a constraint causes a domain wipeout).
On the final restart dom/wdeg is used in the normal way.
However, the weights are not initialized to zero but they are
set to the weights that the search learnt from previous ran-
dom probes. This would enable the search to make better
early decisions. In WNDI the search updates the weights
consequently in all runs and uses the information gathered
from each run at the start of the next run. Experiments in
[2] show that RNDI can perform better in many test cases
because it learns from more diverse parts of the search space
and therefore can give a better approximation of the areas
of global contention.

3. PROPOSED VARIABLE ORDERING
METHODS

In this section, we propose two heuristics algorithms re-
spectively based on HC and ACO that provide recommenda-
tions for backtracking based algorithms. All of these recom-
mendations are based on assigning weights to constraints or
domain values of variables; higher weights suggest more sig-
nificance for corresponding variables or values in the variable
or value selection process. In this manner, these methods are
similar to the RNDI heuristic for variable ordering; the only
difference is that RNDI gathers this information in a system-
atic way during the constraint propagation phase, whereas
the methods we propose use non-systematic techniques for
that purpose. RNDI also continues to weigh constraints dur-
ing the last restart. Hence, it is considered a DVO method.
However, in the case of the hybrid methods that we pro-
pose, the learning approach of the non-systematic methods
cannot be continued during a systematic method. The non-
systematic method is run for a specific amount of time or
cycles, during which, the constraints gain weight. After the
non-systematic phase, similar to the wdeg technique, each
variable gets a weighted degree, which is the sum of the
weights of the constraints that the variable is involved in.
Variables are then sorted based on their weights and those
with larger weight get more priority in the ordering. Since
the ordering is decided before the start of the search, this
approach is considered a SVO method.

3.1 Local Search for Weighing Constraints
Local search improves the quality of solution iteratively

by changing one or more variable values at each step. Vari-
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ables and values are either chosen randomly or based on
some heuristic in a way that they increase the number of sat-
isfied constraints. The problem with local search is that it
might end up in a local minimum which means there would
exist no move that can generate a better solution. Con-
straint weighting algorithms have been developed to help
local search come out of local minima [16, 8]. One ques-
tion that would be raised here is when and what to weigh.
In the original work on constraint weighing in local search
for escaping local minima by Morris in [16], weights are ini-
tialized to 1 and at each local minimum, the weights of the
violated constraints are incremented by one. In the context
of using constraint weights for variable ordering, weighing
violated constraints just in local minima is not efficient for
various reasons. For example, it might take a long time for
the search to enter a local minimum, or the search might not
detect sufficient local minima. Therefore, search would not
be able to collect enough data about the search space to be
able to give useful advice regarding variable ordering. For
this reason, we used a cut off parameter that specifies the
maximum number of iterations the local search should run
for before it restarts again. Every time the search reaches
the cut off point or enters a local minimum, it terminates.
The weights of violated constraints are then incremented,
and another search starts. This continues until a maximum
number of cycles is reached. The reason for restarting the
search is to be able to visit several parts of the search space
and hence gaining a better understanding of the hot spots of
the search spaces. For the experiments, we used a HC local
search approach and we added the cut off parameter to it.
Figure 1 shows the pseudo code of the modified version of
the HC algorithm that we used.

3.2 ACO for Weighing Constraints
The second method uses ACO [21, 7] which is a stochastic

probabilistic approach for solving computational problems
that can be reduced to searching for a minimum cost path
in a graph. Artificial ants walk on the edges of the graph
looking for good paths. In real world, ants initially wan-
der around randomly and while going back to their colony,
they lay pheromone trails down on their path. If other ants
find this trail, they may choose not to travel at random but
to follow the trail and strengthen it on their way back if
they eventually find food. The behavior of artificial ants is
inspired from real ants. Artificial ants however, live in a dis-
crete world, which is a graph and their movements should be
on the edges of this graph. For CSP problems, this graph
is called the construction graph. For CSPs, the construc-
tion graph associates a vertex to each variable-value pair
< Vi, d > such that Vi ∈ V and d ∈ Di where V and Di

are respectively the set of variables and the domain of the
variable Vi. There is a non oriented edge between any pair
of vertices corresponding to two different variables. A com-
pletely constructed ant would be a potential solution for the
problem. The algorithm that was proposed for solving CSPs
with ACO is called ant solver. The details of the ant solver
we used can be found in [21]. For being able to have a better
exploration of the search space, we restart the ant solver a
few times in every run. The number of restarts is a param-
eter for this algorithm. Figure 2 shows the pseudo code of
the ACO algorithm that we propose.
The algorithm starts with initializing the pheromone trail

amounts and setting the parameters. Then, at each itera-

Procedure HC
Input: A constraint network R = (V,D,C)

where V = {v1, . . . , vn} (set of variables)
D = {D1, . . . , Dn} (variables domains)
C = {c1, . . . , cm} (set of constraints)

MAX TRIES: maximum number of tries
CUT OFF: cut off number

Output: Weights (w1, . . . , wm) for the constraints in C
Counter ← 0
LocalMinimum ← false
solutionFound ← false

While Counter < MAX TRIES and solutionFound = false
Initialization: let ā = (a1, ., an) be a random initial

assignment to all variables
Repeat

Let Y = {< vi, a
′
i >} be the set of variable-value pairs

where vi is a variable in conflict and when vi is
assigned a′

i , it gives a maximum improvement to
the cost of the assignment

If Y ̸= ∅
Pick a pair < vi, a

′
i >∈ Y

ā← (a1, . . . , ai−1, a
′
i, ai+1, . . . , an) (flip ai to a′

i )
Else

LocalMinimum ← true
If (ā is consistent)

solutionFound ← true
Counter ← Counter + 1

Until Counter = MAX TRIES or LocalMinimum=true
or Counter MOD CUT OFF = 0
or solutionFound = true

If solutionFound = false
For each constraint ci ∈ C

If ci is violated in ā
wi ← wi + 1

End While
Return solutionFound

Figure 1: Pseudo code of the modified version of
HC.

Procedure ACO
Input Restarts: the number of restarts for ACO
Max Iters: the maximum iterations for the MC algorithm
Max Cycles: the maximum number of cycles the ant solver
can be run
N: the number of ants

Output The solution to the problem
or return “problem not consistent”
For R ← 1 to Restarts Do
Initialize the pheromone trails and parameters
For C ← 1 to Max Cycles Do
For k ← 1 to N Do
Construct a complete assignment Ak

using the pheromone trail
Apply HC to assignment Ak until Max Iters is reached
or search enters a local minimum
Update the weights of constraints with the improved
version of Ak

End for
Update pheromone trails using the best ants in the cycle

End for
End for

Figure 2: Pseudo code of the used variant of ACO.
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tion, a number of completely assigned ants are constructed
and the pheromones are updated based on the cost values
of the best ants in that iteration. Finally, ants are improved
using the HC algorithm. A specific number of generations
is considered as cut off. However, if the assignment enters a
local minimum before the cutoff point, the local search will
terminate. After applying HC, weights of the constraints
that the ant was not able to solve get incremented by one.
Ant algorithms have a lot of parameters.

Systematically optimizing these parameters before using
them in algorithms is always preferable. However, it can
take a very long time. For this reason, we used a set of
parameters based on those that are found to be best in [21].
So parameters are set as following: ρ = 0.01, α = 2, β =
10, τmin = 0.01andτmax = 4. Number of ants was set to 8
in all of the problems. Other parameters for ACO are:

• Number of restarts: For being able to have a better
exploration of the search space, I restart the ant solver
a few times in every run. The number of restarts is a
parameter for this algorithm.

• Number of ant solver cycles in each restart.

• Number of iterations for local search: as mentioned
before, local search is applied to ants after they are
constructed. Therefore, the number of iterations for
local search is another parameter that should be set.

4. PROPOSED VALUE ORDERING METH-
ODS

In search for a solution to a CSP problem, value order-
ing heuristics provide an approximation of what values are
more likely to be part of a solution. By assigning those val-
ues to the corresponding variables first, the search can be
guided on a path that ends in a solution and decreases the
whole computational cost. Good value ordering heuristics
are generally highly problem specific and general heuristics
can be costly. In this paper, we tried random value ordering
for RNDI and dom/wdeg. We also propose two new value
ordering heuristics that can be used with the proposed vari-
able ordering heuristics. The first one uses HC/MAC and
the second one uses ACO/MAC. For HC/MAC algorithm,
we assume that the values that repeatedly participate in vi-
olated constraints are less likely to be part of a solution and
values that satisfy their corresponding constraints frequently
are more likely to be part of a solution. Thus, we assign
weights to values, which are updated every time weights of
constraints are updated. If a value is able to satisfy all the
constraints attached to its corresponding variable, its weight
is increased by one and if it causes conflicts, its weight is de-
creased by one. At the end it gives us a static value ordering
to use in the backtrack-based search. With ACO/MAC al-
gorithm, the values of a variable are ordered based on the
sum of the pheromones that are laid on the edges between
the corresponding variable-value node and other variable-
value nodes in the ant colony graph.

Example
Figure 3 shows a graph coloring problem and its construc-
tion graph created by ACO. As it can be seen, each arc in

the construction graph has a weight corresponding to the
amount of pheromones laid on that arc at the end of the
running of the ACO algorithm. Each node in the construc-
tion graph will have a weight that is equal to the sum of
the weights of the arcs attached to it. The computation of
weights for all the nodes is described below.

W < V1, r >= W (< V1, r >,< V2, r >) + W (< V1, r >,<

V2, g >) +W (< V1, r >,< V3, r >) +W (< V1, r >,< V3, g >) =

0.5 + 0.5 + 0.5 + 0.5 = 2

W < V1, g >= W (< V1, g >,< V2, r >) + W (< V1, g >,<

V2, g >) + W (< V1, g >,< V3, r >) + W (< V1, g >,< V3, g >

) = 4 + 0.5 + 0.5 + 4 = 9

W < V2, r >= W (< V2, r >,< V1, r >) + W (< V2, r >,<

V1, g >) + W (< V2, r >,< V3, r >) + W (< V2, r >,< V3, g >

) = 0.5 + 4 + 4 + 0.5 = 9

W < V2, g >= W (< V2, g >,< V1, r >) + W (< V2, g >,<

V1, g >) + W (< V2, g >,< V3, r >) + W (< V2, g >,< V3, g >

) = 0.5 + 4 + 4 + 0.5 = 4

W < V3, r >= W (< V3, r >,< V2, r >) + W (< V3, r >,<

V2, g >) + W (< V3, r >,< V1, r >) + W (< V3, r >,< V1, g >

) = 0.5 + 0.5 + 0.5 + 0.5 = 5.5

W < V3, g >= W (< V3, g >,< V1, r >) + W (< V3, g >,<

V1, g >) + W (< V3, g >,< V2, r >) + W (< V3, g >,< V2, g >

) = 0.5 + 4 + 4 + 0.5 = 9

The values of each variable are then sorted, in decreasing
order, based on the weight of their corresponding <variable,
value> nodes: DV3 = {g, r}, DV2 = {r, g}, DV1 = {g, r}. If
the values of the variables are chosen based on these orders
at each value selection point, no backtracking will be needed
for this problem.

Figure 3: A graph coloring instance and its con-
struction graph.

5. EXPERIMENTATION
In order to evaluate the performance of our proposed meth-

ods, we conducted an experimental study on a variety of
satisfiable and unsatisfiable problems. All the methods and
techniques are coded in a C++.Net and each of the results
is an average of 10 runs (note that, in most of the cases the
results for each of the 10 runs are almost the same). The
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Problem wdeg RNDI HC/MAC ACO/MAC

Composed 75 1 80 0(sat)
t 0.13 0.5 0.14 0.4
n 865 9 10 10

Composed 75 1 80 9(sat)
t 0.15 0.18 0.2 0.4
n 716 10 10 10

geo50-20-d4-75-60 ext
t 105 6 7 18
n 127537 2024 5052 21042

geo50-20-d4-75-65 ext
t 2 1 3 7
n 4227 1848 200 4614

ehi-85-297-17 ext(unsat)
t 2 3 - -
n 234 200 - -

Table 1: Test results for quasi random problems.

tests were conducted on a computer running windows XP,
with Intel(R) Core 2Duo CPU P8400 @ 2.26GHz processor
and 2 GB RAM of memory. The problem sets have been
taken from Lecoutre’s benchmarks at [13].

Our methods are compared to our implementation of RNDI
and wdeg. The first reason for comparing with RNDI and
wdeg is that both of these methods also weigh the con-
straints to achieve a variable ordering. The second reason is
that, according to Balafoutis and Stergiou in [2] who have
done an experimental evaluation on modern variable order-
ing heuristics, conflict driven heuristics are almost always
faster than the other existing variable ordering heuristics in-
cluding impact based heuristics. Hence, they are considered
to be some of the most powerful proposed variable ordering
techniques.

The purpose of this experimentation is to compare the al-
gorithms only based on how they weigh the constraints. For
this reason, wdeg heuristic was used instead of dom/wdeg in
the RNDI algorithm. For the HC problem, the total number
of iterations was set based on the difficulty of the problem
and ranges from 200 to 4000. Easy problems need less and
harder problems need more iterations to explore the search
space. The range of the cutoff parameter was between 1 and
50 for all of the instances.

For the ACO algorithm, the number of restarts ranges
from 1 to 5. The number of cycles for each restart ranges
from 10 to 50, depending on the hardness of the problem.
Local search did not seem to be very effective for many of
the test instances and hence, the number of local search it-
erations was set to a number between 0 and 20. RNDI has
two parameters. The first one is the number of restarts and
the second one is the maximum number of nodes that each
of these restarts can visit.

These parameters were also set based on the difficulty of
each instance. Harder instances need a more through explo-
ration of the search tree to be able to provide a good variable
ordering. The largest numbers assigned to the parameters
restarts and maximum nodes were 20 and 4000 and they
were used for the harder instances of pure random problems.

The algorithms are compared based on the average CPU
time for reaching the solution (t) and the average number
of visited nodes by MAC algorithm (n). The CPU time in-
cludes the preprocessing phase time (the phase that provides
the weights). For RNDI, only the number of visited nodes

in the last restart has been taken. For all the problems, the
timeout was set to 700 seconds. For each instance, the pa-
rameters were tuned manually to get the best overall time
performance. That means that the goal was to minimize the
sum of the CPU time for preprocessing step and the main
MAC search.

The first set of problems (satisfiable Composed, geo and
unsatisfiable ehi instances listed in Table 1) are quasi ran-
dom instances generated as described in [14]. Composed in-
stances are made of a main part which is under-constrained
and some auxiliary parts. Each of the auxiliary parts is at-
tached to the main by using some binary constraints.

ehi85 is a 3 SAT unsatisfiable instance that have been
transformed into a binary CSP instance using the dual method
described in [1]. The geometric instances (geo50) are ran-
dom instances generated using a distance parameter. More
precisely, for each variable, a point with two coordinates in
a unit square is chosen randomly. Two variables will share a
constraint if their corresponding points have a distance less
or equal to the distance parameter.

As it can be seen in Table 1, dom/wdeg has the best per-
formance amongst all the other algorithms. In the case of
ehi test case, only RNDI and dom/wdeg are able to solve
them.

The second set of problems (frb instances listed in Tables
2 and 3) are random binary satisfiable CSP instances created
by the RB model [22]. This model is capable of generating
problems close to phase transition as well as forced satisfi-
able instances that have the same hardness as unsatisfiable
instances.

Table 2 reports the results for these problems. As we can
see, the wdeg heuristic fails when the size and the hard-
ness of the problem increase. HC/MAC has the best per-
formance when it comes to the harder instances of frb se-
ries. ACO/MAC is also comparable to RNDI and HC/MAC
for these hard instances. For easier instances, RNDI seems
to have the best performance. For large instances, RNDI
seems to have the best performance. Our experiments with
different values of cut off parameter show that the cut off
parameter for the HC algorithm should not be set to a large
number, so that enough number of individuals can go under
the constraint weighing process. For smaller numbers (0 to
100), the performance of the HC algorithm does not seem
to be very dependent on this parameter.
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Table 3 shows the results for cases when the proposed
value and variable ordering methods were used together. As
it can be seen, the results are significantly better than when
variable ordering was used alone especially in the case of
HC/MAC algorithm. It is worth mentioning that in a 2005
competition for solving these instances only about half of
the solvers were able to solve the frb-40-19 series in under
ten minutes.

Problem wdeg RNDI HC/MAC ACO/MAC

frb-35-17-1(sat)
t 14 8 10 14
n 27497 15178 18898 22063

frb-40-19-2(sat)
t 429 86 85 99
n 572319 96710 97871 83110

frb-35-19-3(sat)
t 414 387 368 355
n 633499 519902 478107 518501

frb-35-17-4(sat)
t 469 387 233 359
n 633499 345338 322696 446268

frb-35-17-5(sat)
t 460 390 304 431
n 726460 544810 452435 439321

Table 2: Test results for random binary constraint
problems generated by the RB model.

Problem HC/MAC ACO/MAC

frb-40-19-2(sat)
t 60 124
n 36830 114332

frb-40-19-3(sat)
t 70 128
n 63269 89072

frb-40-19-4(sat)
t 232 202
n 308880 226713

frb-40-19-5(sat)
t 207 151
n 254584 155381

Table 3: Test results when value and variable order-
ing methods are used together.

Figure 4 depicts the weights obtained by different algo-
rithms for ehi test case. As it can be seen, RNDI was able
to make a pretty good distinction between variables, since
in the RNDI graph, only a few variables have noticeably
high weights and the other variables have very low weights.
Thus, RNDI can provide the MAC search with a more pre-
cise variable ordering.

Problem HC/MAC ACO/MAC

anna-8(unsat)
t 60 124
n 36830 114332

anna-9(unsat)
t 70 128
n 63269 89072

jean-7(unsat)
t 232 202
n 308880 226713

david-9(unsat)
t 207 151
n 254584 155381

Table 4: Test results for the graph coloring problem.

The graph coloring problem is a special case of graph la-
beling in graph theory. The problem is to assign colors to
vertices of a graph such that no two adjacent vertices have
the same color. The sets of unsatisfiable instances used for

Figure 4: Weights obtained for ehi test case.

Problem wdeg RNDI HC/MAC ACO/MAC

anna-8(unsat)
t 175 8 10 10
n 1402564 69828 129760 100192

anna-9(unsat)
t - 60 96 111
n - 627739 1784745 1485369

jean-7(unsat)
t 1 0.4 1 1
n 35543 8659 35543 16219

david-9(unsat)
t - 40 23 26
n - 624251 623529 623529

Table 5: Test results when using both variable and
value ordering methods.

our tests are from [12]. Given a work of literature, a graph is
created where each node represents a character. Two nodes
are connected by an edge if the corresponding characters en-
counter each other in the book. The three test sets anna,

david, and jean correspond respectively to the following
novels: Anna Karenina, David Copperfield, and Les Mis-
érables.

As it can be seen in Table 4, RNDI has the best perfor-
mance among other algorithms in terms of CPU time and
the number of visited nodes. Only in the david-9 test in-
stances, HC/MAC and ACO/MAC result in a better time
performance.

Table 5 shows the results of running HC/MAC and ACO/-
MAC where suggested variable and value ordering were used
together. The results show that the ACO value ordering
makes the running time slightly better for the anna-9 in-
stances.
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6. CONCLUSION
In this paper, we introduced two new methods for deciding

variable ordering and two heuristics for deciding value order-
ing in CSPs. These techniques use heuristic algorithms to
identify the hard constraints, while comparable approaches
try to learn the hard constraints during constraint propaga-
tion in a systematic search. RNDI, HC/MAC and ACO/MAC
all do a search prior to the main search process to identify
the global sources of difficulty. This way, the last search can
start with more informed decisions.

These hybrid approaches make it possible to use incom-
plete algorithms to gather information even when it comes
to inconsistent problems. The two value ordering heuristics
we propose rank the values based on their ability to satisfy
the constraints attached to their corresponding variables.

The experiments we conducted on random, quasi random,
and structured graph coloring problems demonstrate that
HC/MAC and ACO/MAC have better performance in the
case of hard random problems and some structured prob-
lems. However, in some types of structured problems such as
ehi problem, RNDI seems to be able to find the hardest spots
of the search space much easier and boost the performance
by focusing on those spots, whereas using a non-systematic
algorithm lowers the chances of finding those areas.

In the near future, we are looking to doing more tests on
different kinds of problems including real world problems.
We will also study different forms of local search and evolu-
tionary algorithms to learn their ability in recognizing the
hard parts of the search space.
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