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ABSTRACT 
This paper proposes a tabu search approach to solve the 
Synchronized and Integrated Two-Level Lot Sizing and 
Scheduling Problem (SITLSP). It is a real-world problem, often 
found in soft drink companies, where the production process has 
two integrated levels with decisions concerning raw material 
storage and soft drink bottling. Lot sizing and scheduling of raw 
materials in tanks and products in bottling lines must be 
simultaneously determined. Real data provided by a soft drink 
company is used to make comparisons with a previous genetic 
algorithm. Computational results have demonstrated that tabu 
search outperformed genetic algorithm in all instances.   

Categories and Subject Descriptors 
I.2.8 [Artificial Intelligence]: Problem Solving, Control methods, 
and Search – heuristic methods, scheduling  

General Terms: Algorithms, Management, Measurement, 
Performance, Experimentation, Verification. 

Keywords 
Tabu search, genetic algorithm, scheduling, real-world 
applications, industrial applications 

1. INTRODUCTION 
This paper presents a tabu search algorithm to solve the 
Synchronized and Integrated Two-Level Lot Sizing and 
Scheduling Problem (SITLSP). This problem is usually found in 
soft drink companies, where lot sizing and scheduling decision 
have to be simultaneously taken in a two-level production 
process. The first level consists of tanks storing raw materials that 
spread to bottling lines. Decisions about lot size and scheduling 
for raw materials stored in tanks must be made. At the same time, 
the lot size of each demanded product and its corresponding 
production scheduling in the available lines must be determined in 
the second level. 

A literature review about lot sizing and scheduling problems 
can be found in [11] where models are presented for different lot 
sizing problems.  

In [18] a review for capacitated lot sizing problems with 
discussions about formulation and complexity issues is presented. 
In [16] an overview on modeling for industrial extensions of 
single-level dynamic lot sizing problems is provided. Operational 
aspects like setup, production process, inventory, demand, and 
time horizon are taking into account on modeling. A review on 
metaheuristics applied to solve lot sizing problem is reported by 
[17]. Solution representation, evaluation functions, neighborhoods 
and operators are discussed as well as computational experiments. 
Models and algorithms are reviewed by [22] for the dynamic 
demand and coordinate lot-sizing problems. This class of problem 
includes issues as single and multiple items, coordinated and 
uncoordinated setup structures, uncapacitated and capacitated 
problems. 

A mixed integer programming (MIP) model for a lot sizing 
and scheduling problem in foundry industries is proposed in [3]. It 
is a multi-item, single machine problem with sequence-dependent 
setup costs and times. A fix-and-relax method using local search 
procedures as a descendent heuristic, diminishing neighborhood 
and simulated annealing is introduced. In [4] rolling-horizon and 
fix-and-relax heuristics to solve the identical parallel machine lot 
sizing and scheduling problem with sequence dependent set up 
costs are proposed. The fix-and-relax heuristic outperforms 
rolling-horizon and its results are close to the instances’ lower 
bounds. The recent papers [10,20] present MIP models for lot 
sizing and scheduling in the presence of setup times for problems 
found in electrofused grain and animal nutrition industries. A lot 
sizing and scheduling problem from a manufacturing plant for 
animal feed compounds is studied in [25]. Model formulations 
and fix-and-relax heuristics are proposed. 

The MIP model for the SITLSP was first presented in [24] 
and it can to be solved using commercial solvers, but just for 
small-sized instances. A lot sizing problem from a drink 
manufacturer with a single line (canning line) and sequence-
independent setup times for products is presented in [9]. The 
author introduces a MIP model and several heuristics to solve it. 
A problem similar to SITLSP, where each bottling line has a 
dedicated tank and each tank can be filled with all liquid flavors 
needed by this line, is proposed in [12]. Relax-and-fix heuristics 
were tested by authors using instances problems based on real 
data from a leading market soft drink company. Computational 
results showed that the relax-and-fix approach yielded better 
production plans compared to those currently used by the 
company. A MIP model for a small-scale soft drink problem is 
presented in [13]. It is simpler than the MIP models presented in 
[12] and [24] once that there is just one production line. It is also 
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unnecessary to schedule raw material in tanks, so there are not 
setup times and costs at tank level. This situation is more usual in 
small plants. 

In [23] a multi-population genetic algorithm (GA) to solve 
SITLSP instances is introduced. This GA uses a population 
hierarchically structured in ternary trees. The authors proposed a 
tailor-made representation of solution as GA individuals. That 
same solution representation is used in the TS approach 
introduced in the present paper. 

This paper is organized as follows. The SITLP is described in 
Section II and the TS approach is presented in Section III. 
Computational tests are reported in Section IV and conclusions 
follow in Section V. 

2. SYNCHRONIZED AND INTEGRATED 
TWO-LEVEL-LOT SIZING AND 
SCHEDULING PROBLEM - SITLSP 

The problem studied in this paper is frequently found in 
industrial settings mainly soft drink companies. The studies of 
this work were conducted based on data provided by a leading 
market soft drink company in Brazil. There are more than 800 
beverage companies in Brazil producing wine, juice, beer, mineral 
water and soft drinks. The Brazilian soft drink market is the third 
largest in the world [1] and soft drink consumption has increased 
in the last years with more than 14 billions of liters annually 
consumed. Fig. 1 illustrates a typical production process as 
considered in this paper. 

Figure 1. The two-level production process. 

There are two interdependent levels with decisions about raw 
material storage and soft drink bottling. In the upper level, 
capacitated mixing tanks are used to prepare and store raw 
materials which are pumped to the lower level with non-identical 
parallel production lines. Tanks are only filled up again when 
empty and two different raw materials cannot be stored at the 
same time in the same tank. It is necessary to clean and fill up a 
tank and no raw material can be pumped from this tank to a 
production line during this time. Therefore, a sequence-dependent 
setup time and setup costs take place. 

At the lower level, raw materials from tanks are bottled in 
several bottle types of different sizes. The final product in each 
line is both defined by the flavor of the soft drink and the bottle 
type. If a line has two different products switched, a sequence-
dependent setup time must be also respected. Each line produces a 
set of products and the same product can be processed in more 
than one line. The processing time of each product depends on the 
bottle types and the lines used to produce the final product. 

Demands usually must be weekly met and the excessive number 
of final products leads to inventory costs. There are also inventory 

costs for the storage of raw material in tanks during consecutive 
time periods. A production cost is incurred for each unit of 
product and raw material. The sequence-dependent setup costs are 
usually proportional to the sequence-dependent setup times in 
lines and tanks, respectively. Synchronization is necessary once 
that a product cannot be produced by lines without its 
corresponding raw material having been scheduled in tanks. The 
most challenging aspect of the problem is the integration of all 
these issues in a synchronized two-level problem. 

The mathematical model that describes this problem was first 
defined in [24]. It is a MIP model that encompasses two 
Capacitated Lot Sizing Problems (CLSP), one in the upper level 
and another in the lower level. These problems are synchronized 
and integrated by a set of constraints. In [6] the CLSP is proven to 
be NP-hard. The SITLSP is a multi-item problem because several 
raw materials and products in each level of the SITLSP as to be 
managed. As the multi-item CLSP is strongly NP-hard [8], it is 
expected that real-world SITLSP problems are only suitable to be 
solved by approximate methods. Moreover, in most applications 
raw materials and products must consider sequence-dependent 
setup times and costs. In [21] it is showed that even finding 
feasible solutions for CLSP with setup times is a NP-complete 
problem. 

3. TABU SEARCH ALGORITHM 
Tabu search (TS) is a known metaheuristic that uses a local search 
technique coupled with a short-term memory structure to avoid 
visiting the same solutions or neighborhoods several times [14]. It 
has been successfully used to solve several lot sizing and 
scheduling problems. TS is used in [15] to solve a production 
planning problem with setups (time and cost) and multiple 
products, resources and periods. The potential solutions 
(neighbors) are evaluated solving LP problems whose information 
allows defining a rank of neighbors. This rank is used to evaluate 
different strategy approaches to explore neighborhoods. A TS 
approach [2] is employed to solve a production planning problem 
in a flexible production system. A lot sizing model with backorder 
and a set of random test problems are presented. The TS 
outperforms a random sequencing procedure within a short CPU 
time. A multilevel resource-constrained lot-sizing problem with 
setup and lead times is solved by a TS approach [5] which uses 
backward-forward movements to adjust solutions to feasibility. 
TS is also used by [7] to solve the job shop scheduling problem 
taking into account lot streaming. The heuristic is used in task 
scheduling, and moves are defined to generate new schedules 
from an initial one. The moves that can allow returning to 
previous schedules are kept tabu for several iterations. 

3.1 Representation, decoding and evaluation 
of solution 
The representation of solution presented is close to the one in [19] 
that uses a two-dimensional matrix with assignment rules for a 
multi-level proportional lot sizing and scheduling problem with 
multiple machines. Fig. 2 shows each entry (t, n), tT and nN of 
the two-dimensional matrix with T (number of periods) rows and 
N columns. 
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Figure 2. Entry (t,n) for representation of solution 

 Pt,n : product in position n to be produced in period t. 

 LSt,n: lot size of product Pt,n. 

 SLt,n: sequence of lines where Pt,n can be produced. 

SLt,n = (1,..., k). 

 STkt,n: sequence of tanks where the raw material of Pt,n 
can be stored.  

STkt,n = (β1,..., β k). 
 

In this representation of solution, the demand Dit of some 
product i in period t is divided into several lots (LSt,n) and 
randomly distributed among entries in periods t, t-1, t-2,..., 1. 
Backorders are not allowed. Sequences SLt,n and STkt,n are 
randomly generated with length k. In sequence SLt,n = (1,..., k). 
with i  {1,...,L}, i is a line number and L is the number of 
lines. This sequence is created taking into account only lines 
where product Pt,n can be produced. In sequence STkt,n = (β1,..., 

βk) with βi {1,2,...,2 L }, βi keeps information about tank number 
and how the raw material will be store in this tank. It is necessary 
taking from βi the tank j where raw material is stored: 

 

 

 

 

The parameter L  is the number of tanks. If 1 βi  L , the tank 
j=βi will be occupied after the raw material previously stored has 
been used. This forces the method to find solutions where there is 

a partial use of tank capacity. If L <βi  2 L , the tank j=βi - L  
will be immediately occupied. This forces the method to find 
solutions where the tank capacity is completely filled.  

There are exceptions for these rules. If tank j stores a raw material 
different from the raw material used by product Pt,n, it will be 
necessarily occupied after the previous raw material stored has 
been used. The same idea is applied when tank j is completely 
full. On the other hand, if the selected tank j is empty it will be 
immediately occupied. 

Figure 3 illustrates two possible representations of solutions. 
Suppose two products (P1 and P2) with 100 units of demand to be 
satisfied on periods T1 and T2. Let’s assume that each product 
uses different raw materials. There are also two lines and two 
tanks available to produce and store raw materials and products, 
respectively. 

 
Figure 3. Representing solutions for SITLSP 

Figure 3 shows three entries in the first matrix line of solution 1 
and four entries in the first matrix line of solution 2. This first line 
encodes information to define lot sizing and scheduling for tanks 
and lines within the first time period (T1). A decoding procedure 
to do that will be explained next. 

The first entry in solution 1 has 50 units (LS1,1) of product P2 with 
SL1,1 = (2,2,2,1) as sequence of lines and STk1,1=(1,1,2,4) as 
sequence of tanks. The sequence of lines (SLt,n) and tanks (STkt,n) 
can repeat values, where i  {1,2} and i  {1,2,3,4} for 

L= L =2 and k=4 (sequence length). 

The demands are distributed in their respective periods in solution 
1, but the demand of P2 in T1 is split between two entries with 50 
units each one. In solution 2, part of the P1 demand in T2 is 
produced in T1, where it is shown an entry with 45 units of P1.  

A procedure decodes the information stored in each 
representation of solution into a problem solution. In Fig. 4 a 
pseudo code explains how these representations of solution 
become a problem solution. 

Method DecodingSolRepr(SolutionRepres) 

Entryt,ngetInitialEntry(SolutionRepres); 

LSt,ngetDemand(Entryt,n); 

againtrue; 

begin 

While (again) Do 

(i,i)selectPairOfLineAndTank(Entryt,n); 

While (i,i) ≠) Do 

auxLSt,n = insertLotSize(LSt,n, i,i ); 

LSt,n = LSt,n  auxLSt,n; 

If (LSt,n==0) then (i,i) = 

Else (i,i)selectPairOfLineAndTank(Entryt,n); 

endWhile; 

Entryt,ngetNextEntry(SolutionRepres); 

If (Entryt,n==) then again = false; 

endWhile. 

end. 

Figure 4.Pseudo code for decoding a representation of solution 

The method getInitialtEntry(SolutionRepres) returns the 
initial entry whose data will be used to generate a solution. The 
initial entry is the first entry in the last period of solution. The 
method starts with this first entry and selects the next entries until 
it reaches the last one at the first period. This backward process 
aims to postpone setups and processing time. However, there is no 
guarantee that all demands will be produced at the end. The lot 
size (LSt,n) of each entry will be scheduled using pairs (i,i) 
selected from the sequence of values in SLt,n and STkt,n by method 
selectPairOfLineAndTank(Entryt,n).  

The method insertLotSize(LSt,n,i,i ) evaluates if the selected 
pair (i,i) returns a line and a tank with available capacity to 
produce LSt,n or at least a fraction of LSt,n (auxLSt,n). A next pair 
(i+1,i+1) of lines and tanks is selected again from SLt,n and STkt,n 
while LSt,n>0 or (i,i)≠. 
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The decoding procedure returns a lot size and schedule 
(problem solution) simultaneously for products and raw materials 
in lines and tanks. This solution is evaluated using the objective 
function of the problem that is determined adding up all costs: 
production, setup and inventory costs for products and raw 
materials in lines and tanks, respectively. If some demands are not 
satisfied, a high penalty cost per unit is also added. The best 
solution is the one whose decoding process determines a final 
schedule with a minimum cost value. Details about decoding 
process and objective function of SITLSP can be found in [24] 
and [23]. 

3.2 Pseudo code and moves 
Fig. 5 shows the pseudo code for the proposed TS. The method is 
executed until a time limit has been reached. A current solution S 
is changed by method executeNeiborhoodMoves(S) that returns 
the best neighbor (bestNeighbor) and the respective move that led 
to this neighbor (bestMove). The current solution is updated by 
bestNeigbor and the bestMove is inserted in tabu list. The best 
solution S* may also be updated next. A dynamic tabu list is used, 
so its length changes during the TS execution after a certain 
number of iterations. In this way, if the size of tabu list is reduced, 
the older moves become free earlier. Otherwise, they will remain 
longer as tabu. The tabu list length is determined as a random 
integer value tabuListLength  {1,…,numberOfMoves-1}. 

 

Figure 5.  Tabu search algorithm pseudo code 

A total of five neighborhood moves are applied over the 
representation of solution described in section 3. The first move is 
a swap where two selected entries are changed (Fig. 6). The 
second move executes an insertion, where an entry is inserted into 
another position (Fig. 7). The third move takes two entries with 
the same product, select one of them to merge the lot sizes and the 
other to be removed (Fig. 8). The fourth move split the lot size in 
one entry. A new entry is created in such a way that it receives 
part of lot size, and the other piece is kept on the original entry. 
Next, the new entry is inserted into another position (Fig. 9). The 
fifth move reinitializes the sequence of tanks and lines in an entry 
(Fig. 10). 

 

Figure 6. Swap move 

 

Figure 7. Insertion move 

 

Figure 8. Merge move 

 

Figure 9. Split move 

 

Figure 10. Reinitialize sequences move 

These moves select entries randomly, but it is not allowed 
violating demand satisfaction. For instance, it is not possible to 
insert an entry on the second period if its lot has to fill demand in 
the first period. In this case, another entry is randomly chosen. 
The proposed moves will execute neighborhood exploration 
through executeNeighborhoodMoves(S), where S is the current 
solution (Figure 11). 

 

Figure 11. Pseudo code for executeNeighborhoodMoves(S) 
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There is a main loop where a move m is defined by 
selectAvalilableMove().The move m is randomly selected among 
the available moves. Next, move m is applied over S until maxIter 
has been reached. At the end, the best solution is stored. The best 
solution found after numberOfMoves executions being reached is 
returned, as well as the move which has led to it. 

4. COMPUTATIONAL RESULTS 
Problem instances were defined from data provided by a leader 
market soft drink company. These data are based on production 
plans executed by company during several time periods. Table 1 
presents the parameters used to characterize each instance. 

Table 1. Parameters for instances 

Inst.  Lines Tanks Products Raw 
materials 

Period
s 

A1 5 9 33 11 1 

A2 6 9 49 14 2 

A3 6 9 58 15 3 

B1 6 10 52 19 1 

B2 6 10 56 19 2 

B3 6 10 65 21 3 

 

Instances type A has 7 days in each production time period 
and the instances type B have 10 days in each time period. Lines 
and tanks are available 24 hour for production. The most complex 
type A instance (A3) has 3 periods (3 weeks) with demands for 58 
products that need 15 different raw materials. There are 6 lines 
and 9 tanks responsible for satisfying product demands at the end 
of each period. The most complex B instance (B3) has also 3 time 
periods (30 days at all) with 65 products (21 raw materials), 6 
lines and 10 tanks. 

There are other relevant parameter values present in all instances. 
The setup time is 0.5 hour for all products adjusted to any line. 
The setup cost was evaluated as 3000 $/u also for all products 
adjusted to any line. There are no setup times and setup costs if 
two products produced in sequence are the same. However, this 
situation is different on the tank level. It is spent 1 hour to setup 
the same raw material and 2 hours to setup different raw materials 
in any tank. Therefore, it is evaluated as 6,000 $/u the cost to 
setup the same raw material and 12,000 $/u to setup a different 
raw material in tank. The lower and upper limits for tank capacity 
are 1000 and 24000 liters, respectively. Demands for the instances 
ranges from 47 to 180000 units. Line processing times for 
products range from 50 to 2000 units/hour. The inventory and 
production costs for products and raw materials are 1$/u. All cost 
values were estimated by the industry and they reflect a suitable 
tradeoff between the different terms of the SITLSP objective 
function. 

Production plans determined by the soft drink company for 
these instances were estimated by the cost values previously 
defined. The company solution estimated cost is represented by 
column Ind in Table 2. The proposed TS algorithm ran 10 times 
with execution time of 1 hour per execution over each instance. 
The objective function value ZTS in Table 2 represents the average 
value of the best solutions found by TS in each run. 

TS was adjusted to execute 5 moves (swap, insert, split, 
merge and restart rules), where the selected (not tabu) move is 
applied to create 40 neighbors. The length of tabu list is adjusted 
to reach value 4.  

The proposed TS approach is also compared with the multi-
population GA proposed in [23], executed on the same instance 
set and with the same CPU time. Again, the ZGA value in Table 2 
means the average value of the best solutions found by GA in 
each one of the 10 runs. Relative deviations from the cost 
obtained by industry planners are displayed in Table 2 as Dev(%). 
Computational tests were executed using an Intel Core 2 duo 
processor with 2.66GHz and 2GB RAM. 

Table2. Solution values and deviations 

Ind GA TS 

Inst. ZIND ZGA Dev(%) ZTS Dev(%) 

A1 1692 1666 -1.5 1651 -2.4 

A2 3511 3405 -3.0 3337 -5.0 

A3 5002 5199 3.9 4915 -1.7 

B1 3378 3271 -3.2 3199 -5.3 

B2 4278 4231 -1.1 4053 -5.3 

B3 7943 8056 1.4 7640 -3.8 

 

All results found by TS approach have improved the ones 
attained by industry planners. Moreover, TS have outperformed 
GA, the best approach known so far. Notice that GA has not been 
able to improve the industry performance in 2 out of 6 instances. 

 

5. CONCLUSIONS 
In this paper a tabu search algorithm to solve the Synchronized 
and Integrated Two-Level Lot Sizing and Scheduling Problem 
(SITLSP) is proposed. In this two-level production planning 
problem, lot-sizing and scheduling decisions involving parallel 
machines, capacity constraints and sequence-dependent setup 
costs and times have to be made in both levels. A solution is 
represented by a matrix which contains information regarding lot 
sizes and sequencing for both levels. The tabu search 
implementation uses a dynamic tabu list and 5 different moves. A 
total of six instances based on data provided by a soft drink 
company are evaluated. The proposed metaheuristics have been 
compared with results found by a previous GA and with the 
estimated cost of a production plan elaborated by planners of the 
soft drink company. Comparisons have shown that tabu search 
has outperformed the two other approaches in all of the 6 
instances. 
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