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ABSTRACT
Course timetabling consists in scheduling a sequence of lec-
tures while satisfying various constraints. In this paper, we
develop and study the performance of a memetic algorithm,
designed to solve a variant of the course timetabling prob-
lem. Our aim here is twofold: to develop a competitive algo-
rithm, and to investigate, more generally, the applicability
of evolutionary algorithms to timetabling. To this end, an
algorithm is first introduced and tested using a benchmark
set. Comparison with other algorithms shows that our algo-
rithm achieves better results in some, but not all instances,
signifying strong and weak points. Subsequently, more com-
prehensive analyses are performed in relation with another
evolutionary algorithm that uses strictly group-based oper-
ators. Ultimately, empirical results and analyses lead us to
question the exclusive use of group-based evolutionary op-
erators for timetabling problems.

Evolutionary Combinatorial Optimization and Metaheuris-
tics

Categories and Subject Descriptors
I.2.8 [Computing Methodologies]: Artificial Intelligence—
Problem Solving, Control Methods, and Search

General Terms
Algorithms

Keywords
Time-tabling and scheduling, Genetic algorithms, Local search,
Adaptation/ self-adaptation, Combinatorial optimization

1. INTRODUCTION
The problem of automating the task of timetabling con-

cerns the scheduling and assignment of a set of institu-
tional events to a number of rooms and time slots such
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that they satisfy specific constraints. Naturally, many vari-
ants of the timetabling problem have been proposed and
studied through the years. The main source of variation
here involves problem constraints, consisting mostly of vari-
ous limitations, that rule out many potential assignments of
events to rooms and time slots. A good survey of the various
timetabling subclasses can be found in [11].
Among timetabling subclasses, educational timetabling is
arguably the most widely studied and as its name implies,
focuses on constraints related to teachers, lecture hours, fa-
cilities, program conflicts, room capacities etc. In this paper
we focus on one branch of educational timetabling called the
University Course Timetabling Problem (UCTP). The con-
straints of UCTP are divided into two main categories of
hard and soft, denoting issues of feasibility and preference,
respectively. Hard constraints deal with constraints that
should no be ignored, the main type of which concern event
clashes that happen when two events that share participants
are scheduled to be held at the same time. Violations of such
constraints render the timetable infeasible. Unlike hard con-
straints and its focus on feasibility however, soft constraints
opt for a more optimal timetable that better suits the con-
venience of the institution, the participants, or both.
Due to the importance of the university timetabling problem
and its NP-Completeness [13], a diverse array of solution-
building approaches have been proposed. Some more recent
general surveys of algorithmic performance have been car-
ried out in [25, 18]. Here we focus on the application of
metaheuristics which have been widely utilized for solving
timetabling problems. For instance, in the framework of Ant
Colony Optimization, the authors of [27, 26] use each ant to
construct a complete assignment of events to time slots using
heuristics and pheromone information. Timetables are then
improved using a local search procedure, and the pheromone
matrix is updated accordingly for the next iteration. Simu-
lated annealing (SA) has been implemented in [30, 23, 28]
among others. Specifically, [30] reports that the used heuris-
tic improves upon all previous efforts based on SA. Some re-
cent tabu search algorithms are [9, 17]. In particular, [17] re-
ports the application of an Adaptive Tabu Search algorithm
which integrates several features such as an original dou-
ble Kempe chains neighborhood structure, a penalty-guided
perturbation operator and an adaptive search mechanism,
all of which combine to achieve remarkable results.
More specifically, evolutionary algorithms (EA) have been
applied to timetabling problems with varying degrees of suc-
cess in the works of [15, 24, 12, 22, 19] among others. For
example, [15] is among the first to remedy the poor per-
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formance of a genetic algorithm compared with other con-
ventional methods by way of a grouping encoding. Also,
many EAs have employed separate techniques to make up
for their potential failure in dealing with local optima. One
such technique, that we will later utilize, is variously dubbed
memetic, Lamarckian, hybrid or cultural [21], and enhances
the simple transition process of an otherwise evolutionary
structure by including problem-specific knowledge such as
heuristics, local search operators etc. to boost performance.
Memetic algorithms have been applied to timetabling in the
works of [10, 14, 19]. In recent years, two International
Timetabling Competitions have brought many researchers
in timetabling together. An overview of the more recent
2nd event can be found in [20]. Further information on the
winning algorithms can be found in [6].
In the next section, a more thorough description of our spe-
cific timetabling problem is provided. The remainder of the
paper is then organized as follows: in section 3, an outline
of our memetic algorithm for university course timetabling
is provided. This includes a description of the workings of
the algorithm as well as a more focused discussion of the
fitness function. In section 4, experimental parameters are
provided and the algorithm is put to test. Comparisons with
three other algorithms of the literature follow in section 5,
which demonstrate the superior performance of our memetic
algorithm in two of the three instance sets. The focus of at-
tention, however, is a comparison of our own algorithm in
contrast to another evolutionary algorithm, which turn out
to be revealing with regards to the applicability of GAs to
timetabling. This investigation leads to further tests and the
development of a diversity measure that is used to contrast
the aforementioned algorithms. Following further analyses,
we close in section 6 with conclusions and future directions
for possible research.

2. PROBLEM DESCRIPTION
As stated formally in [11], timetabling has four parame-

ters: T , a finite set of times; R, a finite set of resources;
M , a finite set of meetings; and C, a finite set of con-
straints. The problem, then, is to assign times and resources
to the meetings so as to satisfy as many constraints as possi-
ble. In other words, timetabling is the problem of assigning
events to rooms and time slots according to specific require-
ments imposed by certain constraints. The specific branch
of timetabling that we focus on is the university timetabling
problem that was first used in the First Timetabling Com-
petition [1]. Here, each problem instance has a set of rooms
with predefined sizes, a set of events with attendance spec-
ifications for each event, a set of room features, a subset of
which is provided by each room and required by each event.
The hard constraints of the problem (that have to be satis-
fied to produce a feasible timetable) include

• H1: no student is required to attend more than one
event at any one time;

• H2: only one event is assigned to any room in any time
slot;

• H3: all of the features that are required by the event
are satisfied by the room, which has an adequate ca-
pacity.

A feasible solution to a timetabling problem is an assignment
of each event to one room and one of 45 time slots (five

days, each with nine time slots) in such a way that none of
the aforementioned hard constraints are violated. Although
a complete timetabling algorithm attends to both hard and
soft constraints, we ignore soft constraints and focus on hard
constraints that produce feasible or“working”timetables, for
reasons that will be explained later in section 4.

3. ALGORITHM LAYOUT
We construct solution timetables in the form of a two-

dimensional matrix with rows representing rooms and columns
representing time slots. Thus, the intersection of room i and
time slot j in a two-dimensional array, will pick out either a
certain event specified by its number, say n (rij = n), or a
vacancy. It is important to note that this approach does not
allow any relaxations regarding problem constraints. There-
fore, an event is allowed a certain place in the timetable only
if it violates none of the hard constraints defined in section
2. Also, from the outset, the number of alloted time slots is
fixed at the total number of usable time slots (which is 45
in this case).
Within such a framework, a general outline of our memetic
algorithm is described in Figure 1. The first phase of the
algorithm, denoted by the Initialize method, generates the
initial population in a greedy manner, similar to that of [29].
By the time Initialize is done, several (rather sparse) timeta-
bles are created, each with a list of events that have not been
scheduled.

 

1) 𝑃 ← 𝑝  
2) 𝑃  
3)  

a) 𝑃 ← 𝑃, 𝑟𝑟,𝑚𝑟, 𝑙𝑟  
b) 𝑃  

 

 

 

 

𝑝

𝑝

𝑇 ←
𝐸

𝑇, 𝑆

𝑒 ∈ 𝐸

𝑠 𝑆

𝑠 𝑒
𝑇(𝑠) ← 𝑒.

𝑃 ← 𝑃 ∪ *𝑇+.
𝑃

Figure 1: The basic structure of the algorithm. p is
the desired population size, to be created by the
method Initialize. The function NextGeneration
creates new individuals at each generation through
the application of the three operators of recombina-
tion, mutation and local search, whose parameters
are passed by rr, mr, and lr, respectively.

When initialization is over, the population goes through
three stages of recombination, mutation, and local search re-
peatedly. Beginning with recombination, there are four key
steps in the process: Selection, Injection, Duplicate Removal
and Reinsertion.

1. Selection: Random beginning and end boundaries are
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A D I K

→→

Figure 2: Illustrating the process of recombination as it goes through its four stages. Two parent timetables
with hypothetical events ranging from A to N are to be feasibly scheduled in a four by four timetable with
sixteen slots. The hatched items below each timetable represent its list of unscheduled events. Selected
boundaries are highlighted with gray.

chosen from the intersection of rooms and time slots
to form a range.

2. Injection: The selected range from one parent is re-
placed by the corresponding range in the other.

3. Duplicate removal: Any possible duplicates that
might have arisen are removed from the host parent.

4. Reinsertion: Unscheduled events are picked at ran-
dom and reinserted back into the timetable. In case
an event can be scheduled in multiple candidate slots,
one is chosen at random.

Finally, for constructing the second offspring, parents re-
verse their roles. Figure 2 illustrates this process with an
example.
Next is the time slot-based mutation operator, where a spec-
ified number of time slots are randomly selected and emptied
out into the unscheduled list. This list is then shuffled and
traversed. At each step, for the unscheduled event of choice,
a search for a feasible slot is performed. If more than one
slot is available, the tie is broken randomly.
At this stage, the part of the genetic operators is over and
the timetable is subject to a local search procedure, imple-
mented by two operators. The first is based on the con-
cept of a clique from graph theory. A simplified timetabling
problem, with its requirements of facility and size relaxed,
might be formulated in graph theoretical terms as follows: a
timetable T with a set of events E and conflict constraints
C is analogous to a graph G with a set of vertices V for its
corresponding events, and edges E only between pairs of ver-
tices whose corresponding events conflict with one another.
Thus construed, graph G′, the complement of graph G, will
have edges between vertices that correspond to events that
can form a conflict-free group together. In other words, a
clique - a subset of the vertices of a graph where each pair
is connected by an edge - in graph G′, is analogous to a
group of events that, other hard constraints allowing, can
fit in a single time slot together. Based on this analogy, the
conflict-based local search operator searches each timetable
with the aim of expanding some cliques of events (at the
expense of reducing others).
The second local search operator, illustrated with an exam-
ple in Figure 3, receives the timetable at a stage when the
algorithm has done all it can to improve timetable qual-
ity. Hence no feasible, unoccupied slots exist for the events
on the unscheduled list. This situations captures a com-
mon local optimum, since such a relational structure for the
timetable cannot yield a solution and the timetable is bound

to be modified if it is to improve at all. This means that it
has to climb down the local peak and tolerate a few “bad”
moves, at least temporarily. With this in mind, the second
local search procedure operates in three stages: Slot selec-
tion, Shoving, Reinsertion.

D F

M H - J

I E G -

- B C K

A - L N

2. Shoving 3. Reinsertion

E H

M F - J

I D G -

- B C K

A - L N

M F - J

I D G E

H B C K

A - L N

1 . Slot Selection

→ →

Figure 3: The three phases of the second local search
operator, as described in the text. It is assumed that
the event marked by the letter D has no feasible
assignments in the current setting of the timetable.

1. Slot selection: The list of the unscheduled events
is shuffled and the timetable is searched for possible
slots to schedule them. Since, as noted earlier, no fea-
sible empty places are available in the timetable at this
point, the search looks for slots that are either feasible
but occupied, or are in conflict with other events of
the same time slot.

2. Shoving: For the chosen event, the “best” potential
place is picked. “Best” here designates a heuristic that
prefers a slot that has the fewest number of students
(note: students, not events) in clash with it, commonly
known as the Least Constraining Value (LCV) heuris-
tic. Before inserting an unscheduled event, the desig-
nated slot is vacated together with the slots containing
events that are in conflict with the replacing event.

3. Reinsertion: After the aforementioned steps have
been carried out for all originally unscheduled events,
a new list of unscheduled events emerges. These might
be feasibly placed in other vacant slots in the timetable.
Hence, as a final step, an exhaustive search is per-
formed to fit in as many of these events as possible.

This concludes the description of the algorithm. In the
following subsection, we discuss how best to complement
the algorithm with a suitable fitness function.
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3.1 Fitness function
A natural choice for evaluating timetables might be to

count the number of unplaced events. However such a fit-
ness function misses the point since it fails to differentiate
between similar-looking solutions that nevertheless have dif-
ferent relational structures. Therefore, other than counting
unplaced events, it is desirable for the fitness function to dis-
tinguish between timetables in some detail. Also, for highly
constrained problems such as many timetabling instances,
it would be desirable if the algorithm could learn from its
experience so that it could evaluate solutions more dynami-
cally. All in all, the following criteria should be satisfied for
the fitness function:

1. To take solution structure into account;

2. To learn from experience;

3. To keep computation costs as low as possible.

The optimal trade-off between these criteria adds enough
detail to distinguish between dissimilar states while keeping
the computation cost affordable in the long run. With this in
mind, to address the first criterion in our problem, any pos-
sible mismatch between the facilities and capacities of rooms
on the one hand, and the requirements of events on the other
hand can be taken into account. To address the second cri-
terion, we introduced a new index that we hereon refer to as
the shoved index. For each event, the shoved index is initial-
ized to the number of students that are in conflict with it,
and is incremented every time the event is shoved by the sec-
ond local search operator. As a result of this increment, the
fitness of an individual that has not scheduled that event
decreases. Since this index is then shared among all indi-
viduals, when calculating fitness values, this allows for the
cumulative “experience” of the population in dealing with a
set of events to be taken into account. This, of course, is
based on the intuition that events that wind up on the un-
scheduled list more often, are harder to schedule and should
be given a higher priority.
The above observations are captured in the equation below:

f =

n∑
i=1

[(1− Pi)

m∑
j=1

RFEij(1− EFij) + (CREi
−AEi)

+ (Pi)(Si + Ai)] (1)

While the equation looks formidable, it simply implements
the ideas noted above and essentially consists of two parts
that deal with properties of scheduled and unscheduled events,
respectively. Throughout the equation, n denotes the total
number of events. In the first half, which deals with sched-
uled events, the boolean Pi says whether event i is scheduled
in the current timetable, m denotes the total number of fea-
tures, the boolean RFEij says whether the room for event
i has feature j, and the boolean EFij says whether event i
itself requires feature j or not. To conclude the mismatch
calculation, the difference between the capacity of the room
occupied by event i and the size of the event, captured by
CREi

− AEi , is also added. Turning to the second half of
the fitness function, which deals with unscheduled events,
Si represents the total number of times event i has been
shoved, while Ai denotes the number of attendants of event
i. It is important to note that while the equation calcu-
lates a distance of some sort, where lower values are deemed

more desirable, a feasible solution will probably not yield a
distance of zero. The reason is that while the second part
of the equation evaluates to zero once all events have been
scheduled, the first part will most probably yield a positive
value to account for size and facility mismatches that might
occur even in a feasible timetable.

4. EXPERIMENTAL SETUP
Various problem sets have been proposed through the

years. Standard benchmark packages for course timetabling
include [4, 5, 2, 7]. However, such packages are usually de-
signed with hard and soft constraints in mind, hence finding
feasibility is rarely difficult. In fact, many of these focus on
soft constraints and feasible solutions are found so fast as
to render any comparison and analysis meaningless. In such
a situation, the benchmarking instances provided in [3] ad-
dress the issue of how different algorithms would fare when
the focus is shifted to feasibility. These include three sets of
20 “hard” instances of small, medium, and big size (approx-
imately 200 events and 5 rooms, 400 events and 10 rooms,
and 1000 events and 25 rooms, respectively). The instances
are called “hard” since, according to [19], they are a delib-
erate subset of a larger set that have been “troublesome for
finding feasibility”. Still, all of these have at least one fea-
sible solution, which means events can potentially fit in the
45 allotted time slots while satisfying the hard constraints
noted earlier in section 2. More information regarding how
particular instances were generated can be found in [19].
For proper comparison with other algorithms, tests were per-
formed on a PC with a 2.4GHz CPU and 512 MBs of mem-
ory. Also, two sets of time limits (30, 200, and 800 seconds,
and 200, 500, and 1000 seconds) were imposed for instances
of small, medium and big sizes. To check the integrity of
our particular implementation and the solutions produced,
the test program of [8] was used.
The selection process is rank-based, stochastically prefer-
ring timetables with higher fitness values. The recombina-
tion rate (rr) specifies the percentage of individuals pro-
duced using the recombination operator. The remainder of
each generation is populated by making copies of the highest
ranked individuals. The offspring that are produced using
recombination, then go through the mutation process, which
applies to a number of time slots specified by the mutation
rate (mr). The clique-based local search operator is applied
to all offspring produced by recombination. The local search
rate (lr) designates the number of individuals, again selected
based on their ranks, that are subject to the second local
search operator described earlier. The adopted parameter
values are chosen to further our analyses.

5. ANALYSIS OF PERFORMANCE
The results of the tests for the 60 instances are demon-

strated in Figure 4. Since different time limits have been
used by [19] and [28] as their stopping criteria, we had to
divide the table into two sets of columns:

• the four columns on the left of the dividing line are
subject to the original time limits of 30, 200, and 800
seconds for small, medium and big instances respec-
tively. MA signifies our Memetic Algorithm, GGA is a
Grouping Genetic Algorithm, similar to our algorithm
in many respects, that we will thoroughly analyze later
on in the paper, and H is a single thread local search
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 Small instances
 no. GGA H HSA
1 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
2 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
3 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
4 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
5 0 (0) 0 (0) 1.05 (0) 0 (0) 0 (0) 0 (0) 0 (0)
6 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
7 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
8 1.45 (0) 0.95 (0) 6.45 (4) 1 (0) 0.6 (0) 0.4 (0) 1.9 (0)
9 0.5 (0) 0.1 (0) 2.5 (0) 0.15 (0) 0.05 (0) 0 (0) 3.85 (0)
10 0 (0) 0 (0) 0.1 (0) 0 (0) 0 (0) 0 (0) 0 (0)
11 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
12 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
13 0 (0) 0 (0) 1.25 (0) 0.35 (0) 0 (0) 0 (0) 1 (0)
14 1.85 (0) 2 (0) 10.5 (3) 2.75 (0) 0.8 (0) 0.8 (0) 5.95 (3)
15 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
16 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
17 0 (0) 0 (0) 0.25 (0) 0 (0) 0 (0) 0 (0) 0 (0)
18 0.15 (0) 0.25 (0) 0.7 (0) 0.2 (0) 0 (0) 0 (0) 0.45 (0)
19 0 (0) 0 (0) 0.15 (0) 0 (0) 0 (0) 0 (0) 1.2 (0)
20 0.25 (0) 0.7 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

R 15 15 11 15 17 17 15
E 7 7 1 5 4 6 0

 Medium instances
no. GGA H HSA
1 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
2 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
3 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
4 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
5 0 (0) 0 (0) 3.95 (0) 0 (0) 0 (0) 0 (0) 0 (0)
6 0 (0) 0 (0) 6.2 (0) 0 (0) 0 (0) 0 (0) 0 (0)
7 2.2 (1) 2.55 (1) 41.65 (34) 18.05 (14) 1.3 (0) 1.2 (0) 4.15 (1)
8 0 (0) 0 (0) 15.95 (9) 0 (0) 0 (0) 0 (0) 0 (0)
9 2.25 (0) 1.6 (0) 24.55 (17) 9.7 (2) 1.15 (0) 1.15 (0) 4.9 (0)
10 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
11 0 (0) 0 (0) 3.2 (0) 0 (0) 0 (0) 0 (0) 0 (0)
12 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
13 0 (0) 0 (0) 13.35 (3) 0.5 (0) 0 (0) 0 (0) 0.5 (0)
14 0 (0) 0 (0) 0.25 (0) 0 (0) 0 (0) 0 (0) 0 (0)
15 0 (0) 0 (0) 4.85 (0) 0 (0) 0 (0) 0 (0) 0.05 (0)
16 0.45 (0) 0.45 (0) 43.15(30) 6.4 (1) 0 (0) 0.05 (0) 5.15 (1)
17 0 (0) 0 (0) 3.55 (0) 0 (0) 0 (0) 0 (0) 0 (0)
18 0 (0) 0 (0) 8.2 (0) 3.1 (0) 0 (0) 0 (0) 6.05 (0)
19 0 (0) 0.2 (0) 9.25 (0) 3.15 (0) 0 (0) 0.05 (0) 5.45 (0)
20 0 (0) 0 (0) 2.1 (0) 11.45 (3) 0 (0) 0 (0) 10.6 (2)

R 17 16 6 13 18 16 12
E 13 12 0 7 7 6 0

 Big Instances
no. GGA H HSA
1 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
2 0 (0) 0 (0) 0.7 (0) 0 (0) 0 (0) 0 (0) 0 (0)
3 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
4 0 (0) 0 (0) 32.2 (30) 20.5 (8) 0 (0) 0 (0) 0 (0)
5 0.6 (0) 0 (0) 29.15 (24) 38.15 (30) 0.6 (0) 0 (0) 1.1 (0)
6 67.6 (58) 69.05 (54) 88.9 (71) 92.3 (77) 67.6 (58) 66.6 (52) 8.45 (5)
7 150.65 (146) 148.85 (142) 157.3 (145) 168.5 (150) 150.65 (146) 148.05 (142) 58.3 (47)
8 0 (0) 0 (0) 37.8 (30) 20.75 (5) 0 (0) 0 (0) 0 (0)
9 0 (0) 0 (0) 25 (18) 17.5 (3) 0 (0) 0 (0) 0.05 (0)
10 1.2 (0) 0.6 (0) 38 (32) 39.95 (24) 0.8 (0) 0.55 (0) 1.25 (0)
11 0.2 (0) 0 (0) 42.35 (37) 26.05 (22) 0 (0) 0 (0) 0.35 (0)
12 0 (0) 0 (0) 0.85 (0) 0 (0) 0 (0) 0 (0) 0 (0)
13 0 (0) 0 (0) 19.9 (10) 2.55 (0) 0 (0) 0 (0) 0 (0)
14 0 (0) 0 (0) 7.25 (0) 0 (0) 0 (0) 0 (0) 0 (0)
15 0 (0) 0 (0) 113.95 (98) 10 (0) 0 (0) 0 (0) 0 (0)
16 0 (0) 0 (0) 116.3 (100) 42 (19) 0 (0) 0 (0) 2 (0)
17 139.55 (120) 127.3 (117) 266.55 (243) 174.9 (163) 138.85 (120) 124.45 (116) 89.9 (76)
18 124.2 (118) 120.55 (107) 194.75 (173) 179.25 (164) 124.2 (118) 118.75 (107) 62.6 (53)
19 209.45 (197) 216.85 (207) 266.65 (253) 247.35 (232) 206.6 (195) 214.5 (207) 127 (109)
20 122.8 (117) 117.7 (111) 183.15 (165) 164.15 (149) 121.8 (117) 117.35 (111) 46.7 (40)

R 11 13 2 5 12 13 9
E 10 15 0 3 3 5 6

MA(rr = 0.5, 
ls = 0.5)

MA(rr = 0.8,   
ls = 0.5)

MA(rr = 0.5, 
ls = 0.5)

MA(rr = 0.8,   
ls = 0.5)

AVG & 
STD

   0.21 & 0.51   
(0 & 0)

    0.2 & 0.5      
(0 & 0)

1.14 & 2.66 
(0.35 & 1.1)

0.22 & 0.63   
(0 & 0)

0.07 & 0.22  
(0 & 0)

     0.06 & 0.2    
   (0 & 0)

0.67 & 1.57 
(0.15 & 0.67)

MA(rr = 0.5, 
ls = 0.5)

MA(rr = 0.8,   
ls = 0.5)

MA(rr = 0.5, 
ls = 0.5)

MA(rr = 0.8,   
ls = 0.5)

AVG & 
STD

0.25 & 0.68 
(0.05 & 0.22)

0.24 & 0.66 
(0.05 & 0.22)

9.01 & 12.78
(4.7 & 10.0)

2.62 & 4.88
(1.0 & 3.1)

0.123 & 0.38 
(0 & 0)

0.123 & 0.36   
(0 & 0)

1.84 & 3.07 
(0.2 & 0.52)

MA(rr = 0.5, 
ls = 0.2)

 MA(rr = 0.5,   
ls = 0.5)

MA(rr = 0.5, 
ls = 0.2)

MA(rr = 0.5,   
ls = 0.5)

AVG & 
STD

40.81 & 67.97 
(37.8 & 63.63)

40.02 & 67.48 
(36.9 & 63.31)

81.0 & 86.33
(71.5 & 80.3)

62.19 & 78.52
(52.3 & 72.6)

40.52 & 67.54 
(37.7 63.37)

39.51 & 66.69 
(36.75 & 63.22)

19.89 & 36.91 
(16.5 & 31.5)

Figure 4: Performance results in comparison with
three other algorithms. For each instance, an av-
erage of 20 runs is reported, with the best re-
sult noted in parentheses. Other than those de-
noted, parameters for the algorithm were fixed at:
mr = 1, p = 40. The parameters for the GGA are re-
ported as rr = 0.1, mr = 1, ls = 100, p = 5 for small,
rr = 0.7, mr = 1, ls = 2, p = 10 for medium, and
rr = 0.25, mr = 1, ls = 0, p = 50 for big sets respec-
tively.

Heuristic algorithm that works by improving the pack-
ing of individual time slots. The results for these two
algorithms are based on tests that have been performed
on a 2.66 GHz pentium processor with 1 GBs of RAM.
The interested reader is referred to [19] for more infor-
mation.

• the three columns on the right, on the other hand, have
time limits of 200, 500 and 1000 for small, medium and
big instances respectively.1 HSA refers to the Hybrid
Simulated Annealing, defined in [28], which uses a suc-
cession of problem relaxation, Kempe chain and graph
heuristics, and simulated annealing to tackle the prob-
lem. The reported results are based on tests that have
been performed on a 3.2 GHz pentium processor.

To compare different aspects of algorithmic performance,
mean values, standard deviations and two other measures,
labeled R and E in Figure 4 are reported. The mean value
is taken to be indicative of general quality of performance,
while standard deviation might quantify how much the mean
value is to be trusted in representing algorithmic perfor-
mance across an entire set. Looking at the general results
for the four configurations on the left (which, as noted ear-
lier, are subject to a more strict time limit), it is obvious
that the Memetic Algorithm (MA) performs better than the
Grouping Genetic Algorithm (GGA) and the Heuristic Al-
gorithm (H) in all three instance sets, with the best per-
formance achieved in the setting rr = 0.8, ls = 0.5 in both
small and medium sets, and rr = 0.5, ls = 0.5 in the big
set. In case of the algorithms in the three columns on the
right (that are generally allowed more time), the configu-
ration with rr = 0.8, ls = 0.5 outperforms HSA for small
and medium sets. However, here, HSA bests MA in the big
set in terms of mean performance and variability. In all of
the above cases, the algorithm with the better mean, also
had the lowest standard deviation, signifying the close re-
lationship between the two. The bottom row of each set
includes another index, E, which keeps track of the num-
ber of instances for which an algorithm has achieved best
results (highlighted in gray). To increase clarity, we only
counted the cases where best results are not achieved by
all participating algorithms. Based on such criteria, both
configurations of MA have higher values and indicate better
performance.
When focusing on patterns across the three instance sizes,
it became clear that other than the significant drop in per-
formance, the behavior of MA in the big instances displayed
another significant trait: We observed that while the algo-
rithm actively switched between different alternatives in the
solution space in the case of small and medium instances,
it failed to do so in the case of big instances. In fact, the
runs scarcely displayed any significant improvement after
the first 600 seconds or so. This is especially troublesome
for big instances such as no. 19, where more than 200 events
(20% of the total) remain unplaced. This suggests that MA
has a high convergence rate, and while this clearly aids per-
formance in the case of small and medium instances, it is
detrimental when it comes to big instances. This suggestion

1Although a time limit of 400 seconds is reported for medium
instances in [28], the reported results therein do not comply
with this time limit and the author informed us in a personal
correspondence that the correct time limit for the medium
instances was 500 seconds.
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is further backed by the calculated value of R, the number of
instances of each size for which feasibility is achieved in all
runs. With regards to R, MA shows better values in all cat-
egories. The higher convergence rate might help to explain
this, especially in the case of big instances, where HSA has
a better average performance than MA. As demonstrated,
among the instances where both algorithms are able to find
feasibility (instances 5, 9, 10, 11, 16) MA achieves feasibility
on more occasions, hence the higher R value.
But convergence rate might not be the whole story. The
issue of scaling-up in genetic algorithms in the context of
the same problem set has previously been addressed by [19].
Therein, the authors partly blame the destructive tendencies
of their recombination operator for the loss of performance
as instance size increases. This is partly hinted at by our
choice of best performing parameters for the MA. Whereas
the configuration which includes a high rate of recombina-
tion (rr = 0.8) is the best performer in small and medium
instances, in the big set, it is replaced by another configura-
tion with much less recombination (rr = 0.2).
Despite this, looking at the performance of the MA and
the GGA, we think that the difference in their obtained re-
sults merits a separate analysis, especially since the two al-
gorithms are structurally similar in many respects. Yet, as
observing Figure 4 might have shown, and according to a
Wilcoxon signed rank test, the results point to significantly
different underlying distributions for these two algorithms.
More information about the GGA can be found in [19]. Here
we tend to abstract away from irrelevant details and focus
on the results of the two algorithms as a device to investigate
further points regarding the applicability of various genetic
operators to timetabling. To this end, it might be helpful
to sketch out a general outline of the group-based genetic
algorithm of [19]. Firstly, the algorithm defined therein is
based on the conception of timetabling as a grouping prob-
lem, which is defined in [16] as a problem where the task is
to partition a set of objects U into a collection of mutually
disjoint subsets ui of U , where

⋃
ui = U and ui ∩ uj = 0, i 6= j. (2)

according to a set of problem-specific constraints that de-
fine valid and legal groupings. It is argued that when deal-
ing with grouping problems, traditional genetic operators
tend to break up, rather than improve, the building blocks
produced in the previous round of the algorithm. This high-
lights an issue of granularity and is a consequence of the
item-oriented (rather than group-oriented) choice of build-
ing blocks. Moreover, when focusing on items (as opposed
to groups), the search space grows much larger than it has to
be, as a result of an encoding that makes the algorithm ex-
pend time on solutions it has already examined, but that
it fails to recognize. In light of this, what distinguishes
group-based operators is their focus on groups (as opposed
to items).
Applying these insights to the case of timetabling and in
order to investigate the merits of group-based operators in
this case, [19] departs from item-oriented genetic operators
(“items” here being individual events) and focuses on time
slots as the appropriate building block of the problem. Thus
construed, entire time slots are subject to evolutionary op-
erators such as recombination and mutation. This is mani-
fested, for instance, in the design of the recombination oper-

ator in that, while rather similar in other respects to MA’s
recombination, the choices for injection points are only lim-
ited to the start of each time slot. Also, the operator removes
the entire time slot containing a duplicate event, and builds
new time slots from scratch to accommodate unscheduled
events. The GGA also adopts a variable-length solution,
meaning that a varying number of time slots are allowed at
first. Later on, the algorithm encourages a reduction of the
number of used time slots through the use of distance to
feasibility as a fitness measure.
With this general outline in mind, we take the analysis of the
authors of [19] as a starting point. Based on their obtained
results, which were demonstrated in section 4, a hypothesis
is developed therein regarding the destructive tendencies of
the grouping recombination operator as instance size grows.
Subsequent empirical results corroborate this, leading them
in the end to posit that group-based operators might have
“pitfalls in certain cases.” Picking up where they left off,
and in order to measure the destructive tendencies of the
group-based recombination operator as opposed to our own,
we first need to develop a measure of diversity, in the spirit
of [19] but in accordance with our operator design. The re-
sulting measure of distance to diversity is calculated using
the following formula:

f =

n∑
i=1

n∑
j=2

[1−Rij ] (3)

This essentially counts the pairings of events that are al-
lowed by the problem formulation (meaning that they do not
violate conflict constraints), but have not been “realized” in
the current population as a distance to an ideal measure of
diversity. In the formula, the total number of events is de-
noted by n, and Rij equals 1 when events i and j are in
conflict or there exists a time slot in the population that
contains both events, and 0 otherwise.

To measure the destructive tendencies of each algorithm,
the aforementioned grouping algorithm (complete with re-
combination and mutation operators, its defined heuristics
and procedures) was developed and the amount of repair
that is required after each application of the recombination
operator, and the level of diversity sustained by each re-
combination operator was measured. The results for one
instance of each size are demonstrated in Figure 5. The
first thing to notice is that the amount of repair increases
with instance size for both algorithms. However a closer
look reveals that the relative difference between the mea-
sured repair for the two recombinations also increases sig-
nificantly, since the incurred repair in the case of our op-
erator depends much less on instance size. Quantitatively,
the group-based recombination, compared to our recombina-
tion, requires 6.25/1.25 = 5 times more repair for the small
instance, 74.87/5.72 ≈ 137 times for the medium instance
and 451.7/12.41 ≈ 36 more repair for the big instance.
Regarding the level of diversity, the trends in all three cases
demonstrate a quick drop in the level of diversity in the
case of our recombination, whereas the group-based recom-
bination maintains its diversity throughout the run. The
implications are obvious in light of the“mirror-like” relation-
ship between diversity and required repair that is evident in
both algorithms. The calculated correlation between diver-
sity and repair turned out to be −0.99, −0.92, and −0.97 for
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Figure 5: Comparing the performance of the recom-
bination operators of the memetic and group-based
algorithms. The results for an instance of small,
medium, and big sets has been demonstrated in the
top, middle, and bottom diagrams with rr = 1.0,
mr = 1, ls = 0.0, and p = 40 across 2000 generations.
The adopted configurations serve the purpose of ab-
stracting away from other algorithmic aspects and
focusing on recombination and not much else.

the small, medium and big instance of our recombination,
and −0.99, −0.88, and −0.77 of the group-based recombina-
tion. The high correlation value for both operators is to be
expected. As groups grow in size (and diversity), the cost
of recombination tends to increase, since there is a higher
chance that one time slot injected from another timetable
shares events with more time slots of the host and this, in
turn, escalates the cost. Thus, due to its high correlation
with the destructive tendencies of recombination, maintain-
ing a high degree of diversity on the part of the group-based
operator works to its detriment by incurring a high level of
repair.
Thus, we think the fact that the group-based recombination
produces increasingly “disappointing” results as instances
get larger, partly stems from its reductive commitment to
recognizing groups (time slots) as the sole building blocks of
the problem, especially in the case of the recombination op-
erator that we studied here. While this might seem like an
attractive commitment to make in theory, as demonstrated
in Figure 5, it fails to live up to expectations in practice.
It might be argued that while, as noted before, the notion
of evolving optimal event assignments is meaningless (since
the optimality of any single assignment depends in part on
other assignments), evolving entire time slots might impose
an artificial restriction by precluding the possibility of two
separate lineages evolving groups of events within a single
time slot. As a third alternative, the level of granularity
adopted by MA alternates between arbitrary sets of events
(recombination), cliques which might be larger or smaller
than the capacity of a time slot (clique-based local search),
and entire time slots (mutation).
In the end, we might add that the difference between re-
combination costs for the two algorithms does not end here.
Once the group-based algorithm starts rescheduling the re-
cently displaced events, it uses expensive variable and value
heuristics that serve to evaluate assignment choices prior to
making them. In contrast, by choosing randomly and shift-
ing much of the burden of evaluation to the fitness function,
MA is able to cut costs by relying, for fitness evaluation,
on either existing structures that figure in previous stages
of the algorithm (i.e. the conflict matrix, the size and fa-
cility matrices etc.), or computations that are cost efficient
(i.e. computing size mismatches, updating dynamic vari-
ables etc.). This results in an increased selection pressure,
as well as decreased computation cost per generation. In
sum, in the case of the group-based algorithm, not only are
a larger proportion of the events subject to repair, but each
repair is itself significantly more expensive.

6. CONCLUSION
The idea behind this paper was to investigate the applica-

bility of evolutionary algorithms to a timetabling problem.
Accordingly, we have attempted to develop a memetic algo-
rithm to solve a predefined set of timetabling problems. In
comparison with three other algorithms noted in the paper,
our memetic algorithm performed better in case of small and
medium instances, but fell behind in case of big instances.
Following a general analysis of algorithmic performance, we
focused on the difference between the obtained results of
a group-based genetic algorithm and our own. To inves-
tigate this, the grouping genetic algorithm and a diversity
measure were implemented. The analysis that followed cor-
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roborated the hypothesis of [19] regarding the “pitfalls of
grouping algorithms”. In sum, our analysis attributed the
better performance of the memetic algorithm (as opposed to
the group-based genetic algorithm) to a number of factors
including: implementing a multi-level selection as opposed
to a single level group selection, propagating the experience
of the algorithm between generations by way of a data struc-
ture that tries to identify “tough” events for each problem,
using less costly heuristics, and developing a more sophisti-
cated fitness function.
Despite its less destructive operators, the high convergence
rate of the memetic algorithm did not fare well in the case of
big instances, as noted in the text. Therefore, we might fo-
cus on solving a big problem (n ≈ 1000) by dividing it into
constituent subproblems (n ≈ 500) that might be better
handled by the algorithm. This of course, makes a number
of assumptions regarding problem constraints and solution
landscape that might not always be viable. Nevertheless, the
algorithm’s success in dealing with medium-sized problems
(n ≈ 400) makes this a worthy future endeavor.
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[14] C. Cotta and A. Fernàndez. Memetic algorithms in
planning, scheduling, and timetabling. Evolutionary
Scheduling, pages 1–30, 2007.

[15] W. Erben. A grouping genetic algorithm for graph
colouring and exam timetabling. Practice and Theory

of Automated Timetabling (PATAT) III, pages
132–156, 2001.

[16] E. Falkenauer. Genetic algorithms and grouping
problems. John Wiley & Sons, Inc. New York, NY,
USA, 1998.
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