Evolving Art with Scalable Vector Graphics

Eelco den Heijer
Objectivation and Vrije Universiteit Amsterdam
Dept. of Computer Science
Amsterdam, Netherlands
eelco@obijectivation.nl

ABSTRACT

In this paper we introduce the use of Scalable Vector Graphics
(SVG) as a representation for evolutionary art. We describe the
technical aspects of using SVG in evolutionary art, and explain
the genetic operators mutation and crossover. Furthermore, we
compare the use of SVG with existing representations in evolu-
tionary art. We performed a number of experiments in an unsu-
pervised evolutionary art system using two aesthetic measures as
fitness functions, and compared the outcome of the different ex-
periments with each other and with previous work with symbolic
expressions as the representation. All images and SVG code exam-
ples in this paper are available at
http://www.few.vu.nl/~eelco

Categories and Subject Descriptors

1.2 [Artificial Intelligence]: Miscellaneous; 1.3 Computer Graph-
ics [I.3.3 Picture/Image Generation]: Line and curve generation

General Terms

Experimentation

Keywords

Evolutionary computation, genetic programming, evolutionary art,
SVG, scalable vector graphics

INTRODUCTION

Over the last two decades, evolutionary art has developed from
an experimental mix of computer art and evolutionary computation
to an established research topic in evolutionary computation. Al-
though there has been significant progress in various aspects of evo-
lutionary art (notably in the field of interactive evolutionary com-
putation (IEC) [18]]) one cannot deny that some aspects of evolu-
tionary art appear to be stuck in a local optimum; perhaps the most
visible aspect is that a lot of evolutionary art looks like ... computer
art. In Figure [Il we see a number of images that are the result of
previous experiments with the evolution of images using and ex-
pression based representation [3]]. We see a variety of images, but

1.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

GECCO’11, July 12-16, 2011, Dublin, Ireland.

Copyright 2011 ACM 978-1-4503-0557-0/11/07 ...$10.00.

427

Agoston E. Eiben
Vrije Universiteit Amsterdam
Dept. of Computer Science
Amsterdam, Netherlands
gusz@cs.vu.nl

Figure 1: A portfolio of six images evolved using symbolic ex-
pressions, from

almost all images are abstract “textures”. When we take a wider
view, and regard different artworks of centuries, it is evident that
artists over centuries have experimented with art materials, layouts,
subjects, techniques etc. All this has resulted in a wide variety of
visual output. If we project this observation onto the world of evo-
lutionary art, one could conclude that the field might benefit (in
terms of variety of visual output) of new representations and new
techniques. In this paper we want to add a new technique to the
world of evolutionary art, and compare our new technique (the use
of SVG) with an established technique (symbolic expressions). An
important starting point of many evolutionary art systems is the
choice for symbolic (Lisp) expressions as the representation for the
genotypes. The choice for symbolic expressions and the construc-
tion of the function set is a very important, but also a potentially re-
strictive choice in the design of an evolutionary art system. As Jon
McCormack wrote [10] “While there might exist a symbolic expres-
sion for generating the Mona Lisa for example, no such expression
has been found by aesthetic selection”. The research questions that
we would like to address in this paper are; 1) is SVG a suitable rep-
resentation for evolutionary art? We want to investigate whether it
is feasible to implement SVG as a genetic representation, i.e. is it
possible to implement all representation dependent components of
an evolutionary art system (mutation, crossover and initialisation)?
2) are the resulting images different from the images produced by
evolutionary art systems that use symbolic representation?

The rest of this paper is structured as follows; first we discuss a
number of representations in evolutionary art in SectionPl Next, in
Section Bl we briefly describe Scalable Vector Graphics. In Section


http://www.few.vu.nl/~eelco

[B2lwe describe SVG as a representation in an evolutionary art sys-
tem that uses genetic programming. Section [4] describe a number
of experiments and their results, and in Section [5] we present the
conclusions and directions for future research. In the appendix we
show an example of an evolved SVG document.

2. REPRESENTATION IN EVOLUTIONARY
ART

Evolutionary art is a research field where methods from Evolu-
tionary Computation are used to create works of art. Good overviews
of the field are [[13] and [2]. Some evolutionary art systems use IEC
or supervised fitness assignment [[17] [14], and in recent years there
has been increased activity in investigating unsupervised fitness as-
signment [1] [4] [3] [15].

A number of different representations have been investigated for
use in evolutionary art. We will briefly describe symbolic expres-
sions and grammars below (other representations like L-Systems,
Cellular automata etc. are out of scope of this paper).

Symbolic Expressions The most widespread representation within
evolutionary art is the symbolic expression [17] [14] [4] [3]. The
symbolic expression paradigm, pioneered by Karl Sims in 1991
[[17] works roughly as follows; each genome is a symbolic expres-
sion (i.e. a Lisp function tree) that consists of functions from a pre-
defined functions set and terminals from a predefined terminal set.
Terminals can consists of variables like x and y (that correspond
to the coordinates in the image grid) or constants. The phenotype
is an image of size (w, h), and the expression of genotype into the
phenotype is done as follows;

for x =0to w do
for y =0 to h do
v < calculate(z, y, tree)
imagelz,y] < v
end for

end for

return image;
There are a number of variations on this theme. Some authors nor-
malise the values of x and y between 0 and 1 or between -1 and 1
[8], some authors map the value v onto a colour index table [8] [4]
[13] but the main idea is the same.
Shape grammars Although symbolic expressions have been a very
popular form of representation in evolutionary art, other forms of
representation have been investigated. The most notable other form
is the shape grammar. A shape grammar is a formal description of
a design and has been pioneered by Stiny and Gips in 1972 [7].
Shape grammars are especially useful in the context of design and
architecture, since domain rules can be coded into the grammar.
Examples of the use of shape grammars in evolutionary art/ design
are [16] and [11]. [12] describes the use of shape grammars (using
the Context Free language) to evolve multiple artworks in a similar
style.

3. SCALABLE VECTOR GRAPHICS

Vector graphics deals with primitives like lines, points, curves
and polygons and is complementary to raster graphics that deals
with pixels. SVG is a graphics format developed and maintained
by the World Wide Web Consortium (W3C) [19] [6] and is an
XML format for vector graphics. An important advantage of vec-
tor graphics over raster graphics is the possibility to scale an image
without loss of image quality. Another important advantage of the
use of SVG as a representation for evolutionary art is the poten-
tial interoperability with the artist/ designer; an artist or designer
can start with an SVG document in his or her vector graphics tool

428

(like Inkscape or Adobe Illustrator) and use the output of his or her
work as input for the evolutionary art system. Next, the output of
the evolutionary art system can be used as input for the artist or de-
signer. Both evolutionary art system and designer tools speak the
same language; SVG.

3.1 Basic layout of an SVG document

SVG is an implementation of XML and should comply to all ba-
sic XML rules; documents consists of elements and elements can
have child elements. Furthermore, an SVG document must be well-
formed; i.e. it should comply to all XML syntax rules. There are
a number of specific rules to which SVG documents must comply
and we will briefly describe the most important ones. First, the root
element (the top level element) must be ‘svg’. The SVG specifica-
tion allows to nest ‘svg’ elements into lower level elements as well,
but in our initial implementation we chose not to implement that
(but we might do so in the future). Next, there can be zero or more
definitions in a ‘defs’ elemenf]. Definitions are like declarations of
variables. Here we can clearly see a big difference with the sym-
bolic expression representation; symbolic expressions are stateless,
they have no state variables (only local variables in leaf nodes). A
‘defs’ element is merely a container of other elements. Elements
that can be declared as ‘variables’ in a ‘defs’ container are

e cssClass - a Cascading Stylesheet class definition; a css
class is a container for one or more css declarations. A dec-
laration can define the foreground colour, the background
colour, the stroke width, the stroke colour etc. Basically, the

css class determines the look and feel of a shape element.

filter - defines a filter; a filter in SVG alters the looks of
a certain area of an image by applying an image filter effect
on that particular area. Currently we have implemented the
gaussian blur filter and the colour matrix filter. SVG speci-
fies more filters but since each filter can have a large number
of specific parameters, they are not easy to implement. We
intend to implement more (if not all) filters from the SVG
specification in the future.

group - a group is a container element that holds one or
more other elements (that can also be a ‘group’). Groups
are a simple way to implement complex constructs from a
number of simple elements.

linearGradient and radialGradient - gradients are
transitions of colour over a certain area. SVG supports lin-
ear gradients (linear transition from one point to another) and
radial gradients (colour transitions are circular/ ring shaped).

mask - a mask is an outline whereby everything on the in-
side of the mask is shown and everything on the outside is
‘masked’. With a mask you can create a ‘hole’ of a a cer-
tain shape. A mask is a container element; it contains other
elements that define the shape of the mask.

pattern - a pattern is container element that contains other
elementary shapes (like ‘rect’ and ‘ellipse’) that are repeated
such that they create a pattern (much like a wallpaper pat-
tern).

Next to the ‘defs’ element, an SVG document can have a number
of shape elements. In our implementation we have implemented the
following shape elements:

'SVG does not enforce a document to begin with a ‘defs’ element,
but we do so in our implementation for reasons of simplicity



e rect - arectangle shape

e cllipse -anellipse; it has a centre coordinate, and x radius
and an y radius. If the x radius and y radius are equal, the
result is circle.

e circle -aspecial case of ‘ellipse’; there is only one radius.

e path - path is the most versatile element. A path defines a
number of basic operations that are similar to turtle graph-
ics; operations include move to, a number of basic line com-
mands, and a number of Bézier curve commands (see the
appendix for a comprehensive example of an SVG document
with many path elements.

e polyline - apolyline is a collection of connected lines. A
polyline does not fill an area (like a polygon does).

e polygon -apolygon is also a collection of connected lines,
whereby the first and last point of the polygon are also (auto-
matically) connected. The surrounding area is filled with the
fill colour (if any) of the polygon.

e use - the ‘use’ element is a special type of element, since
it does not define a shape itself, but refers to a predefined
element (defined in the ‘defs’ section of the SVG document)
and performs a transformation on it. Transformations include
scaling, rotating and translating.

e image - SVG also supports the use of raster image using the
‘image’ element. The image element is different from the
other elements, since it does not constitute a vector graphics
element, so many aspects of SVG do not apply (like styling
using CSS, gradients etc.).

In the declaration of a shape element there can be references to

declarations in the aforementioned ‘defs’ section. Elements can
specify a filter, a css class, a mask, a pattern, a linear gradient or
a radial gradient. ‘use’ elements can also refer to a ‘group’ ele-
ment. As we will see later, the interconnectedness of the shape
elements with the declared elements can pose complex dependen-
cies that may occur when performing a crossover or mutation on
one or more SVG documents. Figure [Il shows a number of simple
SVG example documents and their rendered images. The appendix
shows an evolved SVG document with many ‘path’ elements and
its rendered image.
The SVG specification is vast and complex, and we have not cov-
ered every aspect of it, nor have we implemented the entire SVG
specification. In our current implementation we have skipped ‘text’
(rendering text labels), ‘metadata’ (specifying RDF metadata in an
SVG element), javascript (mainly for animating svg elements and
user interaction) and a number of SVG filters.

3.2 SVG in Evolutionary Art

As stated previously, the most used representation in evolutio-
nary art is the symbolic expression. The advantage of using sym-
bolic expressions is twofold; first, when using symbolic expres-
sions, it is easy to create valid new trees from existing ones, since
the trees are type-safe (i.e. the type of each sub expression tree
is the same, so you can select any (sub)tree node as input for any
other tree node). Second, symbolic expressions are stateless; they
have no state variables (only local variables in leaf nodes), and this
makes crossover and mutation relatively easy to implement. SVG
does not have these advantages, so implementing genetic operators

429

for SVG will be more complex. In this section we will describe
the genetic operators crossover and mutation, and we will describe
the initialisation process. All operators are SVG specific and all
operators produce results that conform to the SVG standard. All
declaration elements (the elements in the ‘defs’ element in the svg
document) and all shape elements are potentially subject to muta-
tion or crossover.

3.3 Mutation

The mutation operator processes an SVG document top-down,
and (depending on the mutation rate) either copies or mutates each
child element of the parent. There is a specific mutation operator
for each type of SVG element. For instance, if the element is an
ellipse, then the ellipse mutation operator is called, and the spe-
cific attributes of the ellipse are potentially subject to mutation (the
mutation can change the coordinates of the ellipse, and/ or the hor-
izontal/ vertical radius). There are a number of heuristics; each
numeric attribute (X, y coordinate, radius etc.) is increased or de-
creased between 0 and 10% of the original value. For the ‘defs’
element, mutation is similar; each child element in the ‘defs’ is po-
tentially subject to mutation; a ‘filter’ element might change from
a linear gradient filter to radial gradient filter, or the specific pa-
rameters of the filter (like colours, offsets) might be mutated. Css
elements that are defined in the ‘defs’ element can also be mutated;
attributes that can be mutated are colour, stroke etc.. Currently, we
have not implemented the insertion, replacement and removal of
child elements upon mutation (but we intend to implement this in
the near future).

3.4 Crossover

For the crossover operation, we implemented a one-point cross-
over operator specific for SVG. The crossover works on two parent
svg documents and create one child per operation. Each parent
consists of a defs part and a shapes part. The ‘defs’ part contains
only declarations of filters, css classes. For sake of simplicity, we
define the shapes part as everything that comes after the defs part
(and contains only shape elements). Crossover is implemented as
follows: first we copy the defs part of one of the parents to the
child. Next, we concatenate the first half of the shapes part of one
parent with the second part of the shapes part of the other parent.
Since shape elements have references to definitions that reside in
the ‘defs’ element, the new child will have references in shape ele-
ments that do not exist in the child (since we only copied the ‘defs’
element of one parent, but we have shape elements of both par-
ents). Since a SVG interpreter will refuse to render such a doc-
ument (with references to non-existing elements), we traverse the
shape elements, and check whether the references to a filter, css
class, mask etc. are available. If not, the reference is replaced with
a reference that does exist in the child document. Example; sup-
pose we have a father document that has a ‘rect’ element (a shape
element) that refers to a ‘cssClass’ element (a ‘defs’ element) with
id ‘123’. Now suppose we do a crossover and this ‘rect’ element
in the child class is ‘cut off” from this ‘cssClass’ with id ‘123’ (be-
cause this cssClass definition is not copied to the child document),
then we have to re-assign the ‘cssClass’ reference in the ‘rect’ el-
ement from ‘123’ to ‘456’ (or any other id that does exist in the
‘defs’ of the child document). This means that the ‘rect’ element
will be rendered differently in the child element.

3.5 [Initialisation

Just like mutation and crossover, our initialisation adheres to the
SVG standard, and produces only valid SVG documents. Initiali-
sation uses a number of parameters to create new individuals. For



<circle cx="100" cy="50" r="40"
stroke="black" stroke—width="2"
fill="blue"/>

width="50"
fill="red"/>

<rect x="20" y="20"
height="25"

<polygon points="220,100,300,210_170,
..250,50,200,100,100" style="fill:_green;
L.stroke: black;stroke—width:2"/>

<polyline points="50,50,200,50,200,200,
..,100,100,50,200"
.stroke:violet;_stroke—width:4"/>

style="fill:white ;

Table 1: Four simple examples of SVG code and their images

SVG Configuration
Number of Minimum | Maximum
SVG shape elements 3 6
Linear gradients 1 4
Radial gradients 1 4
Masks 1 1
Patterns 0 1
Filters 4 5
CSS classes 3 4

Table 2: SVG initialisation parameters for the declaration part
of the SVG document (defined in the ‘defs’ element of the SVG
document).

Various SVG

Elements
Experiment 1
Experiment 2

Only ‘path’
element
Experiment 3
Experiment 4

Ross & Ralph
GCF

Table 3: Overview of experiments

example, there is a parameter ‘number of svg shape elements’ with
a minimum of 3 and a maximum of 6. This means that between 3
and 6 shape elements are created. Table 2l has all the initialisation
parameters and their minimum and maximum values. Initialisation
also uses a weight distribution for shape elements; this way we can
perform different experiments with different distributions of shape
elements (e.g. we can do experiments with only ‘path’ elements).

4. EXPERIMENTS

In order to explore the potential of SVG as a representation for
evolutionary art we conducted four experiments; two experiments
with a variety of SVG elements (polygons, polylines, circles and
paths) and two experiments with only the ‘path’ element. Two of
the experiments were performed with the Ross & Ralph Bell Curve
aesthetic measure [15] and two experiments were performed with
the Global Contrast Factor aesthetic measure [9] (see Table [3] for
more details). These aesthetic measures were used as fitness func-
tions in an unsupervised evolutionary art system; no human evalu-
ation/ interactive evolution was involved.

The Ross & Ralph Bell Curve aesthetic measure is based on
the observation that many fine art painting exhibit functions over
colour gradients that conform to a normal or bell curve distribu-
tion. The authors suggest that works of art should have a reason-

430

able amount of changes in colour, but that the changes in colour
should reflect a normal distribution (hence the name ‘Bell Curve’).
The computation takes several steps and we refer to [15] for details.
Previous experiments with the Ross & Ralph aesthetic measure as
a fitness function in an unsupervised evolutionary art system have
shown that the use of this measure often leads to images with rich
colouring and smooth colour transitions [4]. The global contrast
factor computes contrast (difference in luminance or brightness) at
various resolutions. Images that have little or few differences in
luminance have low contrast and are considered ‘boring’, and thus
have a low aesthetic value. Contrast is computed by calculating
the (average) difference in luminance between two neighbouring
superpixels. Superpixels are rectangular blocks in the image. The
contrast is calculated for several resolutions (2, 4, 8, 16, 25, 50, 100
and 200) and the average contrast is summed as

9
Myes(I) = Z wy, - contrast(n, pr, i)

k=1

)

where 7}, refers to the resolution of the superpixel, wy, refers to the
weight of the contrast of the superpixel (the weight of the contrast
differs per resolution) and py, is a power factor. Both w and p were
optimised using several experiments in [9]. In our implementation
we used all the settings from [9]], and we refer to that paper for more
details. In previous experiments with the global contrast factor as
a fitness function it was shown that images that were evolved using
GCF as the fitness function had a lot of alternating black and white
areas (hence, a lot of contrast) 3]

Furthermore, we performed 10 runs per configuration, saved the
images that had the highest fitness score, and selected a portfolio of
24 images from the 100 images. The portfolio for each experiment
is shown in the next subsections.

4.1 Experiment 1 & 2: multiple SVG elements

First we conducted two experiments with a variety of SVG el-
ements. We initialised the SVG elements with circle, polygon,
polyline and path elements (all with an initialisation probability of
0.25). The ‘defs’ part of the documents were initialised according
to the specifications in Table 2]

4.1.1 Experiment 1: Ross & Ralph

In the first experiment we initialised the population with docu-
ments containing circle, poyline, polygon and path elements. We
used the Ross & Ralph aesthetic measure as the fitness function.
As said before, we did 10 runs using this setup and gathered the
10 fittest images of each run, and handpicked 24 images; these im-



Figure 2: Portfolio of images gathered from ten runs with Ralph & Ross with various SVG elements (Experiment 1)

Symbolic parameters

Representation

Scalable Vector Graphics (SVG)

Initialisation

Custom SVG Initialisation

Survivor selection

Tournament, Elitist (best 1)

Parent Selection

Tournament

Mutation

Custom SVG mutation

Recombination

Two parent single point crossover

Fitness function

Ralph & Ross or
Global Contrast Factor

Numeric parameters

Population size 200
Generations 10
Tournament size 2
Crossover rate 0.75
Mutation rate 0.25

Table 4: Evolutionary parameters of our evolutionary art sys-
tem used in our experiments

ages are shown in Figure 2} Almost all images have rich and vari-
able colouring which is consistent with earlier experiments with the
Ross & Ralph aesthetic measure [4] The polygon elements seem to
dominate the look and feel of most images, and they make many
images interesting, but they do tend to give them a slight ‘computer
art’ flavour (although different from the images evolved using sym-
bolic expressions in Figure[T)).

4.1.2 Experiment 2: GCF

The second experiment uses the Global Contrast Factor as the
fitness function, but is otherwise identical to Experiment 1. The
images are shown in Figure[3] The images evolved using the GCF
show a lot of contrast, and that is similar to earlier findings [3]]. The
high level of contrast in the images have a very powerful effect, but
it does give the images a certain ‘harshness’ that is not present in
the images from Experiment 1 (with the Ross & Ralph aesthetic
measure).

4.2 Experiment 3 & 4: the ‘path’ element

In the third and fourth experiment we initialised the population
with genomes with only the ‘path’ element. The ‘path’ element is

431

the most versatile SVG element; it contains a number of operations
that closely resemble turtle-graphics (see Section[3lon a brief ex-
planation of the ‘path’ element and see the appendix for an SVG
document with many path elements). We initialised each document
with 3 to 6 (see Table @) ‘path’ elements, whereby each path ele-
ment had between 10 and 80 path operations.

4.2.1 Experiment 3: Ross & Ralph

In the third experiment we evolved SVG document with only
‘path’ elements using Ross & Ralph as the fitness functions. The
images of this experiments are in Figure dl

The first thing that is striking is the variety of the images; it is
interesting to see that the ‘path’ element alone is versatile enough
to create a wide variety of images, sometimes arguably more inter-
esting than the circles, polygons, polylines and paths from Exper-
iments 1 and 2. The addition of the curve operation in the ‘path’
element seems to have additional value over the standard polygons
and polylines. Note that we initialise the points and operations of
all ‘path’ elements randomly, there is no use of domain knowledge
(e.g. from art theory). This randomness sometimes give the im-
ages a certain artificial flavour. We think we can improve this by
creating initialisation methods that use heuristics from art theory.
The images from Experiment 3 are also varied in colour and this is
consistent with Experiment 1 and previous work [4].

4.2.2  Experiment 4: GCF

The last experiment is identical to Experiment 3, except for the
use of the Global Contrast Factor as the fitness function. The im-
ages of Experiment 4 are in Figure[3l The images from Experiment
4 are also varied in shape (like Experiment 3) but again show a ten-
dency towards black and white, which is similar to Experiment 2
and previous work [3]]

S. CONCLUSIONS AND FUTURE WORK

In section [Tl we defined a number of research questions for this
paper, and we will answer them here. First, we wanted to know
whether SVG is suitable as a representation for evolutionary art.
We think we have shown that we have successfully implemented
SVG as arepresentation for evolutionary art; we have implemented
a mutation, crossover and initialisation operator, and we intend to
implement variants of these operators in the near future. Imple-



Figure 4: Portfolio of images gathered from ten runs with Ralph & Ross with the ‘path’ element (Experiment 3)

menting SVG as a representation was not easy, but it is feasible.
Next, we wanted to know whether images evolved using SVG as
a representation would result in images that are different from the
‘typical’ symbolic expression evolutionary art systems. Although
we have barely touched the surface of the possibilities of SVG as
a representation, we think that the images that we have evolved are
different from the ones we evolved in earlier work using symbolic
expressions. In Figure [[l we show six images evolved in experi-
ments using expression based representation [5]]. We think it is safe
to conclude that the images in Figures 2l B [ and [§] are different
from the ones in Figure[Il In the first section we labelled many evo-
lutionary art as ‘computer art’. An interesting question then could
be ‘Can evolutionary art using SVG as a representation be labelled
as computer art?’ The answer to that question is probably ‘yes’; the
initial experiments result in images that are different from previous
images, but could nevertheless be labelled as computer art. We do
think, however, that SVG has a lot of potential. First, we think there
are many ways to improve the interestingness of the images; first of
all, we mainly used a uniform ‘random’ function to initialise vari-
ous attributes of the SVG elements; we think we can improve the
quality of the images by using heuristics from art theory, especially

432

heuristics concerning the composition of an image (for example,
the golden ratio, the rule of thirds, etc.). Second, we think there are
many possible points for improvement; we intend to implement a
number of additional SVG features; more SVG filters, the use of
images, text etc.

6.
(1]

REFERENCES

Shumeet Baluja, Dean Pomerleau, and Todd Jochem.

Towards automated artificial evolution for

computer-generated images. Connection Science, 6:325-354,

1994.

P. J. Bentley and D. W. Corne, editors. Creative Evolutionary

Systems. Morgan Kaufmann, San Mateo, California, 2001.

[3] E. den Heijer and A. E. Eiben. Using aesthetic measures to
evolve art. In IEEE Congress on Evolutionary Computation
(CEC 2010), Barcelona, Spain, 18-23 July 2010. IEEE Press.

[4] E. den Heijer and A.E. Eiben. Comparing aesthetic measures
for evolutionary art. In Applications of Evolutionary
Computation, LNCS 6025, 2010, pages 311-320, 2010.

[5] E. den Heijer and A.E. Eiben. Evolving art using multiple

(2]



Figure 5: Portfolio of images gathered from ten runs with GCF with the ‘path’ element (Experiment 4)

aesthetic measures. In EvoApplications, LNCS 6625, 2011,
pages 234-243, 2011.

[6] J. Eisenberg. SVG Essentials. O’Reilly Media, 2002.

[7] J. Gips G. Stiny. Shape grammars and the generative
specification of painting and sculpture. In Information
Processing, pages 1460-1465, 1972.

[8] Gary R. Greenfield. Mathematical building blocks for

evolving expressions. In R. Sarhangi, editor, 2000 Bridges

Conference Proceedings, pages 61-70, Winfield, KS, 2000.

Central Plain Book Manufacturing.

Kresimir Matkovic, Laszl6 Neumann, Attila Neumann,

Thomas Psik, and Werner Purgathofer. Global contrast

factor-a new approach to image contrast. In Ldszl6

Neumann, Mateu Sbert, Bruce Gooch, and Werner

Purgathofer, editors, Computational Aesthetics, pages

159-168. Eurographics Association, 2005.

Jon McCormack. Open problems in evolutionary music and

art. In Franz Rothlauf, Jiirgen Branke, Stefano Cagnoni,

David W. Corne, Rolf Drechsler, Yaochu Jin, Penousal

Machado, Elena Marchiori, Juan Romero, George D. Smith,

and Giovanni Squillero, editors, EvoWorkshops, volume

3449 of Lecture Notes in Computer Science, pages 428-436.

Springer, 2005.

Michael O’Neill, John Mark Swafford, James McDermott,

Jonathan Byrne, Anthony Brabazon, Elizabeth Shotton,

Ciaran McNally, and Martin Hemberg. Shape grammars and

grammatical evolution for evolutionary design. In

Proceedings of the 11th Annual conference on Genetic and

evolutionary computation, GECCO °09, pages 1035-1042,

New York, NY, USA, 2009. ACM.

Henrique Nunes Penousal Machado and Juan Romero.

Graph-based evolution of visual languages. In Applications

of Evolutionary Computation, Lecture Notes in Computer

Science, 2010, Volume 6025/2010, pages 271-280, 2010.

Juan Romero and Penousal Machado, editors. The Art of

Artificial Evolution: A Handbook on Evolutionary Art and

Music. Natural Computing Series. Springer Berlin

Heidelberg, November 2007.

Steven Rooke. Eons of genetically evolved algorithmic

images. In Bentley and Corne [2], pages 339-365.

[9

—

(10]

(11]

(12]

(13]

(14]

[15] Brian Ross, William Ralph, and Hai Zong. Evolutionary
image synthesis using a model of aesthetics. In IEEE
Congress on Evolutionary Computation (CEC) 2006, pages
1087-1094, 2006.

Thorsten Schnier and John S. Gero. Learning genetic
representations as alternative to handcoded shape grammars.
In Artificial Intelligence in Design *96.

Karl Sims. Artificial evolution for computer graphics. In
SIGGRAPH ’91: Proceedings of the 18th annual conference
on Computer graphics and interactive techniques,

volume 25, pages 319-328. ACM Press, July 1991.
Hideyuki Takagi. Interactive evolutionary computation:
Fusion of the capacities of ec optimization and human
evaluation. Proceedings of the IEEE, 89(9):1275-1296,
2001.

World Wide Web Consortium (W3C). Scalable vector
graphics (svg).
http://www.w3.0rg/Graphics/SVG/}

(16]

(17]

(18]

(19]

APPENDIX

In this appendix we show a code example of an evolved SVG doc-
ument; the document was evolved in experiment 3 (see Section [4).
In order to fit the code on one page, we removed (unreferenced)
code from the ‘defs’ element.

Figure 6: One of the images from Experiment 3; the SVG code
is on the next page

433


http://www.w3.org/Graphics/SVG/

1{<svg xmlns="http: //www.w3.0rg/2000/svg" xmlns:xlink="http: //www.w3.0rg/1999/xlink"

2 version="1.1" width="1000" height="1000" viewBox="0 0 1000 1000"

3 viewPort="0 0 1000 1000">

4 <defs>

5 <filter id="filter_20110111T194020_972_053">

6 <feGaussianBlur in="SourceGraphic" stdDeviation="12" />

7 </filter>

8 <filter id="filter_20110111T194020_972_019">

9 <feGaussianBlur in="SourceGraphic" stdDeviation="19" />

10 </filter>

11 <filter id="filter_20110111T194020_972_082">

12 <feGaussianBlur in="SourceGraphic" stdDeviation="17" />

13 </filter>

14 <linearGradient id="linearGradient_20110111T194020_972_042"

15 filter="url (#filter_20110111T194020_972_082)" x1="12%" yl1="12%" x2="95%" y2="79%">
16 <stop offset="0%" style="stop—color : rgb(255,0,0); stop—opacity : 0.00; " />
17 <stop offset="100%" style="stop—color : rgb(255,255,255); stop—opacity : 1.00; " />
18 </linearGradient>

19 <linearGradient id="linearGradient_20110111T194020_973_003"

20 filter="url (#filter_20110111T194020_972_019)" x1="12%" y1="9%" x2="84%" y2="77%">
21 <stop offset="0%" style="stop—color : rgb(0,0,255); stop—opacity : 0.00; " />
22 <stop offset="100%" style="stop—color : rgb(255,255,0); stop—opacity : 1.00; " />
23 </linearGradient>

24 <style id="style_20110111T194020_974_035" type="text/css"><![CDATA[.c4314694 ({
25 fill T #ff

26 stroke : #0000 ;

27 stroke —width : 3

28 fill —opacity : 0.90;

29 }

30 .c4610956 {

31 fill : url(#linearGradient_20110111T194020_972_042);

32 stroke c #ff

33 stroke —opacity 1 0.6;

34 fill —opacity 1 0.74;

35 }

36 .c6957277 |

37 fill : url (#linearGradient_20110111T194020_973_003 );

38 stroke c #ff

39 stroke—linejoin : miter;

40 fill —opacity 1 0.02;

41 }11></style>

42 </defs>

43| <path width="215" height="683" d="M757 787 L115 459 H89 Q20 394 0 328 S125 303

44 7 259 VO M654 216 H514 A490 378 49 1 0 478 465 Q447 500 423 454 T488 373 S457
45 486 503 373 Q1000 399 656 295 M611 462 L930 67 H960 V697 Z" fill —rule="nonzero"
46 class="c4314694" />

47| <path width="883" height="562" d="M462 25 V567 H503 T346 113 H270 M799 236 A404

48 687 96 1 0 490 815 T415 790 A456 427 169 0 1 157 555 V207 V558 VO S352 327 257
49 469 V262 Z" fill —rule="nonzero" class="c6957277" />

50| <path width="846" height="893" d="M633 373 A660 812 65 0 1 432 590 S462 592 413

51 1000 V659 H384 L660 1000 L575 548 L303 852 V642 A339 1000 20 1 0 660 874 L504
52 652 L539 899 V90 A526 624 45 0 0 428 938 C660 598 509 799 656 799 Z"

53 fill —rule="nonzero" class="c4314694" />

54| <path width="930" height="34" d="M635 308 C492 775 346 714 416 756 S34 575 371 874
55 T866 971 S1000 856 617 748 H806 S649 182 483 287 S721 298 637 177 H805 T863 172
56 L602 271 A753 0 136 1 0 730 145 S954 0 686 231 V559 H516 MS888 42 T852 84 AT7ll
57 399 88 0 0 888 0 L674 165 V708 C787 255 457 0 692 257 H592 L668 319 A954 277

58 8 0 0 606 0 T518 178 M332 624 Q673 112 767 189 Z" fill —rule="nonzero"

59 class="c4610956" />

60| <path width="784" height="219" d="M290 188 HI178 C615 1000 630 1000 614 1000 S843
61 941 958 1000 V658 M664 715 M345 610 V194 L137 272 Q217 225 70 350 Q165 356 47
62 324 M46 915 L260 314 T260 269 H166 C217 260 260 262 168 207 S209 321 219 176 Z"
63 fill —rule="evenodd" class="c4610956" filter="url (#filter_20110111T194020_972_053)" />
64| <path width="646" height="811" d="M925 752 A470 728 177 1 0 431 605 T547 650 M553
65 565 M324 247 T263 534 M485 581 S381 588 407 534 AS518 553 117 1 0 547 608 A463 762
66 167 1 0 378 715 A498 732 6 0 0 479 819 L404 570 T371 613 T344 651 A459 820 15 0
67 1 447 591 H547 S547 680 466 611 T547 769 H487 V471 V545 7" fill —rule="nonzero"
68 class="c4610956" />

69| </svg>

Listing 1: SVG Code example

434



	Introduction
	Representation in Evolutionary art
	Scalable Vector Graphics
	Basic layout of an SVG document
	SVG in Evolutionary Art
	Mutation
	Crossover
	Initialisation

	Experiments
	Experiment 1 & 2: multiple SVG elements
	Experiment 1: Ross & Ralph
	Experiment 2: GCF

	Experiment 3 & 4: the `path' element
	Experiment 3: Ross & Ralph
	Experiment 4: GCF


	Conclusions and Future Work
	References



