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ABSTRACT
One of the greatest problems when using genetic algorithms
to evolve melodies is creating an aesthetically conscious mea-
sure of fitness. In this paper, we describe a new approach
with a minimum measure of fitness in which a set of good
individuals is returned at the end of the process. Details
about the implementation of a population of measures and
some genetic operators are described in this work before
an implicit way to evaluate fitness is given. We define a
Takeover Matrix to measure the relationship between differ-
ent generations and its compromise between originality and
diversity. By means of this Takeover Matrix, the evolution-
ary process itself can be used as a criterion instead of using
only ordinary individual measures of fitness. The results
show the implications of using the proposed approach and
demonstrate that the proposed algorithm is able to generate
good sets of melodies. The algorithm can be used not only
for developing new ideas but also to extend earlier created
melodies with influence from the initial population.

Categories and Subject Descriptors
J.5 [Arts and Humanities]: Music; I.2 [Computing Method-
ologies]: Artificial Intelligence

General Terms
Algorithms, Design, Measurement

Keywords
Evolutionary Music, Algorithmic Composition, Computer
Music, Genetic Algorithms

1. INTRODUCTION
This paper presents an approach for algorithmic compo-

sition, a process in which patterns of composition methods,
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which are not always algorithmic, are explored in order to
automatically produce new music. This is an interesting and
stimulating process that includes challenges such as the dis-
covery of new algorithmic standards for composition as well
as it raises questions regarding personal concepts about the
definition of art and the prospect of making computers to
produce art pieces.

The methods for algorithmic composition are usually clas-
sified into (i) stochastic; (ii) based on rules; or (iii) based on
artificial intelligence, with the latter including evolutionary
methods [16]. Evolutionary computation in particular of-
fers potential models and ideas for automatic composition.
Actually, composition more than often is done by working
on variations of past experiences and variations of existing
themes and material. Genetic algorithms in computer music
can begin with a data set of existing material and create new
melodies, evolving the population by applying variations on
them throughout the evolutionary process. In this sense,
the evolutionary process shares some similarities with the
creative process going on in composition.

However, fitness computation in most evolutionary-based
systems for art and music requires aesthetic judgements,
which are not easy to model and implement in the form of
an algorithm. For this reason, these systems usually employ
some level of interaction with the user, which provides feed-
back to the system about subjective aesthetic judgements,
see for instance [6, 12, 17]. When dealing with static images,
interactive evaluation is not much of a hindrance, because
many alternatives can be presented to the user in paral-
lel (for instance, a grid of images) [13]. Moreover, there
are some studies on strategies for minimizing the number of
choices presented to the user and for reducing fatigue in in-
teractive evolutionary algorithms [19]. On the other hand, in
time-based pieces, such as animation and music, interactive
fitness evaluation can require significant attention from the
human mentor, who is always liable to getting tired, bored,
losing attention and other issues. This aspect is known in
the literature as the fitness bottleneck [2].

Given this difficulty in basing evolutionary music systems
on human evaluation, some authors have studied the de-
velopment of automatic systems, which would be able to
develop art and musical pieces without human intervention.
Some ideas involve co-evolution [7], the development of re-
liable aesthetic metrics [18], and the evolution of adaptive
critics [14]. In the context of music, an interesting idea to
circumvent the fitness bottleneck is presented by Biles in [2],
where he eliminates the fitness altogether from the evolu-
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tionary system, leading to a fitness-free version of his sys-
tem. His algorithm starts with a population of measures
selected from a database and evolves this population using
carefully designed genetic operators for some generations,
without any fitness evaluation. The resulting populations
represent new original melodies. Although this approach
raises questions about the purity of an evolutionary algo-
rithm1, Biles argues that his system is still a genetic algo-
rithm, see discussion in [2].

The number of generations required to run a fitness-free
evolutionary algorithm that is evolving a melody is arbitrary
and depends on the experience of the user. If the number of
generations is small, the final melody resembles the initial
population, without much originality. It is desirable that the
final solution be original in relation to the initial melody/-
ies, specially when its author is not the user of the algorithm.
If the number of generations is high, a takeover2 will occur,
even with the absence of a fitness function, due to genetic
drift. We call this compromise an originality-diversity trade-
off : during the evolutionary process, originality increases
but diversity decreases due to takeover, giving rise to the
questions below:

• How to achieve a good compromise between originality
and diversity in the artificial evolution of melodies?

• Which criterion or criteria can one use to select a
melody among the many candidates generated by the
evolutionary process?

In this context, we present in this paper an evolutionary
algorithm for evolving melodies represented by a population
of measures, without the intervention of a human mentor
in the process. However, our approach differentiates from
previous work by combining the following aspects:

• The melody generator proposed in this work has a
population of measures and a minimum implicit fit-
ness evaluation (see definitions in the next section).
The population of each generation represents a single
melody;

• The composition process is the evolutionary process
itself and all individuals from all generations are can-
didates to be in the final melody;

• We adapt genetic operators from the literature to the
details of our representation scheme;

• We propose a method to monitor takeover, and use this
information to select the generation whose population
will form the final melody returned by the evolutionary
system;

With this approach, we aim at solving the originality-
diversity trade-off in an evolutionary music system. We
avoid the difficulty of defining the number of generations
required to run the algorithm, by simply running it until
takeover occurs. We define a Takeover Matrix to quantify
the relationship between melodies in different generations.

1By “pure evolutionary algorithm” we mean an algorithm
that presents the following basic ingredients: representation,
evaluation, selection and variation operators.
2In an evolutionary algorithm, a takeover implies that all
individuals are the same, and the population presents no
diversity.

By means of this Takeover Matrix, we can decide which
melody from the whole evolutionary process will be selected
as the final melody, instead of using only ordinary individual
fitness evaluation. This decision is based on the variation of
the Takeover Matrix along the process.

We present some experimental results using the melody
of the song One note samba 3 [9], composed by the Brazil-
ian musicians Tom Jobim and Newton Mendonça, with in-
terpretations available in English. A common saying has
originated from the title of this song: the metaphor “too
many notes samba”, which means that something is exag-
gerated, confused, or not in harmony. To a certain extent,
this captures the ideia of the trade-off we try to solve with
the proposed evolutionary-based composition system, whose
main goal is to create interesting and original melodies from
known material. The results show it is possible to find a
diverse set of melodies, being useful not only for develop-
ing new ideas but also to extend previous ideas, which are
competitive with human created ideas.

2. CONCEPTS AND TERMINOLOGY
In this section we present some useful definitions to be

used in the rest of the paper. More details about those
concepts related to Music Theory can be obtained in [10].

Measures: A measure is a segment of time in Western mu-
sic defined by a given number of beats of a given du-
ration. In formal terms, a measure can be specified by
the elements (ηi, ti, δi), where ηi represents a note, ti
is its starting time, δi is its duration, and i = 1, . . . , n
is the number of notes in the measure. In this work,
each measure is an individual and if there are no notes
in an individual, then it is considered a pause.

Melody: Melody is a linear succession of notes which is
perceived as a single entity. In our system, the popu-
lation of measures form a melody. Since each individ-
ual represents a measure, the main goal is not exactly
the search for the best individual, but the evolution
of a good population of individuals, for at the end of
the process many of them can be chosen in a musically
conscious way to form the final result.

Random fitness: A random fitness function is equivalent
to a fitness-free evolutionary system. An easy way to
implement this feature is to use uniform (or unbiased)
selection for reproduction, with no selective pressure.

Minimum implicit fitness: A minimum implicit fitness
function is a function that implements a minimal set
of musical rules and/or constraints when analyzing a
given individual. Individuals receive penalties or re-
wards based on the satisfaction of these rules and con-
straints. The problem becomes similar to a Constraint
Satisfaction Problem (CSP) [11]. If too many rules
are added to the fitness function, musical creativity is
hindered. It is debatable whether we should apply a
pre-existing set of rules or try to base algorithms on
what composers really do instead [8].

Takeover: In evolutionary algorithms, the word takeover
refers to the phenomenon in which the population col-
lapses into copies of one or few individuals in the pop-
ulation [4]. Typically, the takeover time is the number

3Samba de uma nota só in Portuguese.
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of generations (on average) that a takeover takes to
occur, and it has been used to characterize different
selection methods used in evolutionary algorithms, see
[5]. In this paper, individuals represent measures and
the population represents a melody. In this context,
takeover occurs when all measures in the population
are the same, and the ability of generating new mate-
rial is limited. Takeover then translates into a melody
with repetitive patterns.

3. THE MELODY GENERATOR
The melody generator proposed in this work has a popula-

tion of measures and a minimum implicit fitness evaluation.
The composition process is the evolutionary process itself
and all individuals from all generations are candidates to
be in the final melody. This section describes the melody
generator implemented in this work. We first present the
representation scheme for measures and melodies, and the
genetic operators adapted for this representation. The sec-
tion concludes with the definition of the Takeover Matrix,
used to select the final melody returned by the algorithm.

3.1 Representation
The delineation of what might be considered art occurs

during the design of the algorithm, since a structure not
foreseen by the representation scheme will not be generated.
If this characterization is made by specifying rules, compo-
sition in particular genres of music becomes easier, since the
search space can be greatly restricted in a convenient way.

The size of the representation of a solution may be fixed
or variable, depending on its needs. Sometimes, the repre-
sentation may be obvious but that does not happen often in
the composition process and a poorly designed representa-
tion scheme might lead to search spaces that are hard to be
explored and useless automatic composition algorithms.

In this work, an approach based on the order of the notes
as shown in Table 1, with absolutely represented pitches, is
used. Each row represents an event and the matrix can be
easily converted into a MIDI file.

Table 1: Representation of a solution.
Track Channel Note Vel. Note on Note off

1 1 60 90 0.0 0.5
1 1 62 95 0.5 1.0
... ... ... ... ... ...
1 1 74 93 10.5 11.0

The first two columns represent the track and channel
used to perform the respective notes. All notes performed by
the same instrument must use the same track and all notes
performed with the same timbre must use the same channel.
At the column note, a non-negative number represents a
note, with 60 being middle C. Since an equal temperament
scale is used, any multiple of 12 represents a C. Similarly,
any multiple of 12 plus 2 represents a D. Since the notes
are represented with absolute values, the genetic operators
will have freedom to generate any note, contrasting with
relative representation schemes based on scales. The values
of velocity in column four can have 7 bits to control the
intensity to perform the notes.

y yyy y�
3 yy yy y yyy y

Child 2
yy

Child 1

y y yyy
Parent 2yy y y� yy y

Parent 1 yy y� y

Figure 1: Simple Musical Crossover limited to the
pulses.

Finally, it is necessary to specify when a note is performed
and when it is released. The columns note on and note off
use relative units of time. Considering a measure with 4
pulses and that the size of a measure is 2, there is pulse 1
beginning at time 0.0, pulse 2 at 0.5, pulse 3 at 1.0 and so
on. In this work, each measure is an individual and if there
are no notes in a individual, then it is considered a pause.
The operators mainly work on the values in columns 3, 5 and
6, which are related to the parameters (ηi, ti, δi) described
before, with ηi ∈ {0, . . . , 127}, ti ∈ R+, and δi ∈ R∗

+. The
other values are useful for having a representation scheme
that can be easily exported to MIDI files. Besides, the values
of velocity in the initial population can be inherited through
the generations.

In order to represent the timing and durations of each
note, an order-based representation scheme is used. In this
way, melodies are represented by a list of pitch-timing ele-
ments (ηi, ti, δi), creating the possibility of any value of time
for ti and δi. This model has features that are different from
the ones in a position-based chromosome structure, such as
in [3]. In position-based approaches, each gene represents a
fraction of time and individuals have a fixed length. Each
gene has a value of ηi while the position of this gene it-
self defines ti. Besides the notes, some additional values are
needed to represent rest or hold events in order to stop or
keep notes sounding. Thus, the value of δi can be defined.

A melody with any rhythm structure can be represented
in an order-based scheme. Thus, this option seemed more
useful to the authors since one of the purposes of the al-
gorithm is to generate results with some aesthetic relation
to the initial population. Besides, other implications of this
choice will happen in the genetic operators, as described in
the following subsection.

3.2 Genetic Operators
The genetic operators are applied to the initial population

and lead them to new material, with an intrinsic relationship
that can be perceived by the listener with the music style of
their ascendents.

Genetic operators are the main tools for the creation of
new individuals and they may be guided considering knowl-
edge about the problem [15]. Guided operators correct the
genotype in order not to generate absurd solutions.

Usually, the crossover point is randomly selected and that
is good for exploring the potential of the population in less
artistic musical tasks that are reducible to regular opti-
mization problems. In a fitness-free generation of melodies,
the crossover point should be limited to musically advanta-
geous points, according to analyses of the phenotype. The
crossover was defined with concern to the pulses of the mea-
sures, which cannot be broken, as shown in Figure 1.

Mutation is usually done by giving a new value to a gene
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Reverse measure
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Simple Mutation

yyy yyyy �yyy yy yyy y��
Original measure

Figure 2: Genetic Operators used in this work.

but this simple non-guided bit-flop operation rarely works
for non-optimization musical tasks. It was defined that the
mutation only changes the value of a note by a difference of
2 semitones, at most, to avoid that too many large vertical
intervals are randomly generated, which would be a seri-
ous problem with the simple bit-flop mutation. As in any
complex problem, it makes sense to have several mutation
operators occurring in parallel. Figure 2 shows all operators
used in this work.

It is also common to define some different rates to ap-
ply each operator, for they may lead to undesirable results
when inconvenient rates are used [1]. Those rates can be
even adjusted during the process or adjusted by another
evolutionary algorithm. Since no operators that change the
size of the measures have been used in this work (such as
copying parts or erasing notes), all operators have the same
probability of being applied.

The use of an order-based representation of the melodies
imply some differences in the results from those operators.
In a position-based scheme, genes represent notes but also
holds and rests and those events are also susceptible to
change by these operators. In these cases, the application of
the operators may change the genes in ways that can gen-
erate new rests and holds, modifying the number and dura-
tion of the notes. In contrast, in an order-based scheme, the
timing of the notes can be more easily inherited from the
parents since the elements (ηi, ti, δi) are explicitly defined in
chromosomes.

3.3 Minimum Implicit Fitness
One of the biggest problems for the generation of music is

the definition of an adequate fitness function. Initially, one
may think about basic necessities of the solution, making
processes that compose music in a particular style to be
more efficient but our intention is to base our process on
what composers actually do [20].

Models based on rules may oversimplify the essence of mu-
sic in order to make things simpler and help us define good
and bad individuals. The idea is that some songs may be
defined as good when they break many “rules” and the same
thing has to be algorithmically foreseen in creative compo-
sitional systems. However, these models may not represent
how music is usually composed.

Another possible approach is the similarity to a target
song, which is useful for the creation of songs with some
relationship between the initial population and the target
music. In this work, the opposite idea will be employed,
which is to create a new melody having the previously known
melody as the initial population instead.

An approach of selection with a minimum fitness is em-
ployed in a population that comes from a predefined melody,
allowing creativity to emerge from the application of genetic
operators. A minimum fitness can allow us to eliminate at
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Figure 3: Population in which a takeover has oc-
curred.
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Figure 4: Population with the initial population
markers.

least very bad solutions, which would be inaudible solutions
according to the minimal set of rules embedded in the fitness
function. The genetic operators must be very efficient and
robust for the melodies because otherwise there is no selec-
tive pressure to force the melodies to converge to something
better again.

In our experiments, two approaches of fitness were tried:
(i) fitness-free or unbiased selection and (ii) a minimum fit-
ness function that maintains the notes in the major scale of
C. In the second fitness function, a penalization is given to
any note out of the scale. Either way, all individuals have
the same value of fitness in most cases and the selection of
individuals is unbiased.

3.4 The Takeover Matrix
As most individuals will have the same fitness most of the

time, the best individuals are not necessarily at the last gen-
erations of the algorithm. In fact, these solutions are not
even desirable, since these last generations are character-
ized by takeover (even without the selective pressure caused
by fitness functions, takeover occurs due to genetic drift).
The diversity is therefore small and there are many similar
chunks of melody in the population. Since the population
represents the melody, takeover translates into a repetitive
and boring melody, as shown in Figure 3.

The most interesting set of measures will neither be in lat-
ter generations, since there will be a convergence to takeover
there, nor in initial generations, where the population is still
very related to the initial melody. We call this compromise
an originality-diversity trade-off. Since the advancement of
the solutions from diverse to original does not happen in a
linear scale, selecting a generation halfway from these ex-
trema is also not the best choice. We need a better criterion
to select a melody among the many candidates generated by
the evolutionary composition process.

Originality and diversity play an important role in the
definition of a good melody to be returned by the algorithm.
The originality-diversity compromise between the melodies
in different generations can be an alternative for quantifying
how good a set of individuals is.

Given the existence of this trade-off, our approach is to
halt the algorithm when the takeover happens. In order to
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maintain the population far from takeover for a little longer,
a holdover approach is used. After a generation, one of
its individuals is chosen to be held over, which means that
this individual will be also a candidate to breed in a later
generation. One individual of each generation is randomly
chosen to be a potential parent in the following generation.
This strategy avoids a quick convergence of the algorithm.

At the end of the algorithm, we shall identify the best set
of melodies but first we need to identify a takeover to do it.
In order to find a takeover, each event of the population is
marked with a number which identifies from which measure
of the initial population that event comes from, no mat-
ter if it has been mutated. An example of the application
of a crossover on a population with the initial population
markers is shown in Figure 4. In this example, the 3 initial
measures are the initial population and the others are results
of crossover. It is interesting to note that some genetic ma-
terial is lost in this process (pulses 3 and 4 from individual
1 and pulses 1 and 2 from individual 3).

A case in which it is easy to identify a takeover is when all
events of the last generation come from only one individual
of the first generation. Nevertheless, that does not always
happen because individuals with genetic material from many
initial measures may occur repeatedly during the process,
forming also a takeover that has notes from many individuals
while no crossover can make the next generations have notes
from only one individual.

In those cases, a more general solution can be used to
identify a takeover. It is to verify the origin of each event
in each pulse of the measure, since those are the limited
possible crossover points defined. For instance, if all notes
in pulse 1 and 2 of all individuals come from the initial
individual x and all notes in pulse 3 and 4 come from the
initial measure y, no crossover combination can lead to new
individuals and a takeover can be equally declared. For this
reason, we propose a Takeover Matrix, defined next.

Definition 1 (Takeover Matrix). For each generation, a
matrix T, with dimension n × p is generated, where n is
the number of pulses in each measure and p is the number
of individuals. Each element Tij of this matrix gives the
percentage values of the origin of each event, according to
the pulses and regarding individuals of the initial population.

Table 2 shows examples of the Takeover Matrix. Table
2(a) shows T for an initial generation, where 25% of the
notes in each pulse come from the same individual.

As the population gets close to a takeover, those percent-
ages get close to 100%, which means all notes of that pulse
come from the same individual of the initial generation. In
Table 2(b), all notes from the supposed population in pulse 3
come from the individual 2 in the initial generation. In this
example, the genetic material from individual 1 has been
completely lost.

Mutated notes do not change the origin of a note because
it would make it more difficult to identify a takeover while
less musical solutions could impede the algorithm to halt.
When a takeover occurs, an individual dominates each pulse
of the population, and the values of the matrix do not change
from one generation to another.

As it is important to have a high diversity final solution
as much as they must be original in relation to the initial
melody, specially when its author is not the user of the al-

Table 2: Takeover Matrix in Two Different Cases

a)

Pulse Ind.1 Ind.2 Ind.3 Ind.4

1 25% 25% 25% 25%
2 25% 25% 25% 25%
3 25% 25% 25% 25%
4 25% 25% 25% 25%

b)

Pulse Ind.1 Ind.2 Ind.3 Ind.4

1 0% 0% 100% 0%
2 0% 100% 0% 0%
3 0% 100% 0% 0%
4 0% 0% 0% 100%

Table 3: Calculation of a compromise value.
Pulse Ind.1 Ind.2 Ind.3 Ind.4 σi

1 0.50 0.25 0.15 0.10 0.18
2 0 1.00 0 0 0.50
3 0.25 0.25 0.25 0.25 0
4 0.20 0.30 0.50 0.10 0.17
Total 0.85

gorithm, we need now to evaluate the compromise between
those objectives in the generations.

In order to do that, during the evolutionary process, each
generation (from the first one until the one in which a takeover
was declared) gets a value defined as compromise value. This
compromise value is defined as:

1. The standard deviation of the values of each pulse
(each row in the Takeover matrix) are calculated. A
high standard deviation in a pulse means that the ori-
gin of the notes of this pulse are less equally distributed
than it was in the beginning of the process.

2. The standard deviations of all pulses are summed up
to create the compromise value which is assigned to
the current generation.

Mathematically, the compromise value c is given by:

c =

n∑
i=1

σi =

n∑
i=1

√√√√1

p

p∑
j=1

(Tij − µ)2

 (1)

Table 3 shows the calculation of a compromise value of
0.85. The compromise value is used to monitor the process,
giving an idea of the distribution of the origin of all notes in
a specific generation. If the value of the accumulated devia-
tion is close to 0, the notes are equally distributed and the
current generation is probably close to the initial melody.
On the other hand, a high value of accumulated deviation
may indicate a takeover about to happen. Thus, it is possi-
ble to monitor the advancement of a diverse melody towards
a more original melody, as this transformation does not hap-
pen linearly.

At the end, as explained above, the trade-off between di-
versity and originality must be dealt. With the compromise
values given by the Takeover matrix, it is now possible to
find a melody which is neither too close to a takeover nor too
similar to the original melody not to be considered a new
melody. In order to do that, the median of all compromise
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Figure 6: 16 measures from One Note Samba.

values can be used to select the generation from which the
final measures will be returned as the result. Generations
whose compromise values are close to the median form good
candidates to be the result returned by the algorithm. We
arbitrarily select the individuals in the generation with the
closest value to that median to be returned as a new melody.

4. EXPERIMENTS AND DISCUSSION
In this section, we describe some experiments held in or-

der to better understand the functioning of the algorithm,
its compromise values, takeovers and give some examples
of possible results. Different melodies were used to analyze
some possibilities of the method.

As the algorithm stops running as soon as the takeover
is found, the number of generations of the algorithm varies
in different executions. The boxplot in Figure 5 shows the
number of generations needed until takeover occurred for
several different sizes of population. The algorithm was run
100 times with each population size.

Our first experiment involves the development of a new
melody having 16 measures taken from One Note Samba as
a reference for the algorithm. Those measures are shown in
Figure 6. Measures 1-8 are taken from the verse while mea-
sures 9-16 are taken from the chorus. This can be considered
a good song to analyze the algorithm, since the verse has a
very simple melody, with only two notes and a very repet-
itive rhythm pattern, while the chorus, more sophisticated,
has 9 out of the 12 possible notes.

y�
yy y � y5

� y y � ��y � � yy y y � y� y�yy

y � y�
y �y y� y � y� � �y� y y yy � y�y� yy

Figure 7: A result using the verse of the song.
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Figure 8: A result using the chorus of the song.

Three different experiments were held with this melody,
using the (i) verse, (ii) the chorus and (iii) both of them
as the initial population. Beginning with the melody here
defined as the simpler one, Figure 7 shows a possible result
from the algorithm which uses the first 8 measures of the
melody in Figure 6.

The resulting melody shares many similarities with the
initial population of measures, which are rhythmically repet-
itive. All notes are executed at the beginning of pulse, apart
from the 4th pulse, which always have first a rest and then
a note. The result has also as few notes as the initial popu-
lation.

Although this first result resembles the style of the initial
solution, it does not simply copy chunks of melody from the
initial population and does not lead to a melody that cannot
be considered a new one.

To contrast the first result with a more complex one, Fig-
ure 8 shows results that used measures 9-16 as initial popula-
tion. Once more, the final result shares characteristics with
the initial population such as a greater variety of notes, being
many of them with the same duration (a 8th of a measure).
Also the range of the notes is very similar, from D# to A#
(using 19 half tones) in the initial population and from F to
G# (using 15 half tones) in the resulting melody.

Comparing those first two experiments, some evidence
that the final results really take after the initial popula-
tion can be seen. It shows that this may be a feasible way
to control the results of the algorithm, instead of defining
strict rules for each particular style of music.

The influence of the rhythmic structure of the initial pop-
ulation can be perceived as the simplicity or complexity of
the rhythm of the final result is maintained in both cases.
Mutations which strongly alter the rhythmic structure of the
melody may easily lead to inaudible results, specially when
many subdivisions of a pulse are allowed as crossover points.
Allowing only some musically relevant crossover points is one
of the reasons the musicality of the results is kept.

A new song could be built up mimicking the style of the
original song and parts of this new song could result from the
melody generator with different parts of the original song.
But something else can be done. All parts of the song can
be used, forming results such as the one shown in Figure 9.
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Figure 9: A result using all measures as initial pop-
ulation.

a) Initial Population - A chromatic scale beginning from Cyy y�y yy�yy� y� � y y� y y yy y� �
b) Result 1 - Using a fitness-free GA

y� y y y y y� � y yy� y� �y � yyy� y � y
c) Result 2 - Using a minimum-fitness GA

yyy� y y y� yy yy y yy yy y

Figure 10: Using a chromatic scale as initial popu-
lation

In those kinds of experiments, using different styles of
melodies, it is important to note that the algorithm does not
have the capability of distinguishing which measures belong
to a different style and producing a new melody with some
measures in each style. Instead, the characteristics of the
different measures are likely to mix-up and form a specific
intermediary “style”.

The style of a song can change considerably if restrictions
are imposed to individuals by any biased fitness function.
That can change original characteristics of a melody by giv-
ing preferences to some certain individuals. Having demon-
strative examples which are also not very musical are useful
to compare the influence of the initial population of the al-
gorithm and its operators. Figure 10 shows an experiment
in which the results can exemplify this assumption.

The initial population is a simple execution of each notes
1 half tone far from each other, using always the same dura-
tion to the notes. At least for most musicians, this sequence
of notes would only be used as an exercise or a warm-up be-
fore a performance. The results achieved using a fitness-free
genetic algorithm can be considered as musical (or as not
musical) as the chromatic scale used in the initial popula-
tion. They do not respect any specific scale, similarly to the
initial population, and the rhythm pattern is also the same.

On the other hand, the result using a minimum fitness
approach that penalizes individuals with notes out of the
scale of C made the final melody respect this aspect. Even
though the same repetitive rhythm pattern is inherited from
the initial population, the restriction applied to the notes
made the whole melody sound far more musical.

a) Initial Population - Happy Birthday to You

yyy�
5 �yyyy� �yy�y

y yy� � � y yy yy y � y y � y� �

b) Results with a fitness-free selection

y � y �y y5

� y y yyy y yy yy y y

y �� y yy y� � y yy� yy y yy yy

Figure 11: Using Happy Birthday to You as the ini-
tial population.

The drawback of this fitness based approach is that a
strong limitation was imposed to the melodies even though
the measures had the same fitness value in most genera-
tions. That led to a result that lost part of its link to the
initial melody, making the algorithm loose one of its fea-
tures. In this specific case, the results using a fitness-based
approach may be better because there was not a good ini-
tial melody, which is the most effective way to control the
results of a fitness-free solution. Thus, the fitness-based ap-
proach may have limited the link between the results and
a bad melody. Even though the initial melody might not
be considered good by many people, the user may have this
explicit intention to create another bad melody having the
first one as a reference to control the algorithm.

In cases in which the initial solutions are very musical
and creative, those constraints could probably restrain this
creativity of the initial solution, making it a simpler melody.
In those approaches, melodies such as the one in Figure 8
would never be generated.

Also, as the algorithm has results that are related to the
initial population, a fitness-free approach can be used with
a good initial population that already respects the desired
rules. That would result in new melodies that have the
possibility of being creative but they will also be related to
the initial population. In these cases, a fitness control may
even remove some control over the algorithm, if the user
expects to have something similar to the initial population.

For example, a simple initial melody that respects the
scale of C is likely to generate another simple melody that
still respects that scale in some degree. The experiment
represented in Figure 11 can show evidence of that.

Figure 11 shows a simple initial solution which respects
the scale of C. Applying a fitness-free selection scheme, the
final solution is also a simple solution that neither has notes
that last small fractions of time nor disrespect the origi-
nal scale of C. All this control of the algorithm was made
by controlling the initial population instead of using fitness
functions that could change the style of the results.

5. CONCLUSIONS
Perhaps the main fact to be noticed in the development

of evolutionary systems for algorithmic composition is that
it is a task in which discussion in the relevant domain is
strictly necessary. Any attempt to create a compositional
system without discussion about musical theory cannot be
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useful. The algorithm proposed in this paper shows that
it is possible to create new compositions and mix known
elements to create related new songs. Despite the influence
from the initial population over the final result, the way the
algorithm is controlled can lead to completely new results
since no strict rules (such as an ordinary fitness function)
are applied to the evolutionary process.

The rhythmical influence partly explains the functioning
of this melody generator and how it generates music in simi-
lar genres, since it maintains a great portion of the rhythmic
structure of the initial melody. That shall not be a creativity
problem when there is a melody database large enough to
cover many kinds of melodic structures where the generator
can learn from. In fact, new creative melodies could be cre-
ated from the initial ones. In the end, it may be very difficult
to guess which melody the initial population represents.

In this melody generator, changes across the generations
have more importance than the search for a particular result
that best satisfy a specific set of rules. Thus, it is more
significant to have robust musically conscious operators than
fitness functions based on rules that might otherwise remove
some of the creativity from the results. The takeover matrix
is a good new approach devised to find a set of good solutions
related to each other.

Melodies, as a result of a creative process, cannot be cre-
ated based only on simple musical rules, the system must
have some implicit experience about what human composers
actually do. Moreover, a process to create melodies with less
rules can be much easier to be implemented and used when
compared to algorithms which use the artifice of a human
mentor to evaluate the whole population. This algorithm
can be not only useful to develop new ideas but also to ex-
tend previously created ideas which are competitive with
human created ideas.
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